PC-12 NGX

PILOT'S INFORMATION MANUAL PC-12/47E MSN 2001 AND UP

PILOT'S INFORMATION MANUAL

WARNING

- This PC-12 Pilot's Information Manual is published for general and familiarization purposes only.
- This Pilot's Information Manual does NOT meet FAA, FOCA or any other civil aviation authority regulations for operation of ANY Aircraft.
- This Pilot's Information Manual is a reproduction of a PC-12 Airplane Flight Manual, however, it is NOT revised or updated.
- This Pilot's Information Manual does NOT reflect the configuration or operating parameters of any actual aircraft.
- Only the Approved Airplane Flight Manual/Pilot's Operating Handbook issued for a specific serial number aircraft may be used for actual operation of that serial number aircraft.

 Pilatus Aircraft Ltd

 P.O. Box 992
 6371 Stans, Switzerland

 6371 Stans, Switzerland
 +41 41 619 67 00

 Fax
 +41 41 619 92 30

 info@pilatus-aircraft.com
 www.pilatus-aircraft.com

PC-12

ION PURPOSES ONLY PILOT'S OPERATING HANDBOOK AND EASA APPROVED AIRPLANE FLIGHT MANUAL

PC-12/47E - MSN 1720, 2001 and up - Report number 02406

EASA Type Certification No .: EASA A.089 FAA Type Certification No :: A78EU

Manufacturer's Senal Number:

Registration Number;

APPROVED THE NORMAL CATEGORY BASED ON FAR 23 THROUGH AMENDMENT 42. THIS DOCUMENT MUST BE CARRIED IN THE AIRPLANE AT ALL TIMES. THIS HANDBOOK INCLUDES THE MATERIAL REQUIRED TO BE FURNISHED TO THE PILOPBY THE FEDERAL AVIATION REGULATIONS AND ADDITIONAL INFORMATION PROVIDED BY THE MANUFACTURER AND CONSTITUTES THE EASA APPROVED. AIRPLANE FLIGHT MANUAL (AFM).

The AFM is EASA approved under Approval Number: 10071186.

This Handbook is also FAA approved for U.S. registered aircraft in accordance with FAR 21.29.

This Handbook meets General Aviation Manufacturer's Association (GAMA) Specification No. 1, Specification for Pilot's Operating Handbook, issued 15 February 1975, revised 1 September 1984.

Pilatus Aircraft Ltd, CH-6370 Stans, Switzerland

D Pilatus Aircraft Ltd. This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this document may be copied, reproduced or translated to other languages without the prior written consent of Pliatus Aircraft Ltd.

This Page Mentionally Left Blank

Front Matter

Table of Contents

Subject		Page		
List of Effec	ctive Data Modules	FM-1-1		
Change Hig	Change Highlights			
Log of Revi	sions	FM-3-1		
1	Issue 002 - Revision 00 - Dated: 14 October 2019	FM-3-1		
2	Issue 003 - Revision 00 - Dated: 06 March 2020	FM-3-1		
3	Issue 003 - Revision 01 - Dated: 18 December 2020	FM-3-1		
Log of Tem	porary Revisions	FM-4-1		
List of Serv	ice Bulletins	FM-5-1		
List of APE	X Builds	FM-6-1		
FORGEN	sions Issue 002 - Revision 00 - Dated: 14 October 2019 Issue 003 - Revision 00 - Dated: 06 March 2020 Issue 003 - Revision 01 - Dated: 18 December 2020 porary Revisions ice Bulletins X Builds K Builds FRAMMUMARY FRAMUMARY FRAMMUMARY FR			

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

List of Effective Data Modules

All DMC are preceded with 12-C but for clarity this has been left out

- C = Changed data module
- N = New data module

Data module code	e (DMC)	Document title	N/C	Issue date
A15-00-0000-00A-0	002A-A	List of Effective Data Modules	С	18.12.2020
A15-00-0000-00A-0	003A-A	Change Highlights	С	18.12.2020
A15-00-0000-00A-0	003B-A	Log of Revisions	C	18.12.2020
A15-00-0000-00A-0	002B-A	Log of Temporary Revisions	~	06.03.2020
A00-00-0000-00A-9	930A-A	List of Service Bulletins	5	06.03.2020
A15-00-0001-00A-0	030A-A	List of APEX Builds	Ć	18.12.2020
A15-00-0010-00A-0	018A-A	Introduction	С	18.12.2020
A15-00-0101-00A-0	010A-A	General		06.03.2020
A15-00-0102-00A-0	018A-A	Introduction		06.03.2020
A15-00-0103-00A-0	030A-A	Top Level Illustrations		06.03.2020
A15-00-0104-00A-0	030A-A	Descriptive Data 💫 🔪		06.03.2020
A15-00-0105-00A-0	005A-A	Symbols, Abbreviations, and Terminology		06.03.2020
* A15-10-0201-00A-0	010A-A	General		06.03.2020
* A15-10-0202-00A-0	043A-A	Airspeed Limitations		06.03.2020
* A15-10-0203-00A-0	043A-A	Airspeed Indication Markings		06.03.2020
* A15-10-0204-00A-0	043A-A	Power Plant Limitations	С	18.12.2020
* A15-10-0205-00A-0	043A-A	Power Plant Window Markings		06.03.2020
* A15-10-0206-00A-0	043A-A	Miscellaneous Instrument Markings		06.03.2020
* A15-10-0207-00A-0	043A-A 🗸 🏹	Weight Limits		06.03.2020
* A15-10-0208-00A-0	043A-A	Center of Gravity Limits		06.03.2020
* A15-10-0209-00A-0	043A-A	Maneuver Limits		06.03.2020
* A15-10-0210-00A-0	043A-A	Flight Load Factor Limits		06.03.2020
* A15-10-0211-00A-0)43A-A	Flight Crew Limits		06.03.2020
* A15-10-0212-00A-0	043A-A	Kinds of Operation		06.03.2020
* A15-10-0213-00A-0	043A-A	Pneumatic Deicing Boot System		06.03.2020
* A15-10-0214-00A-0	043A-A	Icing Limitations		06.03.2020
* A15-10-0215-00A-0	043A-A	Kinds of Operation Equipment List		06.03.2020
* A15-10-0216-00A-0	043A-A	Fuel Limitations		06.03.2020
* A15-10-0217-00A-0	043A-A	Maximum Operating Altitude Limits		06.03.2020
A15-10-0218-00A-0	043A-A	Outside Air Temperature Limits		06.03.2020
* A15-10-0219-00A-0	043A-A	Cabin Pressurization Limits		06.03.2020
* A15-10-0220-00A-0	043A-A	Maximum Passenger Seating Limits	С	18.12.2020
* A15-10-0221-00A-0	043A-A	Systems and Equipment Limits	С	18.12.2020
* A15-10-0222-00A-0	043A-A	Other Limitations	С	18.12.2020
* A15-10-0223-00A-0	067A-A	Placards	С	18.12.2020
* A15-40-0301-00A-0	010A-A	General	С	18.12.2020
* A15-40-0302-00A-0	043U-A	Airspeeds for Emergency Operations		06.03.2020

List of Effective Data Modules

N/C	Issue date
	06.03.2020
С	18.12.2020
	06.03.2020
	06.03.2020
	06.03.2020
	06.03.2020
	06.03.2020
С	18.12.2020
U	06.03.2020
	06.03.2020
	06.03.2020
	06.03.2020
	06.03.2020
\sim	06.03.2020
\sim	18.12.2020
e	06.03.2020
-	
	06.03.2020
	06.03.2020
	06.03.2020
	06.03.2020
	06.03.2020
-	06.03.2020
С	18.12.2020
	06.03.2020
	06.03.2020
	06.03.2020
	06.03.2020
	06.03.2020
	06.03.2020
	06.03.2020
	06.03.2020
	06.03.2020
	06.03.2020
	06.03.2020
	06.03.2020
	06.03.2020
	06.03.2020
	06.03.2020
С	18.12.2020
0	06.03.2020
	06.03.2020
	06.03.2020
	06.03.2020
С	

Data module code (DMC)		N/C	Issue date
* A15-30-0415-00A-131A-A	Balked Landing (Go-Around)		06.03.2020
* A15-30-0416-00A-131A-A	Landing		06.03.2020
* A15-30-0417-00A-131A-A	After Landing		06.03.2020
* A15-30-0418-00A-131A-A	Shutdown		06.03.2020
* A15-30-0419-00A-131A-A	Parking		06.03.2020
* A15-30-0420-00A-131A-A	Oxygen System		06.03.2020
* A15-30-0421-00A-131A-A	Noise Level		06.03.2020
* A15-30-0422-00A-131A-A	Automatic Flight Control System Operation		06.03.2020
* A15-30-0423-00A-131A-A	Crosswind Operation		06.03.2020
* A15-30-0424-00A-131A-A	Flight in Icing Conditions		06.03.2020
* A15-30-0425-00A-131A-A	Severe Icing Conditions	\mathcal{S}	06.03.2020
* A15-30-0426-00A-131A-A	CPCS Low Cabin Mode Operation	1	06.03.2020
* A15-30-0427-00A-131A-A	SV Selection and Brightness Control	С	18.12.2020
* A15-30-0428-00A-131A-A	LPV/LP Detailed Operating Procedures		06.03.2020
* A15-60-0501-00A-030A-A	Standard Tables		06.03.2020
* A15-60-0503-01A-030A-A	Performance Data - Stall Speeds		06.03.2020
* A15-60-0503-02A-030A-A	Performance Data Takeoff Performance		06.03.2020
* A15-60-0503-03A-030A-A	Performance Data - Climb Performance		06.03.2020
* A15-60-0503-04A-030A-A	Performance Data - Cruise Performance		06.03.2020
* A15-60-0503-05A-030A-A	Performance Data - Specific Air Range		06.03.2020
* A15-60-0503-06A-030A-A	Performance Data - Holding Time and Fuel		06.03.2020
* A15-60-0503-07A-030A-A	Performance Data - Descend Performance		06.03.2020
* A15-60-0503-08A-030A-A	Performance Data - Power-off Glide Performance	С	18.12.2020
* A15-60-0503-09A-030A-A	Performance Data - Balked Landing Performance		06.03.2020
* A15-60-0503-10A-030A-A	Performance Data - Landing Performance		06.03.2020
* A15-60-0504-01A-030A-A	Flight in Icing Conditions - General		06.03.2020
* A15-60-0504-02A-030A-A	Flight in Icing Conditions - Flaps		06.03.2020
*A15-60-0504-03A-030A-A	Flight in Icing Conditions - Stall Speeds		06.03.2020
* A15-60-0504-04A-030A-A	Flight in Icing Conditions - Engine Torque		06.03.2020
* A15-60-0504-05A-030A-A	Flight in Icing Conditions - Takeoff Performance	С	18.12.2020
* A15-60-0504-06A-030A-A	Flight in Icing Conditions - Accelerate- Stop Performance		06.03.2020

Data module code (DMC) Document title	N/C	
	11/0	Issue date
A15-60-0504-07A-030A-A Flight in Icing Conditions - Maximum Rate of Climb		06.03.2020
A15-60-0504-08A-030A-A Flight in Icing Conditions - Holding Endurance		06.03.2020
A15-60-0504-09A-030A-A Flight in Icing Conditions - Balked Rate of Climb		06.03.2020
A15-60-0504-10A-030A-A Flight in Icing Conditions - Landing Performance		06.03.2020
A15-60-0505-00A-043A-A Flight Planning Example		06.03.2020
A15-30-0601-00A-010A-A General		06.03.2020
A15-30-0602-00A-169A-A Preparations for Airplane Weighing		06.03.2020
A15-30-0603-00A-169A-A Airplane Weighing with Load Plates		06.03.2020
A15-30-0604-00A-169A-A Airplane Weighing with Jacks and		06.03.2020
Load Cells		$\mathcal{O}^{\mathbf{v}}$
A15-30-0605-00A-169A-A Weight and Balance Determination for Flight	20	06.03.2020
A15-30-0606-00A-169A-A Weight and Balance Records		06.03.2020
A15-30-0607-00A-169A-A General Loading Recommendations		06.03.2020
A15-30-0608-00A-169A-A Interior Configurations	С	18.12.2020
A15-00-0701-00A-010A-A General		06.03.2020
A15-00-0701-00A-010A-A General A15-00-0702-00A-043A-A Airframe A15-00-0703-00A-043A-A Flight Controls		06.03.2020
A15-00-0703-00A-043A-A Flight Controls		06.03.2020
A15-00-0704-00A-043A-A Landing Gear		06.03.2020
A15-00-0705-00A-043A-A Baggage Compartment		06.03.2020
A15-00-0706-00A-043A-A Cargo Tie-Downs		06.03.2020
A15-00-0707-00A-043A-A Seats / Restraint Systems		06.03.2020
A15-00-0708-00A-043A-A Doors, Windows and Exits		06.03.2020
A15-00-0709-00A-043A-A Control Locks		06.03.2020
A15-00-0710-00A-043A-A Engine	С	18.12.2020
A15-00-0711-00A-043A-A Propeller	U U	06.03.2020
A15-00-0712-00A-043A-A Fuel	С	18.12.2020
A15-00-0713-00A-043A-A Electrical	c	18.12.2020
A15-00-0714-00A-043A-A Lighting	U	06.03.2020
A15-00-0715-00A-043A-A Environmental Control System		06.03.2020
A15-00-0716-00A-043A-A Foot Warmer System (Optional)		06.03.2020
A15-00-0717-00A-043A-A Cabin Pressure Control System		06.03.2020
A15-00-0718-00A-043A-A Oxygen System		06.03.2020
A15-00-0719-00A-043A-A Cockpit Arrangement		06.03.2020
A15-00-0720-00A-043A-A Pitot Static Systems		06.03.2020
A15-00-0721-00A-043A-A Stall Warning / Stick Pusher System		06.03.2020
A15-00-0722-00A-043A-A Stall Warning / Stick Pusher System		06.03.2020
,		
		06.03.2020
A15-00-0724-00A-043A-A Cabin Features		06.03.2020
A15-00-0725-00A-043A-A Emergency Locator Transmitter		06.03.2020

Data module code (DMC)	Document title	N/C	Issue date
A15-00-0726-00A-010A-A	Primus APEX - Avionics Installation General		06.03.2020
A15-00-0727-00A-043A-A	Primus APEX		06.03.2020
A15-00-0728-00A-043A-A	Primus APEX - Attitude and Heading		06.03.2020
A15-00-0729-00A-043A-A	Primus APEX - Communication and Navigation		06.03.2020
A15-00-0730-00A-043A-A	Primus APEX - Situation Awareness	С	18.12.2020
A15-00-0731-00A-043A-A	Primus APEX - Monitor Warning System (MWS)	С	18.12.2020
A15-00-0732-00A-043A-A	Primus APEX - Automatic Flight Control System	C	06.03.2020
A15-00-0733-00A-043A-A	Primus APEX - Flight Management System	,S	06.03.2020
A15-00-0734-00A-043A-A	Primus APEX - Aircraft Condition Monitoring System (ACMS)		06.03.2020
A15-00-0735-00A-043A-A	Primus APEX - Aircraft Diagnostic and Maintenance System (ADMS)		06.03.2020
A15-00-0736-00A-043A-A	Primus APEX - Optional Electronic Charts		06.03.2020
A15-00-0737-00A-043A-A	Primus APEX - Optional Electronic Checklist		06.03.2020
A15-00-0738-00A-043A-A	Primus APEX - Coupled VNAV Approach	С	18.12.2020
A15-00-0739-00A-043A-A	Primus APEX - Optional LPV/LP Approach		06.03.2020
A15-00-0740-00A-043A-A	Lightweight Data Recorder (If Installed)		06.03.2020
A15-20-0801-00A-010A-A	General		06.03.2020
A15-20-0802-00A-043A-A	Ground Handling		06.03.2020
A15-20-0803-00A-173A-A	Mooring		06.03.2020
A15-20-0804-00A-172A-A	Jacking		06.03.2020
A15-20-0805-00A-043A-A	Passenger Seat Removal and Installation		06.03.2020
A15-20-0806-00A-200A-A	Servicing	С	18.12.202
A15-20-0807-00A-200A-A	Cleaning and Care		06.03.202
A15-20-0808-00A-800A-A	Extended Storage		06.03.202
A15-20-0809-00A-280A-A	Corrosion Inspection		06.03.202
A15-20-0810-00A-043A-A	Geographical Location and Environment		06.03.202
A15-00-0901-00A-010A-A	General		06.03.202
A15-20-1001-00A-010A-A	General		06.03.202
A15-20-1002-00A-043A-A	Safety Tips		06.03.202
A15-20-1003-00A-043A-A	Operational Tips		06.03.202
A15-20-1004-00A-043A-A	Flammable Materials, Pressure Vessels and Equipment Locations		06.03.2020

* Authority Approved

12-C-A15-00-0000-00A-002A-A

List of Effective Data Modules

Data module code (DMC)	Document title	N/C	Issue date
A15-20-1005-00A-043A-A	Removal of Snow, Ice and Frost from	100	06.03.2020
	the Aircraft		
A15-20-1006-00A-043A-A	Operations from Prepared Unpaved		06.03.2020
A15-20-1007-00A-043A-A	Surfaces Passenger Briefings		06.03.2020
	·		0010012020
* Authority Approved	Mathematica		
			0
			5
		C	
		\sim	9
		2	
	. ?~		
	A O		
	SE.		
	×'		
~			
<i>⊳</i>			
~ `			
2K			
GV			
2			
20°			
×			

Change Highlights

This change highlights section shows all changes to PC-12 Pilot's Operating Handbook (POH) (No.02406), Issue 003 Revision 01, Dated 18 December 2020.

All DMC are preceded with 12-C but for clarity this has been left out

- **C** = Changed data module. Replace the data module in the relevant section of the POH.
- \mathbf{N} = New data module. Insert this data module in the relevant section of the POH.

	module code	Туре	Reason for Update (RFU)
Docu	iment title		
A15-0	00-0000-00A-002A-A	С	21999 - Updated for Issue 003 - Revision 01.
	f Effective Data Modules		
	00-0000-00A-003A-A	N	Incorporation of new data module
	ige Highlights		0
A15-0	00-0000-00A-003B-A	С	21999 - Updated for Issue 003 - Revision 01.
•	of Revisions		
	00-0001-00A-030A-A	С	21999 - Incorporated TR 11. Remove and
List o	f APEX Builds		destroy TR 11 and record the removal in the
			Log of Temporary Revisions.
	00-0010-00A-018A-A	С	21766 - Added new para "Supplements".
	Juction	_	
	10-0204-00A-043A-A	С	21999 - Incorporated TR 08. Remove and
Powe	er Plant Limitations	X	destroy TR 08 and record the removal in the
* * 4 =		· V	Log of Temporary Revisions.
	10-0220-00A-043A-A	C	21999 - Incorporated TR 07. Remove and
	mum Passenger Seating	<i>V</i> .	destroy TR 07 and record the removal in the
Limite		~	Log of Temporary Revisions.
	10-0221-00A-043A-A	С	21357 - Updated "Primus Apex - TCAS" limitation.
	10-0222-00A-043A-A	С	21709 - Updated front (passenger) and back
	r Limitations	C	(cargo) door terminology (editorial).
	10-0223-00A-067A-A	С	21999 - Incorporated TR 07. Remove and
Placa		0	destroy TR 07 and record the removal in the
1 1000			Log of Temporary Revisions.
* A15-4	40-0301-00A-010A-A	С	21263 - Added PPAA drill description.
Gene			
* A15-4	40-0304-00A-141U-A	С	21184 - Updated engine failure after rotation
Engir	ne Failure		LG up procedure.
A15-4	40-0310-00A-141A-A	С	21514 - Updated location of LDG CTL SEC
	ing Gear System Failure		circuit breaker.
* A15-4	40-0317-00A-141A-A	С	21298 - Updated "ACS Low Inflow" procedure
Cabir	n Environment Failures		21495 - Updated ECS circuit breaker location
* A15-4	48-0303-00A-141A-A	С	21372 - Removed CPCS Fault status
CAS	Status		message.
* A15-3	30-0410-00A-131A-A	С	21514 - Updated Note (editorial).
Flight	t into Known Icing Conditions		

Data module code Document title	Туре	Reason for Update (RFU)
* A15-30-0427-00A-131A-A SV Selection and Brightness Control	С	21514 - Changed "SYS BRT" to "SVS BRT" (editorial).
* A15-60-0503-08A-030A-A Performance Data - Power-off Glide Performance	С	21514 - Power-off Glide Distance graph X-axis updated (editorial).
* A15-60-0504-05A-030A-A Flight in Icing Conditions - Takeoff Performance	С	21777 - Added Note.
* A15-30-0608-00A-169A-A Interior Configurations	С	21999 - Incorporated TR 07. Remove and destroy TR 07 and record the removal in the Log of Temporary Revisions.
A15-00-0710-00A-043A-A Engine	С	22164 - Added caution.
A15-00-0712-00A-043A-A Fuel	С	21631 - Updated Fuel Filter Replace status message description.
A15-00-0713-00A-043A-A Electrical	С	21513 - "PGDS Emergency Operation Condition" figures updated (removed Hydr Pwr from figures).
A15-00-0730-00A-043A-A Primus APEX - Situation Awareness	С	21357 - Updated "TCAS II Operation" description.
A15-00-0731-00A-043A-A Primus APEX - Monitor Warning System (MWS)	С	21372 - Removed CPCS Fault status message.
A15-00-0738-00A-043A-A Primus APEX - Coupled VNAV Approach	CN P	21514 - Updated "VNAV - Example Indications" figure (editorial).
A15-20-0806-00A-200A-A Servicing	с	21514 - Updated oil replenishment procedure i.a.w. AMM.
* Authority Approved		
* Authority Approved		

Log of Revisions

1 Issue 002 - Revision 00 - Dated: 14 October 2019

Re-issue of the PC-12/47E Pilot's Operating Handbook to include technical changes and conversion of the manual to a new layout.

The Issue 002 Revision 00 of the AFM ref. 02406 is approved under EASA approval number 10071186.

Approval date: 11.10.2019

Table 1-1-1: Issue 002 - Revision 00 - List of changes

Section	PTS Number	Description of Change
All	19595	PC-12 Pilot's Operating Manual Issue 002 Revision
		00.

2 Issue 003 - Revision 00 - Dated: 06 March 2020

Re-issue of the PC-12/47E Pilot's Operating Handbook to include technical changes for Entry-Into-Service.

The Issue 003 Revision 00 of the AFM ref. 02406 is approved under the authority of DOA ref. EASA.21J.357.

Approval date: 06.03.2020

Table 1-1-2: Issue 003 -	Revision 00 - List of changes

Section	PTS Number	Description of Change
All	20936	PC-12 Pilot's Operating Manual Issue 003 Revision
		00.
		TR 01 thru 06 are integrated in this Issue 003
		Revision 00.
	2	•

3 Issue 003 - Revision 01 - Dated: 18 December 2020

Revision of the PC-12/47E Pilot's Operating Handbook.

The Issue 003 Revision 01 of the AFM ref. 02406 is approved under the authority of DOA ref. EASA.21J.357.

Approval date: 18.12.2020

Table 1-1-3: Issue 003 - Revision 01 - List of changes

Section	PTS Number	Description of Change
List of Applicable Data Modules	21999	Updated for Issue 003 Revision 01.
Change Highlights	21999	Updated for Issue 003 Revision 01.
Log of Revisions	21999	Updated for Issue 003 Revision 01.

Section	PTS Number	Description of Change
List of APEX	21999	Incorporated TR-11.
Builds		Remove and destroy TR 11 and record the removal in
		the Log of Temporary Revisions.
Section 0		
0	21766	Added new para "Supplements".
Section 2		
2-4	21999	Incorporated TR 08.
		Remove and destroy TR 08 and record the removal in
		the Log of Temporary Revisions.
2-20	21999	Incorporated TR 07.
		Remove and destroy TR 07 and record the removal in
		the Log of Temporary Revisions.
2-21	21357	Added "Primus Apex - TCAS II" limitation.
2-22	21709	Updated front (passenger) and back (cargo) door terminology (editorial).
2-23	21999	Incorporated TR 07.
		Remove and destroy TR 07 and record the removal in
		the Log of Temporary Revisions.
Section 3		
3-4	21184	Added "not below DSB (1.3 V _S)" for final approach
		speed.
3-10	21514	Updated location of LDG CTL SEC circuit breaker.
3-17	21298	Updated "ACS Low Inflow" procedure.
	21495	Updated ECS CB location to LE2.
Section 4		
4-10	21514	Updated Note (editorial).
4-10	21514	Changed "SYS BRT" to "SVS BRT" (editorial).
	21514	Changed STS BRI to SVS BRI (editorial).
Section 5		
5-3-8	21514	21514 - Power-off Glide Distance graph X-axis
E 4 E	2-04 777	updated (editorial).
5-4-5	21777	Added Note.
Section 6	Av	
6-8	21999	Incorporated TR 07.
		Remove and destroy TR 07 and record the removal in
Pa attick 7		the Log of Temporary Revisions.
Section 7	00101	
7-10	22164	Added caution.
7-12	21631	Updated "Fuel Filter Replace" description.
7-13	21514	"PGDS Emergency Operation Condition" figures
		updated (removed Hydr Pwr from figures).
7-30	21357	Updated "TCAS II Operation" description.
7-38	21514	Updated "VNAV - Example Indications" figure (editorial).
Section 8		
8-6	21514	Updated oil replenishment information.

Table 1-1-3: Issue 003 - Revision 01 - List of changes (continued from previous page)

Log of Temporary Revisions

Temporary Revision Title	Date of Issue	Cancelled by
Fuel Anti-Icing Additive	28 Nov 2019	Issue 003 Revision 00
APEX Builds	10 Dec 2019	Issue 003 Revision 00
EX-6S-2 Placards	10 Dec 2019	Issue 003 Revision 00
Emergency Gear Extension	06 Dec 2019	Issue 003 Revision 00
EPECS Update	14 Feb 2020	Issue 003 Revision 00
Feather Inhibit (option)	10 Feb 2020	Issue 003 Revision 00
		6
		\mathcal{S}^{*}
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0
	2	
	2	
	0,	
2 ¹ ^r		
P.		
<u> </u>		
< X *		
Ú		
	Fuel Anti-Icing Additive         APEX Builds         EX-6S-2 Placards         Emergency Gear Extension         EPECS Update	IssueFuel Anti-Icing Additive28 Nov 2019APEX Builds10 Dec 2019EX-6S-2 Placards10 Dec 2019Emergency Gear Extension06 Dec 2019EPECS Update14 Feb 2020

No.	Temporary Revision Title	Date of	Cancelled by
		Issue	
			- $O$
			19
			<u>,</u>
			$\mathcal{N}^{*}$
			Κ
		2	
		~	
		15	
	0	N	
	, D,	~	
	- C ¹		
	×.		
	04		
	×		
	0		
×			

## **List of Service Bulletins**

This list of Service Bulletins provides the owner a means of recording the applicable SBs that are mentioned in the various Sections of the POH.

It is not a complete list of SBs. The purpose is to show the modification status of the aircraft to assist the pilot in the correct understanding of the procedures and the system description.

SB No.	SB Title
	6
	- St
	X
	, E
	$\mathcal{L}$
<u>_</u>	
$\bigcirc^{\vee}$	
<u>_</u>	
<u> </u>	

SB No.	SB Title
	-
	6
	S
	~0 [~]
	, Y
	S. C.
	<u></u>
	<u><u> </u></u>
Y	
O*	
8	
X	
<u> </u>	
<u> </u>	

SB No.	SB Title
	4
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	.P.
	X
	K.
	ν΄
X	
<u> </u>	

SB No.	SB Title
	C C
	6
	S*
	, <u>2</u>
	N'
	X
	N. N.
	0
	<u>r</u>
2	
$\langle \rangle$	

List of APEX Builds

An overview of the various APEX builds, the corresponding Honeywell part number and the associated Electronic Checklist (ECL) version is given in the table below.

	APEX Build	Honeywell part number	ECL version number	ECL software version
	Build 12	EB60003299-0115	1212-00	PC1200101.ecl
	Build 12.6.1	EB60003299-0116	1212-01	PC1200102.ecl
	Build 12.6.1	EB60003299-0116	1212-02	PC1200103.ecl
-				G
				S
			0)
			, ²	
			N'	
			X	
			, P`	
		· ·		
		K	-	
		AL		
		X'		
		L		
	7			
	Q.Y.			
	- C2-			
	0			
/),			
X				

APEX Build	Honeywell nart	ECL version number	FCL software
	Honeywell part number		version
			-
			and the second s
			5
			S
			~~~
			<u> </u>
		0	<u></u>
		Y	
		2	
		<i>.D,</i>	
		×	
	A.		
	\		
	Þ.		
	2 1		
	<u></u>		
- AV			
O`			
~~~~~			
O`			

Pilot's Operating Handbook Issue date: Dec 18, 2020

SECTION 0

Introduction

Table of Contents

		Pag
Introduction	I	0-1-1
1	General	0-1-
2	Warnings, Cautions, and Notes	0-1-1
3	Data Modules	S 0-1-
4	Revision Markings	0-1-1
5	Revision / Issue Dates	, 0-1-1
6	Revision Procedure	0-1-2
7	Supplements	0-1-3
8	Copyright and Legal Statement	0-1-3
	FUN	
	ND FAM.	
	ANDFAM	
	ALAND FAM.	
	ERALANDFAM	
	ERALANDFAM	
GEN	ERAL AND FAM.	
ORCEN	General Warnings, Cautions, and Notes Data Modules Revision Markings Revision / Issue Dates Revision Procedure Supplements Copyright and Legal Statement	

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

Introduction

1 General

This Pilot's Operating Handbook (POH) is designed to provide the information required for the operation of the airplane. Each airplane is delivered with a POH that reflects the standard airplane with all of the approved options plus any special equipment installed on an individual basis.

2 Warnings, Cautions, and Notes

The following definitions apply to the warnings, cautions, and notes as used in this manual:

WARNING

ANY OPERATING PROCEDURE, PRACTICE, OR CONDITION WHICH, IF NOT STRICTLY COMPLIED WITH, MAY RESULT IN PERSONAL INJURY OR LOSS OF LIFE.

CAUTION

Any operating procedure, practice, or condition which, if not strictly complied with, may result in damage to the airplane or equipment.

Note

Any operating procedure, practice, or condition that requires emphasis.

3 Data Modules

To facilitate the most accurate and effective distribution of the latest information contained in this POH, Pilatus Aircraft Ltd. publishes the content of the POH from a collection of electronically stored publication components called Data Modules (DM). DMs contain various amounts of information depending on the subject they address. However, when any of the content inside a DM changes, the entire DM is up-issued and distributed as the sum total of, or as a portion of a POH revision.

Each DM is identified by a unique 22 character, hyphen de-limited Data Module Code (DMC). When a DM is published in printed form, each page is marked with the DMC oriented vertically along the outer margin of the bottom of each page.

Revision Markings

4

Additions, technical changes and revisions to existing POH material will be identified by a vertical revision bar (black line) in the outside margin of the applicable page, next to the change.

The revision bar will only indicate the current change on each page. Physical relocation of material or the correction of typographical or grammatical errors, outside of the material revised, will not be identified by a revision bar.

5 Revision / Issue Dates

At the title page, there will be the original issue date of the POH. At the bottom of each page, opposite the page number, there will be the issue date of the Data Module (DM).

6 Revision Procedure

To keep this POH current, revisions will be issued to the latest registered owner of airplane. Revisions to this POH will consist of:

- List of Applicable Data Modules (LOADM)
- Change Highlights
- Log of Revisions
- New or Revised DMs
- Temporary Revisions.

The Equipment List is not included in the Revision Procedure. The Equipment List is a separate report and was current at the time of license at the manufacturer and must be maintained by the airplane owner.

6.1 List of Applicable Data Modules

The List of Applicable Data Modules (LOADM) shows the revision number and date. All current POH DMs will be listed with the applicable issue date along with instructions which DM needs to be inserted in (new DM), replaced (changed DM) or deleted from the POH with the applicable revision.

6.2 Change Highlights

The Change Highlights provides a dedicated overview of the changed, added and/or removed DMs with each revision.

6.3 Log of Revisions

The Log of Revisions provides a brief description of each change that is introduced with a revision.

Note

The 5-digit Publication Task Sheet (PTS) number in the change column is for Pilatus internal use only.

6.4 New or Revised Data Modules

In accordance with the instructions of the LOADM, new or revised DMs must be incorporated into the POH and superseded DMs destroyed.

CAUTION

It is the responsibility of the owner or operator to maintain this Pilot's Operating Handbook in a current status and incorporate successive revisions.

6.6 Temporary Revisions

Temporary Revisions are issued when the POH must be revised between the regular formal revisions. They are issued on yellow paper and must be recorded on the Log of Temporary Revisions. Temporary Revisions should normally be put at the front of the POH, apart from Section 9 Temporary Revisions which should be put in front of the applicable Supplement. Temporary Revisions must only be removed from the POH when instructed to do so by the Change Highlights of the next issue of a formal revision, when superseded by another temporary revision and sometimes by the incorporation of a Service Bulletin. The Log of Temporary Revisions must be kept up to date by the owner or operator of the aircraft.

7 Supplements

Information required to operate the airplane when equipped with specific functions is given in Supplements. A Supplement supersedes or substitutes the basic information given in the POH in the areas listed, with all else functioning as per the POH. A Supplement is identified by its own report number. A list of available Supplements at the release date of the POH is given in Section 9 of the POH. All applicable Supplements are to be inserted in this Section 9 of the POH. Section 1 of the Supplement contains a list of POH to which the Supplement is applicable.

8 Copyright and Legal Statement

© Pilatus Aircraft Ltd. This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this document may be copied, reproduced or translated to other languages without the prior written consent of Pilatus Aircraft Ltd.

In connection with the use of this document, Pilatus does not provide any express or implied warranties and expressly disclaims any warranty of merchantability or fitness for a particular purpose. This document contains trade secrets, confidential and/or proprietary information of Pilatus and technical data subject to export control laws and regulations, including the U.S. Export Administration Regulations (EAR). Disclosure or distribution of this document contrary to the EAR, and other laws and regulations, is strictly forbidden. The above restrictions may apply to data on all pages of this document.

WATION PURPOSES ONLY Left r This Page Intentionally Left Blank

SECTION 1

General

Table of Contents

	Subject		Page
	1-1	General	1-1-1
	1-2	Introduction	1-2-1
	1-3	Top Level Illustrations	1-3-1
	1-4	Top Level Illustrations Descriptive Data Engine 5-Bladed Propeller Fuel Oil Maximum Weights Typical Airplane Weights Cabin and Entry Dimensions	1-4-1
	1-4-1	Engine	1-4-1
	1-4-2	5-Bladed Propeller	1-4-1
	1-4-3	Fuel	1-4-1
	1-4-4	Oil	1-4-2
	1-4-5	Maximum Weights	1-4-2
	1-4-6	Typical Airplane Weights	1-4-2
	1-4-7	Cabin and Entry Dimensions	1-4-2
	1-4-8	Specific Loadings	1-4-3
	1-5	Symbols, Abbreviations, and Terminology	1-5-1
	1-5-1	General Airspeed Terminology and Symbols	1-5-1
	1-5-2	Meteorological Terminology	1-5-2
	1-5-3	Power Terminology	1-5-3
	1-5-4	Engine Controls and Instruments Terminology	1-5-3
	1-5-5	Airplane Performance and Flight Planning Terminology	1-5-4
	1-5-6	Weight and Balance Terminology	1-5-4
	1-5-7	General Abbreviations and Symbols	1-5-5
	1-5-8	Conversion Information	1-5-6
\langle	OP		

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

1-1 General

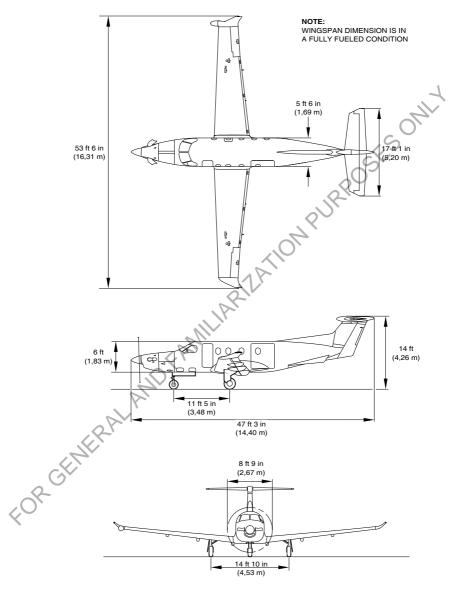
This section contains basic data and information of general interest to the pilot. It also contains definitions and explanations of symbols, abbreviations, and terminology that is used throughout this POH. FOR GENERAL AND FAMILIARIA TION PURPOSES ONLY

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

1-2 Introduction

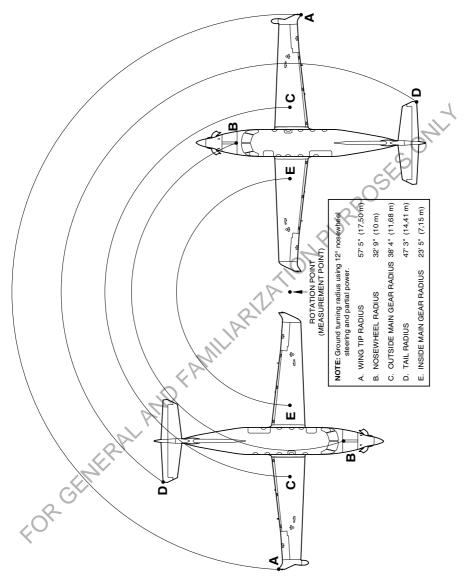
This POH includes the material required to be furnished by the Federal Aviation Regulations and additional information provided by the manufacturer and constitutes the:

- EASA Approved Airplane Flight Manual
- FAA Approved Airplane Flight Manual for operation in the U.S. in accordance with FAR 21.29.


This POH must be read, and thoroughly understood, by the owner and operator in order to achieve maximum utilization as an operating guide for the pilot.

This POH is divided into numbered sections which are separated by tabs. Section 3, Emergency Procedures, is further highlighted by the use of a red tab to facilitate quick recognition.

Pages that have been intentionally left blank will be so indicated by the statement "This Page Intentionally Left Blank".


WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

1-3 Top Level Illustrations

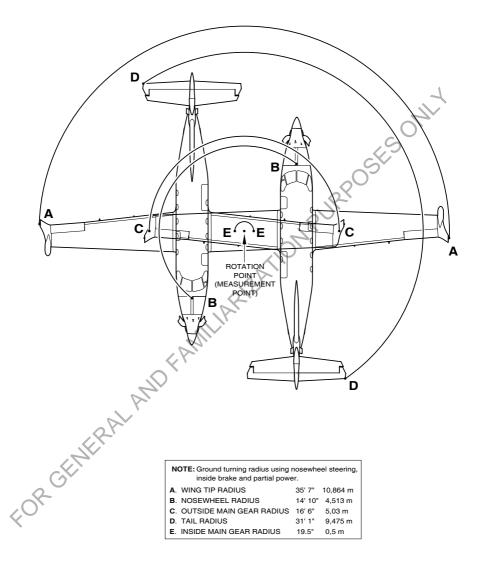

ICN-12-C-A150103-A-S4080-00113-A-001-01

Figure 1-3-1: Airplane - Three-view Diagram and Dimensions

ICN-12-C-A150103-A-S4080-00114-A-001-01

Figure 1-3-2: Airplane - Ground Turning Clearance - NWS only (No Braking)

ICN-12-C-A150103-A-S4080-00115-A-001-01

Figure 1-3-3: Airplane - Ground Turning Clearance - NWS and Braking

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

1-4 Descriptive Data

1-4-1 Engine

Number of Engines Engine Manufacturer Engine Model Number Engine Type

1

Pratt & Whitney Canada PT6E-67XP

This airplane incorporates a twin shaft turboprop engine with 4 axial and 1 centrifugal compressor stages, an annular combustion chamber, and a 3 stage turbine where one stage drives the compressor and two stages power the propeller.

Horsepower Rating and Engine Speed: Takeoff Power Maximum Climb/Cruise Power Compressor Turbine (N_g) Speed (104%) Propeller Speed (N_p) Prop Low Speed Mode (optional)

1-4-2 5-Bladed Propeller

Number of Propellers Propeller Manufacturer Propeller Model Number Number of Blades Propeller Diameter Propeller Type

Fuel

1,200 shp 38,967 rpm 1,700 rpm 1,550 rpm

1,200 shp

Hartzell HC-E5A-31A/NC10245B 5

105" (2.67 m)

The propeller assembly consists of a hub unit and five composite blades, and is a hydraulically actuated, constant speed, full feathering and reversible type.

1-4-3

Approved Fuels

Any fuel which complies with Section 2, Limitations, Power Plant Limitations, of this POH.

Total Capacity

406.8 US gal, 2,736.5 lb (1,540 liters, 1,241.3 kg).

Usable Fuel

402 US gal, 2,703.6 lb (1,521.5 liters, 1,226.4 kg).

Anti-Icing Additive

If anti-icing additive is to be used, then use anti-icing additives in compliance with Section 2, Limitations, Power Plant Limitations, of this POH.

IRPOSES ONLY

1-4-4 Oil

Oil Grade or Specification

- Any oil specified in Section 2, Limitations, Power Plant Limitations, of this POH.

Oil Quantity

- Total Oil Capacity 3.6 US gal (13.6 liters)
- Drain and Refill Quantity 2.0 US gal (7.6 liters)
- Oil Quantity Operating Range 1.0 US gal (3.8 liters).

1-4-5 Maximum Weights

Maximum Ramp Weight Maximum Takeoff Weight Maximum Landing Weight Maximum Zero Fuel Weight Maximum Cargo Weight: 10495 lb (4760 kg) 10450 lb (4740 kg) 9921 lb (4500 kg) 9039 lb (4100 kg)

- Baggage Area - Cabin Area 400 lb (180 kg) 3300 lb (1500 kg)

1-4-6 Typical Airplane Weights

Empty Weight (approx) Useful Load *Empty weight of standard airplane with standard interior, 9 passenger seats and cabin floor covering.

1-4-7 Cabin and Entry Dimensions

Maximum Cabin Width	5' 0" (1.52 m)
Cabin Floor Width	4' 3" (1.30 m)
Maximum Cabin Length	16' 11" (5.16 m)
Cabin Floor Length	15' 4" (4.68 m)
Maximum Cabin Height	4' 9" (1.45 m)
Passenger Door:	
- Width	2' 0" (0.61 m)
- Height	4' 5" (1.35 m)
Cargo Door:	
- Width	4' 5" (1.35 m)
- Height	4' 4" (1.32 m)
Overwing Emergency Exit:	
- Width	1' 6" (0.49 m)
- Height	2' 2" (0.68 m)
Compartment Volume:	
- Baggage	34.3 ft ³ (0.97 m ³)

- Cabin

326 ft³ (9.23 m³)

1-4-8 **Specific Loadings**

Wing Loading Power Loading

37.6 lb/sq ft (183.7 kg/sq m) FOR GENERAL AND FAMILIARIA TION PURPOSES ONLY 8.71 lb/shp (3.95 kg/shp)

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

1-5 Symbols, Abbreviations, and Terminology

1-5-1 General Airspeed Terminology and Symbols

CAS	Calibrated Airspeed means the indicated airspeed of an aircraft, corrected for position and instrument error. Calibrated Airspeed is equal to True Airspeed in standard atmosphere at sea level.
GS	Ground Speed is the speed of an airplane relative to the ground.
IAS	Indicated Airspeed means the speed of an aircraft as shown on its airspeed indicator.
KCAS	Calibrated Airspeed expressed in knots.
KIAS	Indicated Airspeed expressed in knots. In APEX KIAS is corrected for position error.
Μ	Means Mach number. Mach number is the ratio of true airspeed to the speed of sound.
M _{MO}	Maximum Operating Limit Speed is the speed limit that may not be deliberately exceeded in normal flight operations. M is expressed in Mach number.
TAS	True Airspeed means the airspeed of an airplane relative to undisturbed air which is the CAS corrected for altitude, temperature, and compressibility.
V _{FE}	Maximum Flap Extended Speed is the highest speed permissible with wing flaps in a prescribed extended position.
V _{LE}	Maximum Landing Gear Extended Speed is the maximum speed at which an airplane can be safely flown with the landing gear extended.
V _{LO}	Maximum Landing Gear Operating Speed is the maximum speed at which the landing gear can be safely extended or retracted.
V _{MO}	Maximum Operating Speed is the speed limit that may not be exceed at any time. V is expressed in knots.
vo RAL	Maximum Operating Maneuvering Airspeed is the maximum speed at which application of full available aerodynamic control will not overstress the airplane.
	Note
V _O is defined in accorda	nce with FAR 23 Amendment 45.
VR	Rotation Speed used for takeoff.
< Vs	Stalling Speed or the minimum steady flight speed at which the airplane is controllable.
V _{SO}	Stalling Speed or the minimum steady flight speed at which the airplane is controllable in the landing configuration at maximum gross weight.
V _{S1}	Stalling Speed or the Minimum Steady Flight Speed at which the airplane is controllable in the specified configuration at the specified weight.
V _X	Best Angle of Climb Speed is the airspeed which delivers the greatest gain of altitude in the shortest possible horizontal distance.

V_Y Best Rate of Climb Speed is the airspeed which delivers the greatest gain of altitude in the shortest possible time.

1-5-2 Meteorological Terminology

Indicated Altitude	The number actually read from an altimeter when the barometric subscale has been Pressure set to 29.92 in hg (1013.2 mbar). International Standard Atmosphere in which:
	•
	- the all is a dry, perfect gas
	 the air is a dry, perfect gas the temperature at sea level is 59 °F (15 °C)
	 the pressure at sea level is 29.92 in hg (1013.2 mbar)
	 the temperature gradient from sea level to the altitude at which the temperature is -69.7 °F (-56.5 °C) is -0.003564 °F (-0.00198 °C) per foot and zero above that altitude.
SAT	Static Air Temperature is the temperature of the air the aircraft is flying through. SAT indication on the ground may not be accurate.
Pressure	Pressure Altitude measured from standard sea level pressure.
Altitude	(29.92 in hg/1013.2 mbar) by a pressure or barometric altimeter. It is the indicated pressure altitude corrected for position and instrument error. In this AFM, altimeter instrument errors are assumed to be zero.
Station Pressure	Actual atmospheric pressure at field elevation.
Wind	The wind velocities recorded as variables on the charts of this
	AFM are to be understood as the headwind or tailwind
	components of the reported winds.
ELEV	Geographical altitude of landing field.
Icing Conditions	Can exist when the Outside Air Temperature (OAT) on the ground and for takeoff, or Total Air Temperature (TAT) in flight, is 10 °C or colder, and visible moisture in any form is present (such as clouds, fog or mist with visibility of one mile or less, rain, snow, sleet and ice crystals).
2 GENERA	Can exist when the OAT on the ground and for takeoff is 10 °C or colder when operating on ramps, taxiways or runways, where
CENT .	surface snow, ice, standing water, or slush may be ingested by the engine, or freeze on the engine, or the engine nacelle.
S-C	Can exist when there are visible signs of ice accretion on the aircraft.
Severe Long Conditions	Severe icing may result from environmental conditions during flight in freezing rain, freezing drizzle, or mixed icing conditions (supercooled liquid water and ice crystals) which may result in ice build-up on protected surfaces exceeding the capability of the ice protection system, or may result in ice forming aft of the protected surfaces.

1-5-3 Power Terminology

Cruise Climb Power	The power recommended to operate the airplane in a cruise climb (a continuous, gradual climb) profile.
Flight Idle Power	The power required to run an engine, in flight, at the lowest speed that will ensure satisfactory engine and systems operation and airplane handling characteristics. Power setting is achieved with the Power Control Lever at the Flight Idle Detent position.
Ground Idle Power	The power required to run an engine on the ground, as slowly as possible, yet sufficient to ensure satisfactory engine, engine accessory, and airplane operation with a minimum of thrust. Power setting is achieved with the Power Control Lever at or immediately aft of the Idle Detent position.
Maximum Climb Power	The maximum power approved for climb
Maximum Cruise Power	The maximum power approved for cruise
Reverse Thrust	The thrust of the propeller directed opposite the usual direction, thereby producing a braking action. Power setting is achieved with the Power Control Lever in the Reverse position.
Takeoff Power	The maximum power permissible for takeoff (limited to 5 minutes).
Zero Thrust	The absence of appreciable thrust, in either direction.

1-5-4 Engine Controls and Instruments Terminology

Beta Range	Range where the propeller blade angle is a function of Power Control Lever (PCL) input. The Engine Electronic Control (EEC) utilizes the Np/Beta sensor and beta ring position to calculate blade angle, which is controlled and commanded by the PCL. Below flight regime, i.e. aft of the idle detent, the Propeller Control Unit (PCU) limits the propeller speed to an underspeed condition and the PCL directly controls the propeller pitch.
Constant Speed Range	The engine operating range where the propeller is out of Beta range and operating at a constant rpm.
Engine and Propeller	The system that controls the engine's output torque at a
Electronic Control System (EPECS)	reference propeller speed by scheduling fuel flow.
ITT Gauge	A temperature measuring system that senses gas temperature in the turbine section of the engine.
Minimum Blade Angle	When in forward mode, the minimum blade angle is fixed in order to prevent the propeller from going into reverse. When reverse is commanded (throttle quadrant input to the EEC) the minimum blade angle will vary, allowing the propeller to go into reverse. Minimum blade angle protection is achieved by momentarily commanding the feather solenoid.
Power Control Lever	The lever used to control engine power, from reverse (see Beta Range) to maximum power (see Power Terminology).
Propeller Control Unit (PCU)	The PCU is an electro-hydro-mechanical device that modulates the blade angle of a single acting propeller over the entire flight regime of the engine.

Propeller Feather	This is a propeller pitch condition which produces minimum drag in a flight condition (engine shutdown).
Propeller Speed Control Mode	Propeller speed control is the principle operating mode of the propeller control system while the aircraft is operating in flight. The propeller control system modulates the propeller blade angle in order to govern on the selected propeller reference speed.
Τ1	Indicated T1 temperature is used to calculate the engine power. On ground and during initial takeoff/climb T1 is based on the engine inlet temperature sensor reading, corrected to represent ambient temperature. 400 ft above ground level T1 is based on average data from aircraft Outside Air Temperature (OAT) sensors.
Tachometer	An instrument that indicates rotational speed. Gas generator tachometers measure speed as a percentage of the nominal maximum speed of the turbine(s), while propeller tachometers measure actual propeller rpm.
Torquemeter	An indicating system that displays the output torque available on the propeller shaft. Torque is shown in reference terms, such as the oil pressure generated by the engine torquemeter piston.

1-5-5 Airplane Performance and Flight Planning Terminology

2

Climb Gradient	The demonstrated ratio of the change in height during a portion of a climb, to the horizontal distance traversed in the same time
	interval.
Demonstrated Crosswind Velocity	The demonstrated crosswind velocity is the velocity of the crosswind component for which adequate control of the airplane during takeoff and landing was actually demonstrated during certification tests. The value shown may or may not be limiting. Whether or not the value shown is limiting will be stated.
MEA	Minimum Enroute IFR Altitude.
Route Segment	A part of a route. Each end of that part is identified by: (1) a geographical location; or (2) a point at which a definite radio fix can be established.

1-5-6

Weight and Balance Terminology

\mathcal{O}^{\vee}	
A.O.D.	Aft of Datum
Arm	The horizontal distance from the reference datum to the center of gravity (C.G.) of an item.
Basic Empty Weight	Standard empty weight plus optional equipment.
Center of Gravity (C.G.)	The point at which an airplane would balance if suspended. Its distance from the reference datum is found by dividing the total moment by the total weight of the airplane.
C.G. Arm	The arm obtained by adding the airplane's individual moments and dividing the sum by the total weight.
C.G. Limits	The extreme center of gravity locations within which the airplane must be operated at a given weight.

Datum	An imaginary vertical plane from which all horizontal distances are measured for balance purposes.
Maximum Landing Weight (MLW)	Maximum weight approved for the landing touchdown.
Maximum Ramp Weight (MRW)	Maximum weight approved for ground maneuver. It includes weight of start, taxi, and run-up fuel.
Maximum Takeoff Weight (MTOW)	Maximum weight approved for the start of the takeoff run.
Maximum Zero Fuel Weight (MZFW)	Maximum weight exclusive of usable fuel.
Moment	The product of the weight of an item multiplied by its arm. Moment divided by a constant is used to simplify balance calculations by reducing the number of digits.
Payload	Weight of occupants, cargo, and baggage.
Standard Empty Weight	Weight of a standard airplane, standard interior, 9 passenger seats and cabin floor covering including unusable fuel, full operating fluids, and full oil.
Station	A location along the airplane fuselage usually given in terms of distance from the reference datum.
Tare Weight	The weight indicated by a scale before it is loaded.
Unusable Fuel	Fuel which may not be considered usable for flight planning.
Usable Fuel	Fuel available for flight planning.
Useful Load	Difference between takeoff weight, or ramp weight if applicable, and basic empty weight.

1-5-7 General Abbreviations and Symbols

	C	Celsius
	cu	Cubic
	F	Fahrenheit
	FAA	Federal Aviation Administration (U.S.A.)
	FOCA	Federal Office for Civil Aviation (Switzerland)
	fpm	Feet per Minute
	ft Q	Feet
	g	Unit of acceleration measured against the force of gravity
	gal	Gallon (US)
	hg	Mercury
	IFR	Instrument Flight Rules
. (in	Inches
$\langle \zeta \rangle$	kg	Kilogram
	KTAS	Knots True Airspeed
	lb	Pound (mass)
	m	Meter
	MAC	Mean Aerodynamic Chord
	max	Maximum
	mbar	Millibar
	mkg	Moment in meters/kilograms
	min	Minimum
	mm	Millimeters

nm	Nautical Mile
N/A	Not Applicable
psi	Pounds per Square Inch
rpm	Revolutions Per Minute
sec	Second
shp	Shaft Horsepower
sm	Statute Mile
TBD	To Be Determined
ТВО	Time Between Overhauls
VFR	Visual Flight Rules
0	Degrees
1	Feet
"	Inches

Note

Refer to Section 7, Airplane and Systems Descriptions, Primus APEX - Avionics Installation General for Avionic acronyms and abbreviations.

1-5-8 Conversion Information

All numerical data contained in this AFM is shown in standard format with the metric equivalent immediately following in parenthesis, eg. 7' 3" (2.1 m). The following formulas can be used to make required conversions.

1-5-8.1 General

Fahrenheit (°F) = (°C x 1.8) + 32

Celsius (°C) = (°F - 32) x 0.556

Statute Mile (sm) = Nautical Mile (nm) x 1,151

Nautical Mile (nm) = Statute Mile (sm) x 0.869

Jet Fuel (JET A) Standard Weights at 15 °C (Relative Density 0.806)

One (1) Liter = 1.777 lb

One (1) U.S. Gallon (US gal) = 6.73 lb

One (1) Imperial Gallon (IMP gal) = 8.078 lb

1-5-8.2 Standard to Metric

Millimeters (mm) = Inches (in) x 25.4

Centimeters (cm) = Inches (in) x 2.54

Meters (m) = Feet (ft) $\times 0.305$

Meters (m) = Yards (yd) x 0.914

Kilometers (km) = Statute Miles (sm) x 1.61

Kilometers (km) = Nautical Miles (nm) x 1.852

Liters = US Gallons (US gal) x 3.785

Liters = Imperial Gallons (IMP gal) x 4.546

Section 1 - General **Conversion Information**

Kilograms (kg) = Pounds (lb) x 0.454

 $Bar = psi \times 0.069$

1-5-8.3 Metric to Standard

Inches (in) = Millimeters (mm) x 0.039 FOR GENERAL AND FAMILIARIA TION PURPOSES ONLY Inches (in) = Centimeters (cm) x 0.393

WATION PURPOSES ONLY Left r This Page Intentionally Left Blank

SECTION 2

Limitations (EASA Approved) Table of Contents

	Subject		Page
	2-1	General	2-1-1
	2-2	Airspeed Limitations	2-2-1
	2-3	Airspeed Indication Markings	2-3-1
	2-4	Power Plant Limitations	2-4-1
	2-4-1	Airspeed Indication Markings Power Plant Limitations Engine Oil Oil Quantity Engine Operating Limits Fuel Anti-Icing Additive Propeller Starter Generator Power Control Lever Operation	2-4-1
	2-4-2	Oil	2-4-1
	2-4-3	Oil Quantity	2-4-1
	2-4-4	Engine Operating Limits	2-4-2
	2-4-5	Fuel	2-4-3
	2-4-6	Anti-Icing Additive	2-4-4
	2-4-7	Propeller	2-4-5
	2-4-8	Starter	2-4-6
	2-4-9	Generator	2-4-6
	2-4-10	Power Control Lever Operation	2-4-6
	2-4-11	Chip Detector	2-4-6
	2-4-12	Feather Inhibit (optional)	2-4-6
	2-5	Power Plant Window Markings	2-5-1
	2-6	Miscellaneous Instrument Markings	2-6-1
	2-7	Weight Limits	2-7-1
	2-8	Center of Gravity Limits	2-8-1
	2-9	Maneuver Limits	2-9-1
	2-10	Flight Load Factor Limits	2-10-1
7	2-11	Flight Crew Limits	2-11-1
	2-12	Kinds of Operation	2-12-1
	2-13	Pneumatic Deicing Boot System	2-13-1
	2-14	Icing Limitations	2-14-1
	2-14-1	Limitations	2-14-1
	2-14-2	Icing Conditions	2-14-1
	2-14-3	Severe Icing Conditions	2-14-2

Subject		Page
2-15	Kinds of Operation Equipment List	2-15-1
2-16	Fuel Limitations	2-16-1
2-17	Maximum Operating Altitude Limits	2-17-1
2-18	Outside Air Temperature Limits	2-18-1
2-19	Cabin Pressurization Limits	2-19-1
2-20	Maximum Passenger Seating Limits	2-20-1
2-21	Systems and Equipment Limits	2-21-1
2-21-1	Stall Warning / Stick Pusher System	2-21-1
2-21-2	Brakes	2-21-1
2-21-3	Trim Systems	2-21-1
2-21-4	Trim Systems Heated Windshield Fire Detection System Engine Ice Protection Oxygen System Probe Heat Flap System Cycle Limits Primus Apex	2-21-1
2-21-5	Fire Detection System	2-21-1
2-21-6	Engine Ice Protection	2-21-1
2-21-7	Oxygen System	2-21-1
2-21-8	Probe Heat	2-21-2
2-21-9	Flap System Cycle Limits	2-21-2
2-21-10	Primus Apex	2-21-2
2-21-11	Primus Apex - Automatic Flight Control System	2-21-2
2-21-12	Primus Apex - Flight Management System	2-21-3
2-21-13	RVSM	2-21-6
2-21-14	Primus Apex - TCAS	2-21-6
2-21-15	Primus Apex - Transponder	2-21-7
2-21-16	Primus Apex - ADAHRS	2-21-7
2-21-17	Primus Apex - Use of SmartView	2-21-7
2-21-18	Yaw Damper	2-21-8
2-21-19	Primus Apex - Electrionic Checklist	2-21-8
2-21-20	Primus Apex - Electrionic Charts	2-21-8
2-21-21	Primus Apex - Video Input	2-21-8
2-21-22	Primus Apex - XM Sat Weather	2-21-8
2-21-23	Primus Apex - Weather Radar	2-21-9
2-21-24	Primus Apex - INAV Map	2-21-9
2-21-25	Primus Apex - Vertical Situation Display	2-21-9
2-21-26	Primus Apex - LPV Approach	2-21-9
2-21-27	Primus Apex - Terrain Database	2-21-9

Subject		Page
2-22	Other Limitations	2-22-1
2-22-1	All Passenger Seats	2-22-1
2-22-2	Luggage Limitations	2-22-1
2-22-3	Cargo Limitations	2-22-1
2-22-4	Structural Limitations	2-22-2
2-22-5	Smoking	2-22-2
2-22-6	Portable Electronic Devices	2-22-2
2-23	Placards	2-23-1
GER	Smoking Portable Electronic Devices Placards	

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

2-1 General

This section contains the EASA approved operating limitations, instrument markings, color coding, and basic placards necessary for the operation of the airplane, its engine, systems, and equipment. Compliance with approved limitations is mandatory.

Limitations associated with systems or equipment which require POH Supplements are included in Section 9, Supplements.

With the exception of circuit breakers on the Essential Bus, and if not detailed otherwise in procedures, all tripped open circuit breakers are not allowed to be reset in flight. Circuit breakers on the Essential Bus, if tripped, may be reset once only in flight providing:

- . f. at brea the and t At least one minute has elapsed from the time of the circuit breaker trip 1

WATION PURPOSES ONLY Left ' This Page Intentionally Left Blank

2-2 Airspeed Limitations

	AIRSPEED	KIAS	SIGNIFICANCE
	Maximum operating speed		Do not exceed this speed in any
			operations.
	V _{MO}	240	Maximum speed at or below 16,300 ft.
	M _{MO}	0.49	Refer to V_{MO} / M_{MO} schedule for maximum
			speed above 16,300 ft. (See Fig. 2-2-1,
			V _{MO} Schedule).
	Maximum Operating		Do not make full or abrupt control
	Maneuvering Speed - V _O		movements above this speed.
	10450 lb (4740 kg)	166	SV
	9921 lb (4500 kg)	161	ONPURPOS
	9480 lb (4300 kg)	158	
	9039 lb (4100 kg)	154	, K
	8380 lb (3800 kg)	148	\diamond
	7940 lb (3600 kg)	144	2
	7500 lb (3400 kg)	140	\mathcal{A}
	7060 lb (3200 kg)	136	
	6610 lb (3000 kg)	132	\succ
	6170 lb (2800 kg)	127	-
	5730 lb (2600 kg)	123	
	Maximum flap extended		Do not exceed this speed with flaps
	speed - V _{FE}		extended.
	≤ 15°	165	
	> 15°	130	
	Maximum landing gear	180	Do not retract or extend landing gear
	operating speed - V _{LO}		above this speed.
	Maximum landing gear	240	Do not exceed this speed with landing gear extended.
	extended speed - V _{LE}		extended.
	ORGENTRA		
	AK.		
	G		
	×		
	0		
X			

Table 2-2-1: Airspeed Limitations

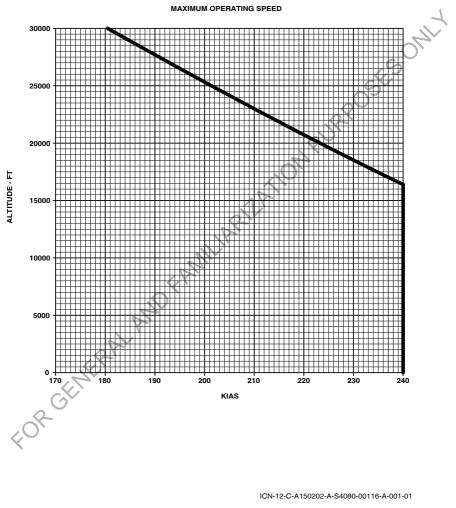


Figure 2-2-1: VMO / MMO Schedule

2-3 Airspeed Indication Markings

INDICATION	KIAS VALUE OR RANGE	REMARKS
Red/White Barber Pole across and upwards on right side of tape	240 or 0.49 M whichever is lower	Maximum operating limit (V _{MO} /M _{MO})
Red (high speed) strip on right side of tape	180 V _{LO} 165 V _{FE} 15° 130 V _{FE} 30/40°	Extends downwards from V_{MO}/M_{MO} to the valid V_{LO} or V_{FE} as applicable. Not shown in clean config of with gear extended only
Labeled Placards on right side of tape	180 V _{LO} 165 V _{FE} 15° 130 V _{FE} 30/40°	Maximum flap operating and extended speed (V _{FE} : 15 /30/40°) and maximum landing gear operating speed (V _{LO})
Red low speed awareness tape overlaid on right side of tape	Shaker speed	Extends upwards from bottom of tape to the shaker speed in the current configuration. Not shown on ground.
DR GENERAL AND F	AMILARIL	

Table 2-3-1: Airspeed Indication Markings

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

2-4 **Power Plant Limitations**

Engine 2-4-1

Number of Engines **Engine Manufacturer** Engine Model Number

2-4-2 Oil

Approved oils are:

- AeroShell Turbine Oil 500
- AeroShell Turbine Oil 560 (ASTO 560)
- Royco Turbine Oil 500
- Royco Turbine Oil 560
- Mobil Jet Oil II
- Eastman Turbo Oil 2380
- Turbonycoil 600.

TIONPURPOSESONIX CAUTION

1

PT6E-67XP

Pratt & Whitney Canada

Mixing oil of different viscosities is not permitted.

Note

The oils listed are approved to MIL-PRF-23699 Type II.

2-4-3 **Oil Quantity**

Total Oil Capacity Drain and Refill Quantity Oil Quantity Operating Range

3.6 US gal (13,6 liters) 2.0 US gal (7,6 liters) 1.0 US gal (3,8 liters)

oil quantity check is required for takeoff. Takeoff is An not approved with GINE OIL LEVEL illuminated.

2-4-4 Engine Operating Limits

The limits presented in each column shall be observed. The limits presented do not necessarily occur simultaneously. Refer to the Pratt & Whitney Engine Maintenance Manual for specific action if limits are exceeded.

OPERATING CONDITION (1)	SHP	TORQUE (PSI) (2) (3)	MAX ITT (°C)	Ng (%)	Np (RPM) (11) (12)	OIL PRESS (PSI) (4) (5)	OIL TEMP (°C) (9)
TAKEOFF (7) (10)	1200	44.84	850	104	1700	90 to 135	15 to 110
MAX. CLIMB (7)	1200	44.84	825	104	1700	90 to 135	15 to 105
CRUISE (7)	1100	40.63	820	104	1700	90 to 135	15 to 105
MIN. IDLE (8)			750	64.5		60 MIN	-40 to 110
STARTING (6)			1000		10M	175 MAX	-40 MIN
TRANSIENT (10)		61.00	900	104.3	1870	40 to 175	0 to 110
MAX. REVERSE (7) (11)	900	34.26	820	JART	1650	90 to 135	15 to 105

FOR GENERAL AND FAM

- 1 Engine inlet condition limits for the operation of the engine are:
 - Altitude range: Sea level to 30,000 ft
 - Temperature: 57.2 °C (135 °F) at the engine inlet connection.
- 2 The torque limit is in the propeller operation range of 1000 to 1700 RPM. At less than 1000 RPM the torque limit is 23.92 psi.
- 3 Maximum recommended torque at 1700 rpm is 44.34 psi. Torque limit of 44.84 psi is provided to allow operation at reduced NP speed at quoted power setting.
- 4 Usual oil pressure is between 90 and 135 psi at Ng speeds of more than 72%. If engine torque is less than 35.87 psi the minimum oil pressure is 85 psi with an oil temperature of between 60 and 70 °C.
- 5 Oil pressures of less than 90 psi are not recommended. A low oil pressure of 60 psi is permitted at torques of less than 23.92 psi. Oil pressures less than 60 psi are not safe and it will be necessary to stop the engine.
- 6 The time limit for maximum start engine Inter Turbine Temperature (ITT) is 5 seconds.
- 7 Engine oil temperature must be 15 °C or above prior to setting takeoff power on ground.

Engine oil temperature must be 10 °C or above when operating with anti-icing additives.

- 8 For the Np range of 900 RPM or more.
- 9 Takeoff power rating is limited to 5 minutes duration. The limit for oil temperatures between 105 and 110 °C is 10 minutes for all operations.
- 10 The time limit for transient torque, ITT, Np and oil pressure is 20 seconds.
- 11 The usual maximum ground reverse limit is an Np of 1615 RPM ± 20 RPM.
- 12 During steady state operation a variation of ± 30 rpm is permitted to account for power governing accuracy.

2-4-5 Fuel

Refer to Table 2-4-2 for approved fuels.

Table 2-4-2: Approved Fuels

APPROVED FUEL	SPECIFICATION			
Unrestricted use				
JET A	ASTM-D1655			
	CAN/CGSB-3.23			
JET A-1	ASTM-D1655			
	IATA			
	JFSCL			
	GOST R 52050			
	QAV-01			
	CAN/CGSB-3.23			
	DEF STAN 91-91			
JP-5	MIL-DTL-5624			
	DEV STAN 91-86			

	APPROVED FUEL	SPECIFICATION	
	JP-8 (F-34)	DEF STAN 91-87	
		MIL-DTL-83133	
F-35		MIL-DTL-83133	
	JP-8+100 (F-37)		
Men	Jet A-50 ⁽¹⁾ I 1720, 2001 - 2040 Post SB 28-013, a		
WO	RT	GOST 10227-86	
		GSTU 320.00149943.007-97	
	TS-1	GOST 10227-86 + Russian Decree #118	
End	of effectivity	S.	
	Rest	ricted use ⁽²⁾	
	Diesel grades ⁽³⁾⁽⁴⁾ :	ASTM-D975	
-	No. 2-D S500	R	
-	No. 2-D S5000	JE	
-	No. 1-D S500	L'Y	
-	No. 1-D S5000		
	Automotive Diesel Fuel ⁽³⁾⁽⁵⁾ :	CAN/CGSB-3.517	
_	Туре В	15	
_	Туре А	RIV	
	Туре А	Net	
		Note	
1	This is a brand blend sold in Alaska.	It is Jet A with a lower freezing point.	
2	Unless otherwise specified, continued use of these fuels for more than 1000 hours is allowed provided periodic fuel nozzle inspections are found acceptable by P&WC.		
3	Not allowed for use when cloud point is lower than +5 °C.		
4	Shall not contain a biodiesel component.		
5	Unless otherwise specified, intermittent or continued use of these fuels for up to 1000 hours is allowed provided satisfactory fuel nozzle inspection results are achieved at the approved intervals.		

 Table 2-4-2: Approved Fuels (continued from previous page)

The PC-12/47E fuel system design (MSN 1720, 2001 and up) is such that anti-icing additive is not required.

If anti-icing additive is to be used, then use anti-icing additive conforming to the specifications given in Table 2-4-3.

ADDITIVE	SPECIFICATION	MAXIMUM CONCENTRATION
Diethylene Glycol Monomethyl Ether (DieGME)	ATSM D4171 Type II MIL-DTL-85470	0.15% by volume
Liquid I	GOST 8313	0.30% by volume
Liquid I-M 50/50 blend of Liquid I with Methyl Alcohol	TU-6-10-1458	0.30% by volume

Additive concentration must be below the maximum as indicated in the table above. Additive concentration must be within additive supplier recommendations.

CAUTION

The correct mix of anti-icing addictive with the fuel is important. Concentrations of more than the maximum (see Table 2-4-3) will cause damage to the protective primer and sealants of the fuel tanks. Damage will occur in the fuel system and engine components.

Refer to Section 8, Handling, Servicing, and Maintenance, Fuel Anti-Ice Additive for blending instructions.

2-4-7 Propeller

X	-
Propeller Manufacturer	Hartzell
Propeller Model Number	HC-E5A-31A/NC10245B
Number of Propellers	1
Number of Propeller Blades	5
Propeller Diameter	
Minimum	104 in (2.642 m)
Maximum	105 in (2.667 m)
Propeller Operating Limits (Np)	
Maximum Normal Operation	1700 rpm ±30 rpm
Maximum transient (20 sec)	1870 rpm
Maximum reverse	1650 rpm
Stabilized operation on the ground between 3	50 and 900 rpm is not permitted.
Blade Angles at Station 42:	
- Fine Pitch	14.7° -±0.2°
- Maximum Reverse Pitch	-17.5° ± 0.5°
- Feather	80.0° ± 0.5°
- Minimum pitch in flight	6°

2-4-8 Starter

The engine starting cycle shall be limited to the following intervals:

- Sequence, 60 seconds OFF
- Sequence, 60 seconds OFF
- Sequence, 30 minutes OFF.

Note

A dry motoring cycle is to be counted as a sequence. In case of start abort and automatic dry motoring commanded by EPECS, wait for an additional 10 minutes before a new start JRPOSES is attempted.

Generator 2-4-9

Maximum generator load limits are given in Table 2-4-4.

Table 2-4-4: Maximum	Generator Load Limit
----------------------	----------------------

GENERATOR	MAX CONTINUOUS LOAD	MAX LOAD FOR 2 MINUTES *			
Generator 1	300 AMP	450 AMP			
Starter/Generator 2	300 AMP	450 AMP			
*Maximum load permitted for a 2 minute period per each one hour of operation.					

2-4-10 **Power Control Lever Operation**

Power Control Lever operation aft of the idle detent is prohibited during flight. Such operation may lead to loss of airplane control and total power loss.

2-4-11 **Chip Detector**

Takeoff is not approved with ENGINE CHIP caution annunciator illuminated.

Feather Inhibit (optional) 2-4-12

After nine consecutive engine shutdowns using the propeller feather inhibit function, the next engine shutdown must be a normal shutdown. +OP-CH

2-5 Power Plant Window Markings

	RED MARK Min. Limit	AMBER MARK Caution	GREEN ARC Norm Ops.	AMBER ARC Caution	RED MARK Max. Limit Indication
Torque (psi)	N/A	N/A	0 to 40.63	40.63	44.84
ITT (°C)	N/A	N/A	400 to 820	820	850
Engine Speed Ng (%)	N/A	60	60 to 103.5	104	104.3
Oil Temperature (°C)	N/A	15	15 to 105	105	0 110
Oil Pressure (psi)	60	90	90 to 135	NA	135
	60	AMILIAR	LATIO		

Table 2-5-1: Power Plant Window Markings

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

2-6 Miscellaneous Instrument Markings

Instrument	RED RADIAL Min. Limit	YELLOW ARC Caution	GREEN ARC Norm Ops.	YELLOW ARC Caution	RED RAD/DIA Max. Limit
Oxygen Pressure (psi)	N/A	N/A	N/A	N/A	1850 to 2000
Pressure (psi)	RALAND'	AMILLAR	NA	JRPOSE	ONIT

Table 2-6-1: Miscellaneous Instrument Markings

WATION PURPOSES ONLY Left r This Page Intentionally Left Blank

2-7 Weight Limits

Maximum Ramp Weight Maximum Takeoff Weight FOR GENERAL AND FAMILARIA TION PURPOSES ONLY Maximum Landing Weight Maximum Zero Fuel Weight

10,495 lb (4760 kg) 10,450 lb (4740 kg) 9921 lb (4500 kg) 9039 lb (4100 kg)

2-8 Center of Gravity Limits

Weight Pounds (kilograms)	Forward Limit A.O.D.: in (m)	Aft Limit A.O.D.: in (m)
10,450 (4740)	232.20 (5.898)	240.43 (6.107)
9921 (4500)	232.20 (5.898)	240.94 (6.120)
8158 (3700)	224.13 (5.693)	- 1
7938 (3600)	-	242.99 (6.172)
6615 (3000)	-	242.99 (6.172)
5733 (2600)	220.75 (5.607)	225.47 (5.727)

Table 2-8-1: Center of Gravity Limits

Note

Straight line variation between points given.

The datum is 118 in (3.0 m) forward of firewall.

It is the responsibility of the pilot to ensure that airplane is loaded properly. See Section 6, Weight and Balance, Weight and Balance Determination for Flight for proper loading instructions.

2-9 Maneuver Limits

This airplane is certificated in the Normal Category. The normal category is applicable to aircraft intended for non-aerobatic operations. These include any maneuvers incidental to normal flying, stalls (except whip stalls), lazy eights, chandelles, and turns in which the bank FOR GENERAL AND FAMILARIA TION PURPOSES ONLY angle does not exceed 60°.

12-C-A15-10-0209-00A-043A-A

2-10 Flight Load Factor Limits

Flight load limits with flaps up Flight load limits with flaps down	+3.3 g +2.0 g	-1.32 g -0.0 g
Flight load limits with haps down		

12-C-A15-10-0210-00A-043A-A

2-11 Flight Crew Limits

Minimum required flight crew is one pilot in the left hand seat.

FOR GENERAL AND FAMILARIA TION PURPOSES ONLY

2-12 **Kinds of Operation**

The Pilatus PC-12 is approved for the following types of operation when the required equipment is installed and operational:

- 1 VFR Day.

- FOR GENERAL AND FAMILARIA TION PURPOSES ONLY

2-13 Pneumatic Deicing Boot System

The pneumatic de-ice boot system is required to be installed for all flights.

Preflight function test required before takeoff and flight into known icing conditions.

The system is required to function properly for flight into known icing conditions.

Operation of the pneumatic de-ice boot system in ambient temperatures below -40 °C and above +40 °C may cause permanent damage to the boots.

The wing and tail leading edge pneumatic de-icing boot system must be activated at the first sign of ice formation anywhere on the aircraft.

The wing and tail leading edge pneumatic de-icing boot system may be deactivated only after leaving icing conditions and after the aircraft is determined to be clear of ice.

15°

2-14 Icing Limitations

2-14-1 Limitations

Flight in icing conditions is only approved with all ice protection systems, generator 1 and generator 2 serviceable.

Flight in icing conditions is prohibited when the Propeller De-ice caution is active.

During flight in icing conditions, if there is a failure of any of the aircraft ice protection systems exit icing conditions. Immediately request priority handling from Air Traffic Control to facilitate a route or an altitude change to exit the icing conditions.

During flight in icing conditions or flight with any visible ice accretion on the airframe, the following flap maximum extension limits apply:

With operational airframe pneumatic de-ice boots After failure of the airframe pneumatic de-ice boots

In the event of a balked landing go-around with residual ice on the airframe, the flaps should not be retracted from the 15° position.

Flight in freezing rain, freezing fog, freezing drizzle and mixed conditions causing ice accretion beyond the protected areas of the pneumatic boots is not approved.

The aircraft must be clear of all deposits of snow, ice and frost adhering to the lifting and control surfaces immediately prior to takeoff.

In the event of a balked landing (go around) with residual ice on the airframe, the landing gear and flaps may not fully retract after selection.

The left wing inspection light must be operative prior to flight into forecast icing conditions at night.

2-14-2 Icing Conditions

Icing conditions can exist when:

- The Outside Air Temperature (OAT) on the ground and for takeoff, or Static Air Temperature (SAT) in flight, is 10 °C or colder, and visible moisture in any form is present (such as clouds, fog or mist with visibility of one mile or less, rain snow, sleet and ice crystals)
 - The OAT on the ground and for takeoff is 10 °C or colder when operating on ramps, taxiways or runways, where surface snow, ice, standing water, or slush may be ingested by the engine, or freeze on the engine, or the engine nacelle

There are visible signs of ice accretion on the aircraft.

2-14-3 Severe Icing Conditions

Severe icing may result from environmental conditions outside of those for which the airplane is certificated. Flight in freezing rain, freezing drizzle, or mixed icing conditions (supercooled liquid water and ice crystals) may result in ice build-up on protected surfaces exceeding the capability of the ice protection system, or may result in ice forming aft of the protected surfaces. This ice may not be shed using the ice protection systems, and may seriously degrade the performance and controllability of the airplane.

During flight, severe icing conditions that exceed those for which the airplane is certificated shall be determined by the following visual cues. If one or more of these visual cues exists, immediately request priority handling from Air Traffic Control to facilitate a route or an altitude change to exit the icing conditions:

- Unusually extensive ice accumulation on the airframe and windshield areas not normally observed to collect ice
- Acumulation of ice beyond the active portions of the wing pneumatic boots.

Care must be taken when using the autopilot that tactile cues, such as increased aileron forces, are not masked by the autopilot function. Periodically disengage the autopilot to check for abnormal forces.

2-15 Kinds of Operation Equipment List

This airplane is approved for operations under day and night VFR, day and night IFR and flight into known icing conditions when the required equipment is installed and operating properly. The following systems and equipment list does not include specific flight and radio/ navigation equipment required by any particular country's operating regulations. The pilot in command is responsible for determining the airworthiness of the aircraft and assuring compliance with current operating regulations for each intended flight.

The zeros (0) used in the list below mean that the system and/or equipment was not required for type certification for that kind of operation. When (AR) appears for the number required it indicates As Required.

Deviations from this KOEL may be approved for the operation of a specific aircraft if a proper MEL (Minimum Equipment List) has been authorized by the appropriate regulatory agency.

SYSTEM / EQUIPMENT	VFR DAY	VFR NIGHT	IFR DAY	IFR NIGHT	ICING	RVSM
PRIMUS APEX:						
Pilot PFD	1	1	1	1	1	1
MFD	1		1	1	1	1
MAU (Channel A & B)	1	21	1	1	1	1
PFD Controller	2	2	2	2	2	2
Touch Screen Controller / MF Controller	0	0	1	1	1	1
Audio Marker Panel	1	1	1	1	1	1
ADAHRS (Channel A & B)	1	1	1	1	1	1
Magnetometer	0	0	1	1	1	1
MMDR (COM/NAV)	0	1	1	1	1	1
Mode S Transponder	0	0	1	1	1	1
GPS	0	0	1	1	1	1
DME	0	0	1	1	1	1
Miscellaneous:						
Electronic Standby Instrument (ESIS)	1	1	1	1	1	1
Engine:						
No.1 Generator	1	1	1	1	1	1
No. 2 Generator	1	1	1	1	1	1
Inertial Separator	1	1	1	1	1	1
Electric Wing Tank Fuel Boost Pump	2	2	2	2	2	2
Firewall Fuel Shutoff Valve	1	1	1	1	1	1
Fuel Ejector Pumps	1	1	1	1	1	1
Fuel Venting System	1	1	1	1	1	1
Ignition System	1	1	1	1	1	1

Table 2-15-1: Kinds of Operation Equipment List

1 1 1 1 1 2 1 1 1 1 1 1 1 2*	1 1 1 1 1 1 2 1 1 1 1 1 1	1 1 1 1 1 2 1 1 1 1 1	1 1 1 1 1 2 1 1 1 1	1 1 1 1 2 1	1 1 1 2 2 1 1
1 1 1 2 1 1 1 1 1 1 1 1 2*	1 1 1 2 1 1 1 1 1 1 1	1 1 1 2 1 1 1 1	1 1 1 2 1 1 1 1	1 1 1 2 1	1 1 2 2 1 1
1 1 2 1 1 1 1 1 1 1 2*	1 1 2 1 1 1 1 1 1 1	1 1 2 1 1 1 1	1 1 2 1 1 1 1	1 1 2 1	1 1 2 2 1 1
1 1 2 1 1 1 1 1 1 1 2*	1 1 2 1 1 1 1 1 1 1	1 1 2 1 1 1 1	1 1 2 1 1 1 1	1 1 2 1	1 1 2 2 1 1
1 1 2 1 1 1 1 1 1 1 2*	1 1 2 1 1 1 1 1 1 1	1 1 2 1 1 1 1	1 1 2 1 1 1 1	1 1 2 1	1 1 2 2 1 1
1 2 1 1 1 1 1 1 2*	1 2 1 1 1 1 1 1	1 2 1 1 1	1 2 1 1 1	1 2 1	1 3 2 1 1 1
2 1 1 1 1 1 1 2*	2 1 1 1 1 1 1	2 1 1 1	2 1 1 1	2	2 1 1
1 1 1 1 1 1 2*	1 1 1 1 1	1 1 1	1 1 1	1 (1
1 1 1 1 1 1 2*	1 1 1 1 1	1 1 1	1 1 1	1 (1
1 1 1 1 1 2*	1 1 1 1 1	1	1	5	1
1 1 1 1 2*	1 1 1	1	1		
1 1 1 2*	1 1			0Y	
1 1 2*	1	1	A		1
1 2*			1 🔨	21	1
2*		1	5	1	1
2*	1	1		1	1
	2*	2*	2*	2*	2*
0)		4
-					2
-					2
-					1
-					AR
Ũ		,	,	,	7.0.0
1 💊	\mathcal{N}_1	1	1	1	1
10	1	1	1	1	1
	1				1
	0	0	0	1	0
	-	-	-		1
					1
				-	1
-	-				0
		-	-		0
-	-	-	-		0
-	-	-	-	**	0
-	-	-	-	2	0
-	-	-	-		0
-	-	-	-		0
U	I	I	I	I	U
4	A		4	A 1	-
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
	1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 0 1 0 AR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

SYSTEM / EQUIPMENT	VFR DAY	VFR NIGHT	IFR DAY	IFR NIGHT	ICING	RVSM
Seat Restraints (each occupant)	AR	AR	AR	AR	AR	AR
Firewall ACS Shutoff Valve	1	1	1	1	1	1
Emergency Ram Air Scoop	1	1	1	1	1	1
Negative Pressure Relief Valve	2	2	2	2	2	χ^2
Oxygen System	1	1	1	1	1	1
De-ice Boot PRV	1	1	1	1	10	1
De-ice Boot EFCVs	1	1	1	1	. 65	1
De-ice Boot Pressure Switches	0	0	0	0	5	0
De-ice Boot, Inner Wing LH	1	1	1	20	1	1
De-ice Boot, Outer Wing LH	1	1	1		1	1
De-ice Boot, Inner Wing RH	1	1	1) 1	1	1
De-ice Boot, Outer Wing RH	1	1	1	1	1	1
De-ice Boot, Tail LH	1	1	A	1	1	1
De-ice Boot, Tail RH	1	1	\mathcal{V}_1	1	1	1
Fuel Control & Monitoring System	1	17A	1	1	1	1
For Pressurized Flight:						
ACS	1	1	1	1	1	1
Cabin Pressure Control Unit	1	1	1	1	1	1
Outflow Valve	A.	1	1	1	1	1
Safety valve		1	1	1	1	1

Table 2-15-1: Kinds of Operation Equipment List (continued from previous page)

* Refer to Section 2, Limitations, Systems and Equipment Limits for the actual limitation.

** Flight into known icing conditions is prohibited if the Propeller De-ice Caution is active.

2-16 **Fuel Limitations**

Total Fuel Capacity Total Usable Fuel Total Unusable Fuel Maximum Fuel Imbalance 406.8 US gal, 2,736.5 lb (1,540 liters, 1,241.3 kg) 402 US gal, 2,703.6 lb (1,521.5 liters, 1,226.4 kg) 4.8 US gal, 32.9 lb (18.5 liters, 14.9 kg) 26.4 US gal, 178 lb (100 liters, 80.6 kg) (Maximum 3 segments on indicator)

Note

FOR CENTRAL AND FAMILIARIAN ON PURPOSES

2-17 Maximum Operating Altitude Limits

Maximum Operating Altitude

30,000 ft (9144 m)

FOR GENERAL AND FAMILARIA TION PURPOSES ONLY

2-18 Outside Air Temperature Limits

Minimum Outside Air Temperature	-55 °C (-67 °F)
Maximum Outside Air Temperature	+50 °C (122 °F)
FORGENTERALAND	ARRANONPURPOSES

2-19 Cabin Pressurization Limits

Maximum cabin pressure differential is 5.75 psi (400 mbar). Pressurized landing is approved up to 0.7 psid.

FOR GENERAL AND FAMILIARIA TION PURPOSES ONLY

12-C-A15-10-0219-00A-043A-A

2-20 Maximum Passenger Seating Limits

Maximum number of occupants is 9 passengers plus pilot(s).

During single pilot operation, the pilot occupies the left hand cockpit seat and an additional passenger may occupy the right hand cockpit seat.

For aircraft with the optional No Cabin Interior configuration installed: No persons are allowed in the cabin during operation.

Refer to Section 6, Weight and Balance, Interior Configurations, for seat locations.

The PC-12 is certified with two basic cabin interior configurations, a Corporate Commuter and an Executive interior. Variations to the two basic interior configurations that have been approved together with general limitations are given below:

- Corporate Commuter Interior Code STD-9S nine standard seats
- Executive Interior Code EX-6S-2 six executive seats
- Executive Interior Code EX-8S eight executive seats
- Executive Interior Code EX-6S-STD-2S six executive seats and two standard seats
- Executive Interior Code EX-4S-STD-4S four executive seats and four standard seats
- For layouts EX-8S, EX-6S-STD-2S and EX-4S-STD-4S: Leave seats 5, 6, 7 and 8 vacant during takeoff and landing unless seat in front is occupied.

Pilatus must be contacted to determine the modification work required to the aircraft, before any change to an interior configuration is made.

FOR GENERAL AND

2-21 Systems and Equipment Limits

2-21-1 Stall Warning / Stick Pusher System

Preflight function test required before takeoff.

System is required to function properly in normal mode for all flights and in ice mode for flight into known icing conditions.

2-21-2 Brakes

To allow adequate cooling of the wheels and brakes the aircraft must remain on the ground for at least 45 min following the two events:

- Rejected takeoff with brake on speed greater than V_R -20 kts and heavy brake usage
- 0° flap full stop landing and heavy brake usage.

2-21-3 Trim Systems

Stabilizer normal and alternate, and rudder trim systems must function properly for all flights.

2-21-4 Heated Windshield

Left Hand and Right Hand Heated Windshields must function properly for all flights. Exception, for IFR flights conducted into no known or forecast icing conditions at least one heating zone of the windshield on the side of the pilot in command must function properly.

2-21-5 Fire Detection System

Preflight Function Test is required for takeoff.

System must function properly for all flights.

2-21-6 Engine Ice Protection

Preflight Function Test is required for takeoff.

2-21-7 Oxygen System

A minimum oxygen supply of 10 minutes duration for each occupant is required for dispatch for pressurized flight above FL250.

Note

Some National Operating Requirements may require that a larger quantity of oxygen be carried on the aircraft.

The oxygen system shutoff valve handle in the cockpit must be selected to ON prior to engine start and throughout the duration of flight.

The oxygen masks for the crew must be connected for all flights.

For aircraft with the Corporate Commuter side wall paneling, oxygen masks must be connected and properly stowed for each passenger prior to takeoff when the aircraft is to be operated above 10,000 feet.

Note

In the executive interior configurations the oxygen masks are permanently connected.

2-21-8 **Probe Heat**

Preflight function test required before takeoff.

The system is required to function properly for IFR flight and flight into known icing condition

2-21-9 Flap System Cycle Limits

A flap cycle is defined as movement from 0° to 15° to 0° and from 0° to 15° to 40° to 0°. MPURP' Maximum number of cycles per hour:

Up to 25 °C OAT	10
25 °C to 50 °C OAT	8

2-21-10 **Primus Apex**

The Pilots Guide for the Advanced Cockpit Environment (ACETM) (powered by Honeywell) for the Pilatus PC-12/47E must always be carried on board the aircraft.

Primus Apex - Automatic Flight Control System 2-21-11

During autopilot operation, a pilot must be seated in a pilot position with seat belt fastened.

The Autopilot (AP) and Yaw Damper (YD) must be OFF during takeoff and landing.

The Autothrottle (AT) must be OFF during landing.

Minimum engagement height after takeoff is 400 ft Above Ground Level (AGL).

Do not engage autopilot while the Tactile Feedback (TF) system is active.

With the exception of the approaches defined below, the autopilot must be disengaged below 1000 ft AGL.

For non-precision and visual approaches (at airspeeds <150 KIAS and VS <1500 ft/min) the autopilot must be disengaged below 400 ft AGL.

For instrument approach procedures with vertical guidance (APV) and Instrument Landing System (ILS), the autopilot must be disengaged below 200 ft AGL.

The system is approved for Category 1 operation (Approach mode selected) and autopilot coupled go-arounds initiated at decision altitude or minimum descent altitude.

Maximum approved glideslope angle for all coupled approaches is 4°.

During normal operation:

- Do not override the autopilot and Yaw Damper in any axis
- Hold the throttle at the required position for at least 3 seconds if you intend to override the engaged AT system and confirm the AT disconnect by pressing the AT Quick-Disconnect button on the PCL
- ASEL is not overspeed protected. Avoid AFCS altitude capturing close to V_{MO}/M_{MO}

The autopilot servos may be temporarily disengaged without disengaging the autopilot to allow manual flight path control. The TCS switch on the control wheel must be pushed and held for the desired duration.

CAUTION

In accordance with FAA recommendation (AC 00- 24C), the use of "PITCH ATTITUDE HOLD" mode is recommended during operation in severe turbulence.

2-21-12 Primus Apex - Flight Management System

From an airworthiness perspective, the PC-12/47E with APEX-FMS is certified for:

Use of GNSS

B-RNAV

Operational Criteria for the use of the NAVSTAR Global Positioning System (GPS). AC 90-100A U.S. Terminal and En Route Area Navigation (RNAV) Operations. AMC 20-4 Guidance Material on Airworthiness Approval and Operational Criteria for the use of navigation Systems in

AMC 20-5 Guidance Material on Airworthiness Approval and

European Airspace Designated for basic RNAV Operations. AC 90-96A Approval of U.S. Operators and Aircraft to operate under Instrument Flight Rules (IFR) in European Airspace designated for Basic Area Navigation (B-RNAV) and Precision Area Navigation (P-RNAV).

Note

B-RNAV is also termed ICAO RNAV 5.

JAA TGL 10 Rev 1 Airworthiness and Operational Approval for Precision RNAV Operations in Designated European Airspace. AC 90-100A U.S. Terminal and En-route Area Navigation (RNAV) Operation.

AC 90-96A Approval of U.S. Operators and Aircraft to operate under IFR in European Airspace designated for Basic Area Navigation (B-RNAV) and Precision Area Navigation (P-RNAV).

Note

Compliance with both P-NAV (TGL 10) and U.S. RNAV (AC 90-100A) assures compliance with ICAO RNAV 1 and RNAV 2.

	Section 2 - Limitations (EASA Approved) Primus Apex - Flight Management System
BARO-VNAV	AMC 20-27 Airworthiness Approval and Operational Criteria for RNP Approach (RNP APCH) Operations including APV BARO- VNAV Operations. AC 90-105 Approval Guidance for RNP Operations and
	Barometric Vertical Navigation in the U.S. National Airspace System.
	AC 20-129 Airworthiness Approval of Vertical Navigation (VNAV) Systems for the use in the U.S. National Airspace System (NAS) and Alaska.
RNP 1	AC 90-105 Approval Guidance for RNP Operations and Barometric Vertical Navigation in the U.S. National Airspace System.
RNP APCH	AMC 20-27 Airworthiness Approval and Operational Criteria for RNP Approach (RNP APCH) Operations including APV BARO- VNAV Operations. AC 90-105 Approval Guidance for RNP Operations and Barometric Vertical Navigation in the U.S. National Airspace System.
MNPS	AC20-138A. The APEX FMS and KGS200 GNSSU as installed has been found to comply with the requirements for GPS oceanic and remote navigation (AC20-138A, Appendix 1), when used in conjunction with the onboard GPS RAIM and FDE. Full redundancy for the GPS navigation system is only provided if second Flight Management System (FMS), second GPS and Cursor Control Device (CCD) are installed. This does not constitute an operational approval.
RNP 4 & RNP 10	AC20-138D. The APEX FMS and KGS200 GNSSU complies with the requirements for GPS oceanic and remote navigation (AC20-138D), when used in conjunction with the onboard GPS RAIM and FDE. Full redundancy for the GPS navigation system is only provided if second FMS, second GPS and CCD are installed. This does not constitute an operational approval.
	Note

Installation of relevant equipment and aircraft certification does not guarantee operational approval. It is the responsibility of the operator to apply for operational approval at the local authorities.

The PC-12/47E with APEX-FMS has satisfied only the airworthiness requirements, this does not constitute an operational approval.

The FMS data base must incorporate the current update cycle for IFR operation.

FMS instrument approaches must be accomplished in accordance with approved instrument approach procedures that are retrieved from the FMS data base.

- 1 Instrument approaches must be conducted in the FMS approach mode and GPS integrity monitoring must be available at the Final Approach Fix.
- 2 APP (approach active) mode indication must be displayed on the Primary Flight Display (PFD) at the Final Approach Fix (FAF).
- 3 Accomplishment of ILS, LOC, LOC-BC, LDA, SDF and MLS approaches using the FMS is prohibited.
- 4 RNAV approaches are prohibited in non-WGS-84 airspace. Radio based (VOR, NDB, etc.) approaches are authorized using GPS updating provided the underlying NAVAID is tuned and monitored to ensure aircraft position accuracy relative to the published procedure. If at any time during the approach the GPS position does not match the radio based data, the radio based data shall be used for navigation (Refer to AC 90-108 for additional information).

The use of the FMS to perform RNAV operations in the designated European airspace is limited as follows:

Given a GPS constellation of 23 satellites or less (22 or less when the FMS incorporates automatic pressure altitude aiding) is projected to be operational, the availability of RAIM must be confirmed for the intended flight (route and time). Dispatch for RNAV must not be made in the event of predicted continuous loss of RAIM of more than 5 minutes for any part of the intended flight. For RAIM prediction the Honeywell Program "Preflight" or equivalent approved software must be used.

Traditional approved navigation equipment (e.g. VOR, DME, ADF) adequate for the route to be flown must be installed and serviceable for use of the FMS in accordance with the operational approval.

Dead reckoning mode of navigation based on AHRS is not available in the high latitude regions (approximately north of 82° north latitude and south of 82° south latitude) since the ADAHRS magnetometers do not provide accurate information near the poles.

When using the VNAV system, the altimeter must be used as the primary altitude reference for all operations.

When using the VNAV path deviation indicator during approach the LNAV/VNAV minimums apply as published on the approach charts. Below the minimum the crew must fly the aircraft based on visual references. Due to the large tolerances of the VNAV system the deviation indicator must not be relied on below the minimum.

If flying on LNAV approach using the vertical guidance provided by the FMS, the crew must at no point allow the aircraft to descend below the published LNAV MDA, unless required visibility of the runway is provided.

Barometric VNAV guidance during approach including the approach transition, final approach segment, and the missed approach procedure can be temperature compensated and minimum IFR altitudes will provide terrain and obstacle clearance for temperatures below ISA. Temperature can be compensated by the pilot by: entering the destination airport Outside Air Temperature (OAT) into the Flight Management Window (FMW) Tab for temperature compensation, calculate and crosscheck the corrected altitudes on the Waypoints lists before activating the changes.

2-21-13 **RVSM**

This aircraft has been evaluated in accordance with JAA Administrative and Guidance Material, Section One, General Part 3, Temporary Guidance Leaflet No.6, Revision 1 and FAA document No. 91-RVSM, change 2 and is qualified for RVSM operations as a group aircraft.

Note

Airworthiness Approval alone does not authorize flight into airspace for which an RVSM Operational Approval is required by an ICAO regional navigation agreement. Operational Approval must be obtained in accordance with applicable operating rules. SESON

The following equipment must be operational to enter RVSM airspace:

- Both ADC channels of ADAHRS KSG 7200 (channel 1 & 2)
- One (1) flight controller KMC 9200 with altitude preselector
- One (1) Automatic Flight Control System (AFCS) with altitude hold
- One (1) altitude reporting transponder KXP 2290.

The ESIS does not meet RVSM performance requirements and shall only be used for emergency procedures.

The RVSM option in the PRIMUS APEX option file has to be activated. Contact Pilatus customer support for further proceeding.

2-21-14 Primus Apex - TCAS

2-21-14.1 TCAS I

The flight crew must not use a TA on the PFD traffic display to initiate evasive maneuvering. ATC procedures and visual acquisition of the intruder prior to initiation of evasive maneuvers must continue to be the primary means of ensuring aircraft separation.

2-21-14.2 TCAS II (optional)

58-CÍ

When an RA occurs, the pilot flying shall respond immediately to RA displays and aural alerts. manoeuvring as indicated, unless doing so would jeopardize the safe operation of the aircraft.

Note

Visually acquired traffic may not be the same traffic causing an RA. The visual perception of an encounter may be misleading, particularly at night.

2-21-15 **Primus Apex - Transponder**

The KXP 2290A ATC Transponder System with ADS-B Out (1090 MHz Extended Squitter ADS-B Out) supports the 1090ES equipment operating on the radio frequency of 1090MHz. The transponder system complies with the criteria of ICAO Doc 7030/4 Regional Supplementary Procedures for operations where enhanced surveillance is required.

The installed ADS-B OUT system has been shown to meet the equipment requirements of 14 2POSES ONLY CFR 91.227. The installed ADS-B system is compliant with the requirements of:

- FAA TSO-C166b
- FAA AC 20-165A
- FASA FTSO-C166b
- CS-ACNS.ADS (1090 MHz Extended Squitter ADS-B Out)
- EASA AMC 20-24
- CASA AC 21-45(1).

The transponder FL ID should never be cleared by the pilot without entering a legal FL ID or recycling the power to the XPDR (if a Blank ID is desired). The XPDR reads the FL ID at power up and if the FL ID is invalid it will default to the TAIL No.

Note

It is the operator's responsibility to ensure that the aircraft configuration meets the local airworthiness requirements to obtain operational approval. Be aware that flight in ADS-B equipped airspace is only allowed with ADS-B Out functionality operational.

Primus Apex - ADAHRS 2-21-16

If CAS message "HSI IS MAG TRK" or "HSI IS TRU TRK" is displayed, then the system accuracy does not allow VOR, VOR/DME and NDB non-precision approaches. The flight crew must use (GPS) VOR/DME or (GPS) NDB overlay approaches, LNAV or LNAV/VNAV approaches, RNAV (GPS) approaches, RNAV (RNP) approaches or LPV and ILS precision approaches instead. CAS message "HSI IS MAG TRK" or "HSI IS TRU TRK" is displayed if operating north of approximately of 82° north latitude and south of 82° south latitude as well as in the following two regions:

North of approximately 73° north latitude between longitude 80° west and 130° west (Northern Canadian Domestic Airspace).

South of approximately 60° south latitude between longitude 120° east and 160° east (Region south of Australia and New Zealand).

2-21-17 Primus Apex - Use of SmartView

SmartView (SV) does not provide the accuracy or reliability upon which the flight crew can solely base decisions and/or plan maneuvers to avoid terrain or obstacles.

The use of SV alone for navigation is prohibited.

The use of SV alone for obstacle and/or terrain avoidance is prohibited.

The use of SV alone for aircraft control without reference to the APEX primary flight indications or Electronic Standby Instrument System (ESIS) is prohibited.

2-21-18 Yaw Damper

Above FL155 (15,500 ft), when the yaw damper is not operating, the aircraft must be flown only in balanced flight (slip-skid indicator +/- 1 trapezoid).

2-21-19 Primus Apex - Electrionic Checklist

The Electronic Checklist functionality allows implementation of a user defined Electronic Checklist database. With respect to airworthiness approval the AFM remains the primary reference for checklists.

Implementation of an Electronic Checklist Database is the responsibility of the aircraft owner/operator, use and operational approval is dependent on the rules of operation.

Implementation of Electronic Checklist functionality does not constitute operational approval.

2-21-20 Primus Apex - Electrionic Charts

The APEX Electronic Charts provide supplemental situational awareness only and do not allow "blind taxi" procedures or flight navigation by use of these charts. At any time the pilot shall remain responsible for taxiing by external visual references and for flying by airborne navigation by the use of primary navigation instruments.

The position accuracy of the aircraft symbol on the charts can decrease in the case of insufficient GPS signal reception or GPS sensor failure. The aircraft symbol is not in-scale with the APEX Electronic Charts.

The APEX Electronic Charts do not replace approved published paper or approved electronic systems for aeronautical charts, which must remain available as a backup reference for chart data.

Note

It is the responsibility of the operator to apply for specific operational approval at the local authority for the use of external electronic charts (e.g. Electronic Flight Bags Class 1 and Class 2) instead of paper charts. Class 3 EFBs require a Supplemental Type Certificate (STC) or certification design approval as part of the aircraft equipment.

2-21-21 Primus Apex - Video Input

It is the responsibility of the operator to make sure that no interference with the installed avionics systems results from the connection of a camera device to the Video Input Module.

2-21-22 Primus Apex - XM Sat Weather

The XM Weather System does not work in PDC mode (STBY bus). Even though the layers can be selected, no data will be transmitted until the aircraft is powered by the batteries (or external power or the engine) and re-selection of the required XM layers is performed.

2-21-23 Primus Apex - Weather Radar

When the weather radar system is operated while the aircraft is on the ground, direct the nose of the aircraft so that the antenna scan sector is free of large metallic objects, such as hangars or other aircraft for a minimum distance of 15 feet (5 meters), and tilt the antenna fully upwards.

Do not operate the weather radar system during aircraft refueling or during refueling operations within 15 feet (5 meters).

Do not operate the weather radar system when personnel are standing within 15 feet (5 meters) of the 270° forward sector of the aircraft.

2-21-24 Primus Apex - INAV Map

The INAV topographical map shall not be used for navigation. The display of airspaces shall not be used as the sole means of reference.

2-21-25 Primus Apex - Vertical Situation Display

The Vertical Situation Display provides situational awareness only and shall not be used for navigation purposes.

2-21-26 Primus Apex - LPV Approach

A valid and compatible database must be installed and contain current data.

For autopilot coupled LPV/LP approaches the autopilot must be disengaged below 200 ft (61 m) AGL.

If NAV preview is selected, LPV/LP approach will not be available. Use of NAV preview functionality will cause an amber "LPV UNVL" or "LP UNVL" message to be displayed.

Additional limitations for operation within EGNOS coverage area:

 When an alternate airport is required by the applicable operational rules, it must be served by an approach based on other than GPS navigation.

2-21-27 Primus Apex - Terrain Database

Approval of the Honeywell Apex System is based on databases being provided from a database provider who has obtained a Type 2 Letter of Acceptance (LoA) (or an equivalent means of compliance as defined by airworthiness authorities) for the processing of the databases shown below. This approval also requires that the operator / end-user will comply with the requirements of FAA AC 20-153B, paragraph 13, for the databases listed. Databases which satisfy the same data quality requirements as the databases listed may be used as an alternative when these compliance requirements have been satisfied.

- EGPWF Threat Database, part number: DO69002412-xxxx
- EPIC/APEX Terrain Server Database, part number: 996-0146-xxx

WATION PURPOSES ONLY Left r This Page Intentionally Left Blank

2-22 Other Limitations

2-22-1 All Passenger Seats

For takeoff and landing the seat lap and shoulder belts must be fastened, the lap belt tightened, and the seat headrest positioned to support the head.

2-22-2 Luggage Limitations

The luggage area maximum load is given in Table 2-22-1. The load is dependent on the aircraft interior configuration and the Part No. of the luggage net installed.

Interior Configuration	Maximum load with luggage net 525.25.12.043 installed
STD-9S	265 lb (120 kg)
EX-6S-STD-2S	265 lb (120 kg)
EX-4S-STD-4S	265 lb (120 kg)
EX-6S-2	400 lb (180 kg)
EX-8S	400 lb (180 kg)

Table 2-22-1: Luggage Limitations

A Luggage Net must be installed at frame 34 when luggage is stowed.

The luggage area maximum load is 500 lb (225 kg) with an extendable luggage net installed. The extendable luggage net Part No. 525.25.12.026 and/or any luggage may not extend in front of frame 32. If the extendable luggage net is used, there must be a clear area in front of the net as follows:

- At least 280 mm forward of frame 32, when the net floor attachments are placed at frame 32 (the most forward position of the net)
- At least 340 mm forward of frame 34, when the net floor attachments are placed at frame 34.

2-22-3 Cargo Limitations

Maximum Freight Load 3300 lbs (1500 kg).

Cargo must be arranged to permit free access to the passenger door and the right hand emergency overwing exit. No cargo must be placed on the seats.

All cargo must be secured by approved cargo restraints as described in Section 6, General Loading Recommendations. Tie Down Straps with a breaking strength of at least 1800 lb per strap must be used.

All Cargo/Containers must be located against a retaining bar secured laterally to the seat rails.

Items up to a total weight of 66 lb (30 kg) can be stowed in the cabin area without being strapped down providing a cargo net is installed in front of the items.

Cargo nets may only be installed on the attachments at Frames 24 and 27.

No passengers must be seated rearward of a cargo net.

If an extendable baggage net is used the tie down fittings and the cargo strap fittings must have a minimum space of 5 inches between the fittings.

2-22-4 Structural Limitations

Refer to Chapter 4 of the PC-12/47E Aircraft Maintenance Manual, Pilatus Report Number 02436.

2-22-5 Smoking

Smoking is not permitted in the cabin of aircraft equipped with a standard interior unless ashtrays are installed.

2-22-6 Portable Electronic Devices

The aircraft is Wi-Fi and Bluetooth frequency tolerant and tested according to RTCA/DO-307 - Aircraft design and Certification for Portable Electronic Device (PED) Tolerance.

Front door coupling susceptibility was tested in accordance with DO-307 (including Change 1), Section 4.

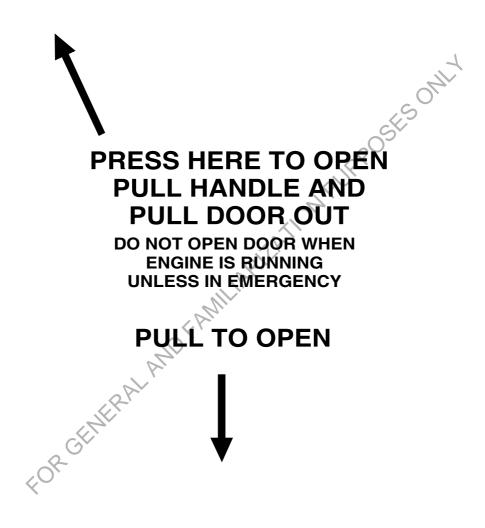
Back door coupling susceptibility was tested in accordance with DO-307 (including Change 1), Section 3.

There are no restrictions resulting from DO-307 testing therefore it is in the responsibility of the operator to define during which phases of flight PED usage is allowed.

No test has been performed to check if the aircraft is Global System Mobile (GSM) frequency tolerant.

If electromagnetic interference is suspected, PED use should be discontinued or terminated.

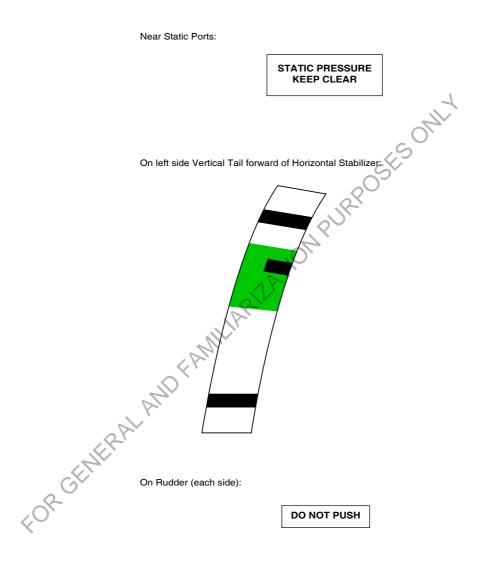
2-23 Placards


On exterior Passenger Door:

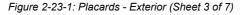
ICN-12-C-A150223-A-S4080-00117-A-001-01

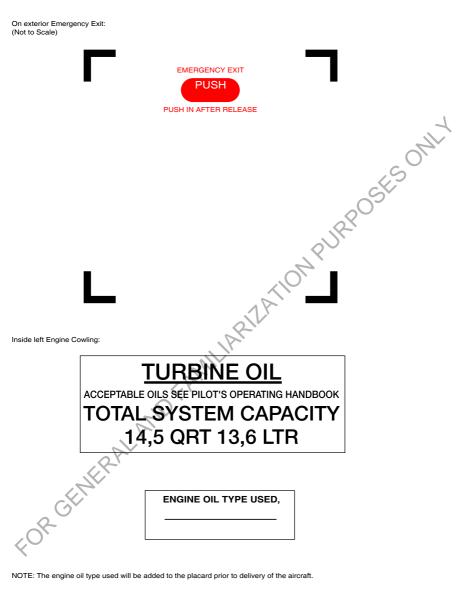
Figure 2-23-1: Placards - Exterior (Sheet 1 of 7)

On exterior Cargo Door:

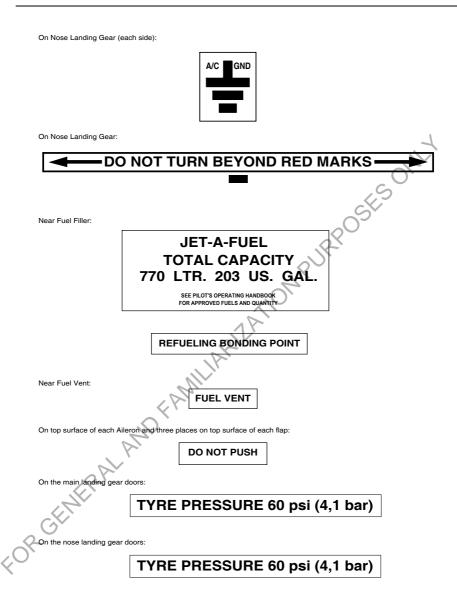


2-C-A15-10-0223-00A-067A-A


ICN-12-C-A150223-A-S4080-00118-A-001-01


Figure 2-23-1: Placards - Exterior (Sheet 2 of 7)

Pilot's Operating Handbook Issue date: Dec 18, 2020 Report No: 02406 Page 2-23-2


ICN-12-C-A150223-A-S4080-00119-A-001-01

ICN-12-C-A150223-A-S4080-00120-A-001-01

Figure 2-23-1: Placards - Exterior (Sheet 4 of 7)

ICN-12-C-A150223-A-S4080-00121-A-002-01

Figure 2-23-1: Placards - Exterior (Sheet 5 of 7)

On each side of Engine Lower Front Cowling:

On Forward Fuselage RH side Access Door:

OXYGEN SERVICE POINT USE NO LUBRICANTS

Note: When the optional larger oxygen bottle is installed, this placard is installed inside the battery compartment and outside on Rear Fuselage Bottom Access Door.

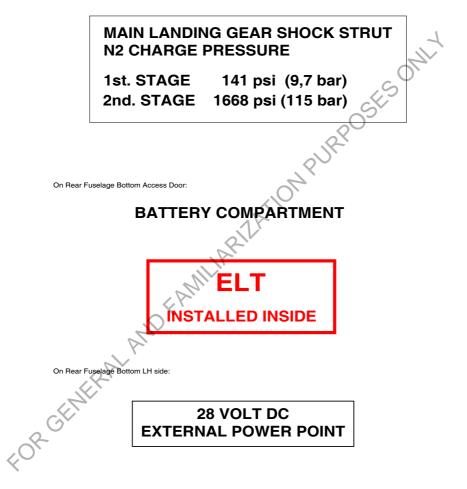
FAMILIAF

On Nose Landing Gear Doors:

NOSE LANDING GEAR SHOCK STRUT N2 CHARGE PRESSURE

 1st. STAGE
 50 psi
 (3,5 bar)

 2nd. STAGE
 834 psi
 (57,5 bar)

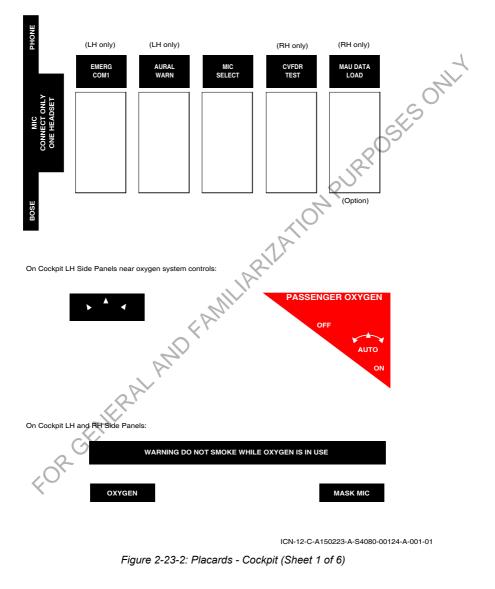

12-C-A15-10-0223-00A-067A-A

ICN-12-C-A150223-A-S4080-00122-A-001-01

Figure 2-23-1: Placards - Exterior (Sheet 6 of 7)

Pilot's Operating Handbook Issue date: Dec 18, 2020 JRPOSES ONLY

On Main Landing Gear Doors:



ICN-12-C-A150223-A-S4080-00123-A-001-01

Figure 2-23-1: Placards - Exterior (Sheet 7 of 7)

PLACARDS - COCKPIT

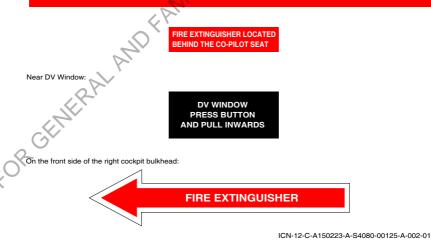
On Cockpit LH and RH Rear Panels:

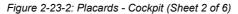
SOMIT

On left Cockpit Side Panel and right Cockpit Side Panel (LH Shown, RH Opposite):

OPERATIONAL LIMITATIONS

THIS AIRPLANE MUST BE OPERATED AS A NORMAL CATEGORY AIRPLANE IN COMPLIANCE WITH THE OPERATING LIMITATIONS STATED IN THE FORM OF PLACARDS, MARKINGS AND MANUALS.


NO ACROBATIC MANEUVERS INCLUDING SPINS ARE APPROVED.

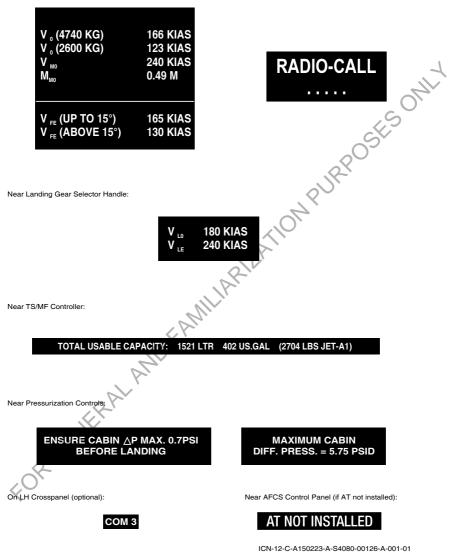
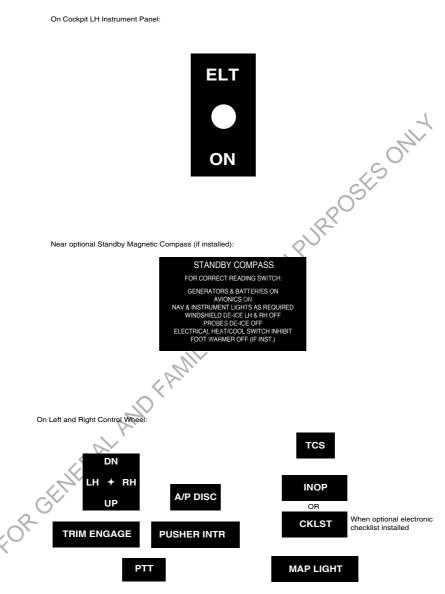
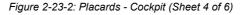

THIS AIRPLANE APPROVED FOR VFR, IFR, DAY & NIGHT OPERATION & ICING CONDITIONS

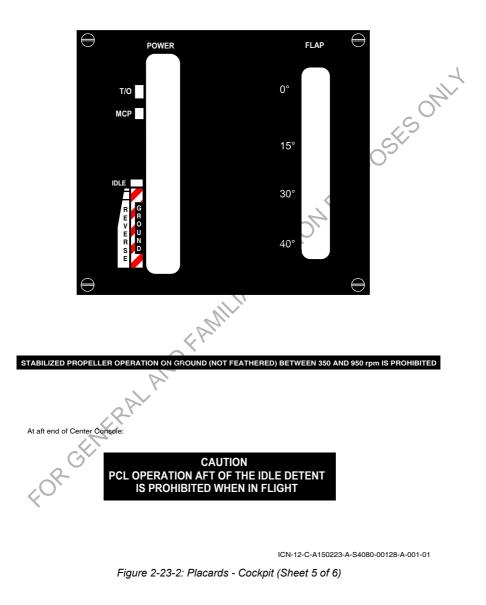
EMERGENCY GEAR EXTENSION

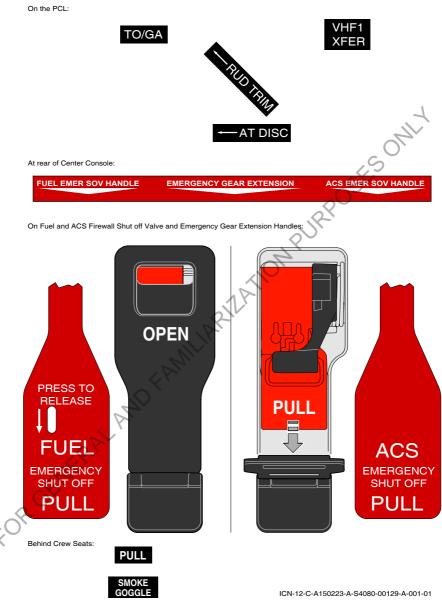
ARSPEED TO MAS ENSURE LANDING DEAR SELECTOR DOWN F 3 GREENS NOT ILLUMINATED AFTER 30 SECONDS EMERGENCY GEAR EXTENSION SYSTEM (AFT END OF CENTRE PEDESTAL) OPEN COVER PULL EMERGENCT GEAR EXTENSION LEVER FRMLY TO PARD STOP CHECK 3 GREENS ARE OBTAINED, IF 3 GREENS STAL MUT ILLUMINATED TO LOCK LH & RH GEAR: CONDUCT LEVEL TURNS LEFT AND RIGHT AT ANGLES OF BANK UP TO 39* MARITAN CONSTINTS SFEED TO LOCK MORE GEAR: REDUCE MREPTED FORMER DELT KEEP EMERGENCY GEAR EXTENSION LEVET IN PULLED FOSTION

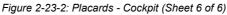
WARNING: DURING FLIGHT IN ICING CONDITIONS OR FLIGHT WITH ANY VISIBLE ICE ACCRETION ON THE AIRFRAME THE FOLLOWING FLAP MAXIMUM EXTENSION LIMITS APPLY: -WITH OPERATIONAL AIRFRAME PNEUMATIC DE-ICE BOOTS 15° FLAP. -AFTER FAILURE OF THE AIRFRAME PNEUMATIC DE-ICE BOOTS 0° FLAP.

On the LH and RH Instrument Panel:

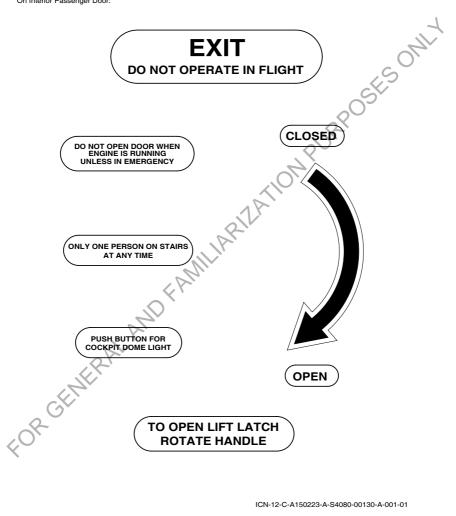

Figure 2-23-2: Placards - Cockpit (Sheet 3 of 6)


ICN-12-C-A150223-A-S4080-00127-A-001-01

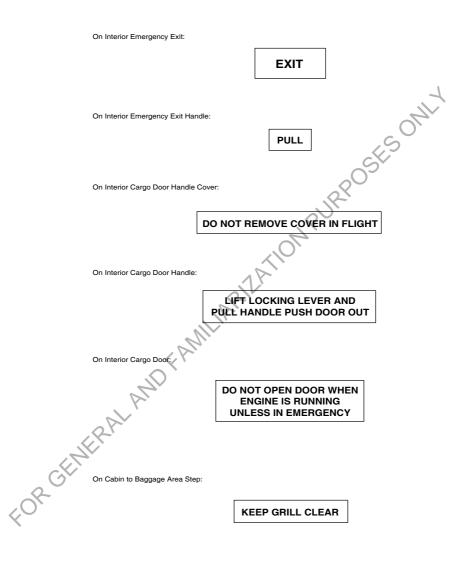


On Center Console:

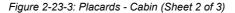
Pilot's Operating Handbook Issue date: Dec 18, 2020

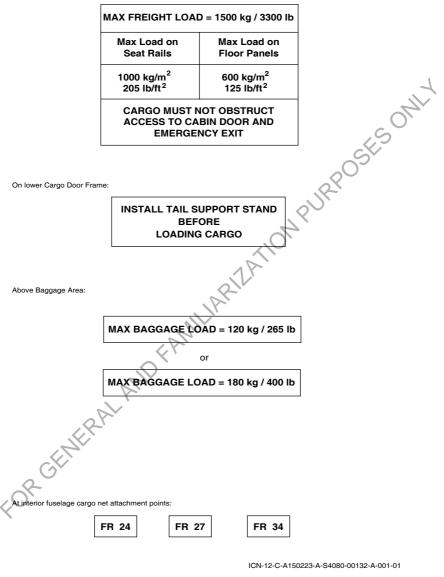


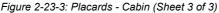
PLACARDS - CABIN


The following standard placards are installed in all aircraft.

On Interior Passenger Door:

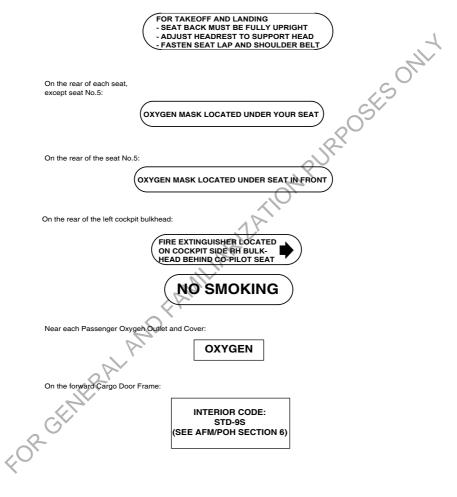



Pilot's Operating Handbook Issue date: Dec 18, 2020



ICN-12-C-A150223-A-S4080-00131-A-001-01

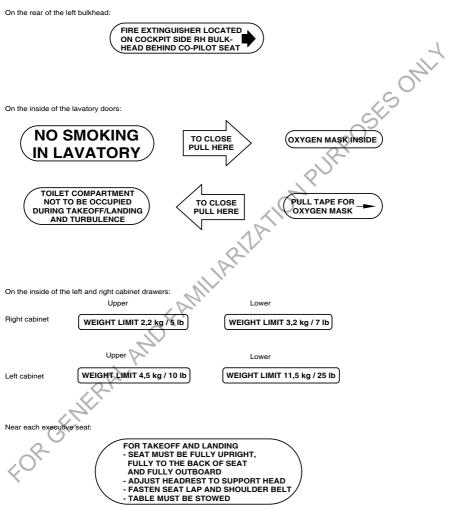
On forward and rear Cargo Door Frame:



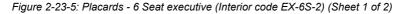
PLACARDS - 9 SEAT CORPORATE COMMUTER (Interior Code STD-9S).

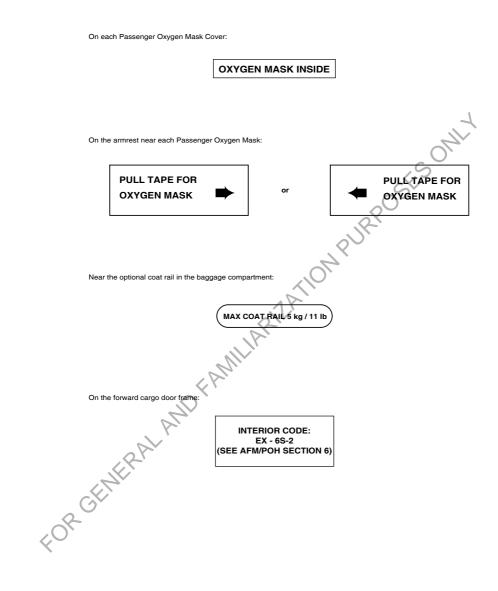
The cabin placards plus the following additional placards are those required for this interior.

On the rear of the left and right cockpit bulkheads, and on the rear of each seat:



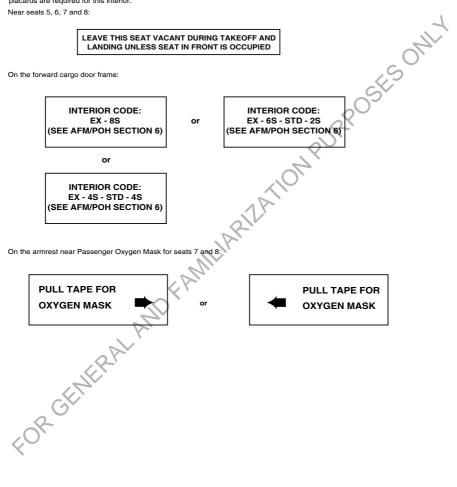
ICN-12-C-A150223-A-S4080-00133-A-001-01


Figure 2-23-4: Placards - 9 Seat corporate commuter (Interior code STD-9S)


PLACARDS - 6 SEAT EXECUTIVE (Interior Code EX-6S-2).

The cabin placards plus the following additional placards are those required for this interior.

ICN-12-C-A150223-A-S4080-00134-A-002-01



ICN-12-C-A150223-A-S4080-00135-A-001-01

Figure 2-23-5: Placards - 6 Seat executive (Interior code EX-6S-2) (Sheet 2 of 2)

PLACARDS - 8 SEAT EXECUTIVE (Interior Code EX-8S) - 6 SEAT EXECUTIVE AND 2 SEAT CORPORATE COMMUTER (Interior Code EX-6S-STD-2S) - 4 SEAT EXECUTIVE AND 4 SEAT CORPORATE COMMUTER (Interior Code EX-4S-STD-4S)

The cabin placards, the 6 seat executive placards and the following replacement/additional placards are required for this interior.

ICN-12-C-A150223-A-S4080-00136-A-001-01

Figure 2-23-6: Placards - 8 Seat Executive (Interior Code EX-8S), 6 Seat Executive and 2 Seat Corporate Commuter (Interior Code EX-6S-STD-2S) and 4 Seat Executive and 4 Seat Corporate Commuter (Interior Code EX-4S-STD-4S)

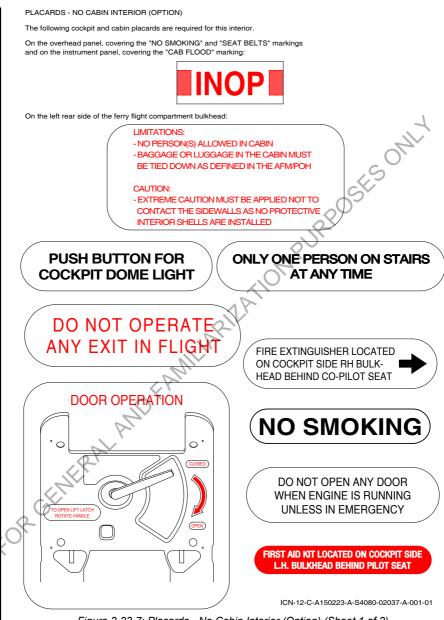


Figure 2-23-7: Placards - No Cabin Interior (Option) (Sheet 1 of 2)

SECTION 3

Emergency Procedures (EASA Approved) Table of Contents

	Subject		Page
	3-1	General	3-1-1
	3-1-1	General	3-1-1
	3-1-2	Crew Alerting System	3-1-2
	3-1-3	Flight Alerting System	3-1-2
	3-1-4	Crew Alerting System Flight Alerting System FAS Messages and Actions Airspeeds for Emergency Operations Airspeeds for Emergency Operations Rejected Takeoff (Not engine related) Rejected Takeoff (Not engine related) Engine Failure	3-1-2
	3-2	Airspeeds for Emergency Operations	3-2-1
	3-2-1	Airspeeds for Emergency Operations	3-2-1
	3-3	Rejected Takeoff (Not engine related)	3-3-1
	3-3-01	Rejected Takeoff (Not engine related)	3-3-1
	3-4	Engine Failure	3-4-1
	3-4-01	Engine failure before rotation	3-4-1
	3-4-02	Engine failure after rotation - Landing gear down	3-4-1
	3-4-03	Engine failure after rotation - Landing gear up	3-4-2
	3-4-04	Engine Failure in Flight - Total Power Loss	3-4-2
	3-4-05	Engine Surging	3-4-3
	3-5	Air Start	3-5-1
	3-5-01	Air Start Envelope	3-5-1
	3-5-02	Air Start - With starter	3-5-1
	3-6	Engine Emergencies	3-6-1
	3-6-01	Propeller Low Pitch	3-6-1
	3-6-02	Engine Np	3-6-1
	3-6-02	Engine Np	3-6-1
4	3-6-03	Engine Ng	3-6-2
	3-6-03	Engine Ng	3-6-2
	3-6-04	Engine Torque	3-6-2
	3-6-04	Engine Torque	3-6-2
	3-6-05	Engine ITT	3-6-3
	3-6-05	Engine ITT	3-6-3
	3-6-06	Engine Oil Press	3-6-3

Subject		Page
3-6-06	Engine Oil Press	3-6-3
3-6-07	Engine Oil Temp	3-6-4
3-6-07	Engine Oil Temp	3-6-4
3-6-08	Starter Engaged	3-6-4
3-6-09	Engine Oil Level	3-6-5
3-6-10	Engine Chip	3-6-6
3-6-11	EPECS Fail	3-6-6
3-6-12	EPECS Degraded	3-6-7
3-7	Fire, Smoke or Fumes	3-7-1
3-7-01	Fire Detector	3-7-1
3-7-02	Engine Fire	3-7-1
3-7-03	Cockpit/Cabin Fire, Smoke or Fumes, Smoke Evacuation	3-7-4
3-8	Emergency Descent	3-8-1
3-8-01	General	3-8-1
3-8-02	Maximum Range Descent - After Engine Fail	3-8-1
3-8-03	Maximum Rate Descent	3-8-3
3-8-04	Maximum Rate Descent Maximum Rate Descent Emergency Descent Emergency Landing Glide Distance and Speed	3-8-6
3-9	Emergency Landing	3-9-1
3-9-01	Glide Distance and Speed	3-9-1
3-9-02	Forced Landing	3-9-1
3-9-03	Landing with Main Landing Gear Unlocked	3-9-2
3-9-04	Landing with Nose Landing Gear Unlocked	3-9-3
3-9-05	Landing with Gear Up	3-9-4
3-9-06	Landing without Elevator Control	3-9-4
3-9-07	Landing with Immobilized Horizontal Stabilizer	3-9-5
3-9-08	Landing without Flaps	3-9-5
3-9-09 🔗	Ditching	3-9-6
3-10	Landing Gear System Failure	3-10-1
3-10-01	Landing Gear Fails to Retract	3-10-1
3-10-02	Emergency Gear Extension	3-10-1
3-10-03	Gear Actuator Cntl	3-10-2
3-10-04	Invalid Gear Config	3-10-3
3-10-05	Gear Power Fail	3-10-3
3-11	Flaps Failure	3-11-1

	Subject		Page
	3-11-01	Flaps	3-11-1
	3-12	Stick Pusher Failure	3-12-1
	3-12-01	Pusher	3-12-1
	3-13	Inadvertent Pusher/Shaker Operation	3-13-1
	3-13-01	Pusher	3-13-1
	3-13-02	Shaker	3-13-2
	3-14	Electrical Trim	3-14-1
	3-14-01	Pitch Trim Runaway	3-14-1
	3-14-02	Yaw Trim Runaway	3-14-1
	3-14-03	Trim Runaway	3-14-2
	3-14-04	No Main Stabilizer Trim	3-14-2
	3-14-05	No Stabilizer Trim, Main or Alternate	3-14-2
	3-15	Pitch Trim Runaway Yaw Trim Runaway Trim Runaway No Main Stabilizer Trim No Stabilizer Trim, Main or Alternate Electrical System Failures Electrical Power Loss Essential Bus Avionics 1 Bus Avionics 2 Bus Main Bus Generator 1 Bus	3-15-1
	3-15-01	Electrical Power Loss	3-15-1
	3-15-02	Essential Bus	3-15-1
	3-15-03	Avionics 1 Bus	3-15-1
	3-15-04	Avionics 2 Bus	3-15-2
	3-15-05	Main Bus	3-15-2
	3-15-06	Generator 1 Bus	3-15-3
	3-15-07	Generator 2 Bus	3-15-3
	3-15-08	Standby Bus	3-15-4
	3-15-09	Non Essential Bus	3-15-4
	3-15-10	Bus Tie	3-15-4
	3-15-11	Generators	3-15-5
	3-15-12	Generator 1 Off	3-15-6
	3-15-13	Generator 2 Off	3-15-7
_	3-15-14	Generator 1 Volts	3-15-8
X	3-15-15	Generator 2 Volts	3-15-9
	3-15-16	Battery 1 Hot	3-15-10
	3-15-16	Battery 2 Hot	3-15-10
	3-15-16	Battery 1 + 2 Hot	3-15-10
	3-15-17	Battery 1	3-15-11
	3-15-17	Battery 2	3-15-11
	3-15-18	Battery 1 Off	3-15-11

Subject		Page
3-15-18	Battery 2 Off	3-15-11
3-15-19	External Power	3-15-11
3-16	Fuel System	3-16-1
3-16-01	Fuel Pressure Low	3-16-1
3-16-02	Fuel PRESS SENS Fail	3-16-2
3-16-03	LH Fuel Low	3-16-2
3-16-03	RH Fuel Low	3-16-2
3-16-03	LH + RH Fuel Low	3-16-2
3-16-04	Fuel Balance Fault	3-16-3
3-16-04	Fuel Imbalance	3-16-3
3-16-05	Suspected Fuel Leak	3-16-5
3-16-06	Fuel Quantity Fault	3-16-6
3-16-07	Loss of Digital Fuel Quantity Indication	3-16-6
3-16-08	LH Fuel Pump	3-16-7
3-16-08	RH Fuel Pump	3-16-7
3-16-09	LH + RH Fuel Pump	3-16-8
3-16-10	Fuel Imbalance Suspected Fuel Leak Fuel Quantity Fault Loss of Digital Fuel Quantity Indication LH Fuel Pump RH Fuel Pump LH + RH Fuel Pump Fuel Pump Failure (Unannunciated) Fuel IMP Bypass Fuel Filter Blocked Fuel TEMP Cabin Environment Failures Cabin Pressure	3-16-8
3-16-11	Fuel IMP Bypass	3-16-9
3-16-12	Fuel Filter Blocked	3-16-10
3-16-13	Fuel TEMP	3-16-11
3-17	Cabin Environment Failures	3-17-1
3-17-01	Cabin Pressure	3-17-1
3-17-02	Cabin Pressure	3-17-1
3-17-03	Cabin Altitude	3-17-2
3-17-04	ACS Low Inflow	3-17-3
3-17-05	CPCS Fault	3-17-4
3-17-06	ECS Fault	3-17-6
3-17-07	Uncontrolled Cabin Pressure	3-17-7
3-18	Deice Systems	3-18-1
3-18-01	Propeller De Ice	3-18-1
3-18-02	De Ice Boots	3-18-2
3-18-03	Inertial Seperator	3-18-3
3-18-04	LH Windshield Heat	3-18-4

Subject		Page
3-18-04	LH + RH Windshield Heat	3-18-4
3-18-05	Probes Off	3-18-4
3-18-06	AOA De Ice	3-18-5
3-18-07	Pitot 1 Heat	3-18-6
3-18-07	Pitot 2 Heat	3-18-6
3-18-08	Static Heat	3-18-6
3-18-09	Pusher	3-18-7
3-18-10	Boots TEMP Limit	3-18-9
3-18-11	Flaps EXT Limit	3-18-9
3-19	Passenger and Cargo Door	3-19-1
3-19-01	Passenger Door	3-19-1
3-19-01	Cargo Door	3-19-1
3-19-01	Pax + Cargo Door	3-19-1
3-20	Cracked Window in Flight	3-20-1
3-20-01	Cracked Window in Flight	3-20-1
3-21	Boots TEMP Limit Flaps EXT Limit Passenger and Cargo Door Passenger Door Cargo Door Pax + Cargo Door Cracked Window in Flight Cracked Window in Flight Wheel Brake Failure Wheel Brake Failure	3-21-1
3-21-01	Wheel Brake Failure	3-21-1
3-22	APEX Failures	3-22-1
3-22-01	All APEX display units indicate a red X or blank:	3-22-1
3-22-02	Check DU 1	3-22-2
3-22-02	Check DU 2	3-22-2
3-22-02	Check DV 3	3-22-2
3-22-02	Check DU 4	3-22-2
3-22-03	Check DU 1	3-22-2
3-22-03	AGM 1 Fail	3-22-2
3-22-03	Check DU 4	3-22-2
3-22-03	AGM 2 Fail	3-22-2
3-22-04	Check DU 1+2+3+4	3-22-3
3-22-05	DU 1 Overheat	3-22-4
3-22-05	DU 2 Overheat	3-22-4
3-22-05	DU 3 Overheat	3-22-4
3-22-05	DU 4 Overheat	3-22-4
3-22-06	DU 1+2+3+4 Overheat	3-22-4
3-22-07	LH PFD CTRL Fail	3-22-5

Subject		Page
3-22-08	RH PFD CTRL Fail	3-22-6
3-22-09	LH+RH PFD CTRL Fail	3-22-6
3-22-10	Check Pilot PFD	3-22-6
3-22-11	Check Copilot PFD	3-22-6
3-22-12	Check Engine Display	3-22-7
3-22-13	ATT FAIL	3-22-7
3-22-14	RAD	3-22-7
3-22-15	HDG FAIL	3-22-7
3-22-16	Airspeed Display Replaced with Red X	3-22-8
3-22-17	Altitude Display Replaced with Red X	3-22-8
3-22-18	Vertical Speed Replaced with Red X	3-22-8
3-22-19	IAS?	3-22-9
3-22-19	ALT?	3-22-9
3-22-20	HDG?	3-22-10
3-22-21	PITCH?	3-22-11
3-22-22	Altitude Display Replaced with Red X Vertical Speed Replaced with Red X IAS? ALT? HDG? PITCH? ROLL? BARO?	3-22-11
3-22-23	BARO?	3-22-11
3-22-24	APEX Miscellaneous - On Ground Only	3-22-12
3-22-25	MAU A Fail	3-22-12
3-22-26	MAU A Fail MAU B Fail	3-22-13
3-22-27	Air/Ground Fail	3-22-13
3-22-28	Aural Warning Fail	3-22-14
3-22-29	DME 1 Fail	3-22-14
3-22-30	Rad Alt 1 Fail	3-22-14
3-22-31	ADC A Fail	3-22-15
3-22-32	ADC B Fail	3-22-15
3-22-33	ADC A+B Fail	3-22-16
3-22-34	AHRS A Fail	3-22-18
3-22-35	AHRS B Fail	3-22-18
3-22-36	AHRS A+B Fail	3-22-18
3-22-37	FLT CTRL Ch A Fail	3-22-19
3-22-37	FLT CTRL Ch B Fail	3-22-19
3-22-38	FLT CTRL Ch A+B Fail	3-22-20
3-22-39	FMS1-GPS1 Pos Misc	3-22-20

Subject		Page
3-22-39	FMS1-GPS2 Pos Misc	3-22-20
3-22-39	FMS2-GPS1 Pos Misc	3-22-20
3-22-39	FMS2-GPS2 Pos Misc	3-22-20
3-22-40	FMS1-GPS1+2 Pos Misc	3-22-20
3-22-40	FMS2-GPS1+2 Pos Misc	3-22-20
3-22-41	Unable FMS-GPS Mon	3-22-21
3-22-42	MMDR 1 Fail	3-22-22
3-22-43	MMDR 2 Fail	3-22-23
3-22-44	MMDR 1+2 Fail	3-22-23
3-22-45	MMDR 1 Overheat	3-22-23
3-22-46	MMDR 2 Overheat	3-22-24
3-22-47	MMDR 1+2 Overheat	3-22-24
3-22-48	ADS-B Out	3-22-24
3-22-49	MMDR 2 Fail MMDR 1+2 Fail MMDR 1 Overheat MMDR 2 Overheat MMDR 1+2 Overheat ADS-B Out ASCB Fail Automatia Elight Control System Esilities	3-22-25
3-22-50	Automatic Flight Control System Failures	3-22-27
3-22-51		3-22-30
3-22-51	HSI2 is MAG TRK	3-22-30
3-22-51	HSI1 is MAG TRK HSI2 is MAG TRK HSI1+2 is MAG TRK HSI1 is TRU TRK	3-22-30
3-22-52	HSI1 is TRU TRK	3-22-30
3-22-52	HSI2 is TRU TRK	3-22-30
3-22-52	HSI1+2 is TRU TRK	3-22-30
3-22-53	CAS Miscompare	3-22-30
3-22-54	Stuck Mic	3-22-31
3-22-55	ATC Datalink Fail	3-22-31
0R-08-22-33	7.	

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

3-1 General

3-1-1 General

The recommended action to be taken in case of failure or in emergency situations are contained in this section.

Emergency procedures alone cannot protect against all situations. Good airmanship be used in conjunction with the emergency procedures to manage the emergency. The general rule for priorities in normal and abnormal operations always applies: Aviate, navigate, communicate. Fly the aircraft first (power, attitude, speed), then navigate (flight path) and finally communicate.

Some situations require rapid action, leaving little time to consult the emergency procedures. Prior knowledge of these procedures and a good understanding of the aircraft system is a prerequisite for safe aircraft handling.

KNOW YOUR AIRCRAFT AND BE THOROUGHLY FAMILIAR WITH IMPORTANT EMERGENCY PROCEDURES.

Upon detection of an abnormal situation or any indication of malfunction, the drill procedure "PPAA" is highly recommended to initiate a structured working process:

- P Power Check engine power setting versus actual power
- P Performance Check speed, flight path and aircraft configuration
- A Analysis Analyze the situation within the time available using all means of other indications to verify initial cue (e.g. cross reference CAS message with other system parameters or indications, check circuit breaker panel for CAS related CB status)
- A Action Immediate and subsequent actions guided by airmanship and given checklist procedures

The emergency procedures use the terms "Land as soon as possible" and "Land as soon as practical". For the purpose of these procedures the meanings are as follows:

- Land as soon as possible Land without delay at the nearest airport where a safe approach and landing is reasonably assured.
- Land as soon as practical Landing airport and duration of flight are at the discretion of the pilot. Extended flight beyond the nearest suitable airport is not recommended.

If not detailed otherwise in the procedures, circuit breakers on the Essential Bus which trip in flight, one attempt only is allowed to reset the circuit breaker if the pilot in command determines that the system/equipment is needed for safe completion of that flight. The open circuit breaker can be reset after at least one minute has elapsed since the circuit breaker trip and if there is no remaining smoke or burning smell.

If an emergency procedure requires a circuit breaker to be reset, this means to open (pull out) the circuit breaker, wait for approx. 2 seconds and then close (push in) the circuit breaker. If a circuit breaker is found open, reset means close the circuit breaker.

3-1-2 Crew Alerting System

The Crew Alerting System (CAS) gives:

- **RED Warning** messages which require immediate corrective action by the pilot.
- AMBER Caution messages which requires the pilots attention but not an immediate action.
- CYAN Advisory messages which indicate a system condition, which requires pilot awareness and may require action.
- WHITE Status messages which are only shown on the ground and indicate a maintenance action is required.

Whenever a red or amber message illuminates on the systems Multi Function Display (MFD), the MASTER WARNING or CAUTION lamp will illuminate. A triple chime will sound, a voice callout will be given with some red annunciations in place of the triple chime. A single chime will sound with all amber messages.

CAS warnings and cautions will remain illuminated as long as the initiating condition exists. The MASTER WARNING and CAUTION lamps should be pressed to reset them for further failures once the failure is identified.

3-1-3 Flight Alerting System

Flight Alerting System (FAS) messages are given when necessary on the pilot's PFD to warn of a condition that requires immediate action from the pilot. FAS messages are directly related to the operation of the aircraft. All the FAS messages are accompanied by a voice callout and can only be cancelled by correcting the aircraft condition.

3-1-4 FAS Messages and Actions

FAS MESSAGE TEXT	AURAL MESSAGE	REQUIRED ACTION
STALL	Stall	Reduce AOA
GEAR	Gear	Extend Landing Gear
CAB PRESS(on ground only)	Cabin	Check Systems MFD ENVIRONMENT window, if shows $\Delta P \ge 0.072$ psi: CPCS CABIN PRESSURE switch DUMP
NO TAKEOFF	No Takeoff	Check aircraft configuration is correct for Takeoff: - Flaps: Set 15° or 30° - Aileron, Rudder, Stabilizer Trim: Set green range
OVERSPEED	Speed	Reduce airspeed

Table 3-1-1: FAS Messages and Actions

3-2 **Airspeeds for Emergency Operations**

3-2-1 **Airspeeds for Emergency Operations**

All airspeeds shown are with airplane in clean configuration under ISA conditions.

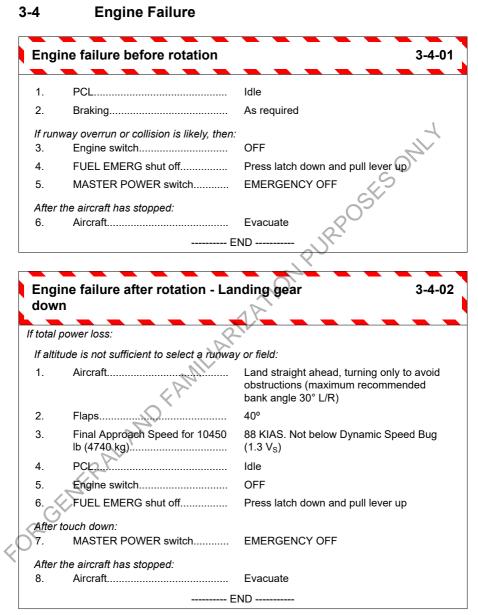
Operating Maneuvering Speed (V_O):

Aircraft Mass	Airspeed
10450 lb (4740 kg)	166 KIAS
9921 lb (4500 kg)	161 KIAS
9480 lb (4300 kg)	158 KIAS
9039 lb (4100 kg)	154 KIAS
8380 lb (3800 kg)	148 KIAS
7940 lb (3600 kg)	144 KIAS
7500 lb (3400 kg)	140 KIAS
7060 lb (3200 kg)	136 KIAS
6610 lb (3000 kg)	132 KIAS
6170 lb (2800 kg)	127 KIAS
5730 lb (2600 kg)	123 KIAS
Best Glide (Propeller feathered):	JAT

Aircraft Mass	Airspeed
10450 lb (4740 kg)	119 KIAS
9920 lb (4500 kg)	116 KIAS
9040 lb (4100 kg)	110 KIAS
8160 lb (3700 kg)	105 KIAS
7280 lb (3300 kg)	99 KIAS
6400 lb (2900 kg)	93 KIAS

Landing Approach Speeds with ice accretion on the airframe:

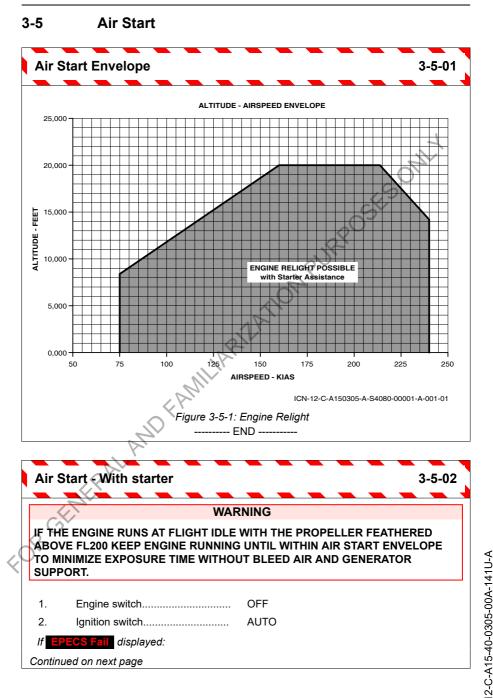
After failure of:	Minimum Approach Speed
Pneumatic Deice Boots (flap position limit 0°)	130 KIAS
AOA Probe Deice	105 KIAS
and/or	
Pitot and Static Probe Deice	105 KIAS
and/or	
Pusher Ice Mode(flap position limit 15°)	105 KIAS

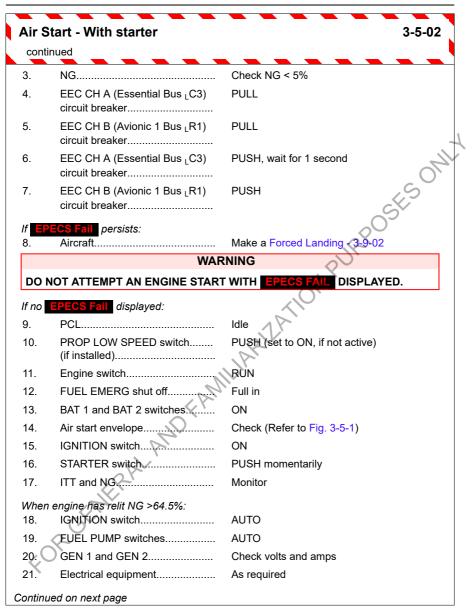

Balked Landing (Go Around):

Ú

After failure of:	Minimum Approach Speed
Pneumatic Deice Boots (flap position limit 0°)	
(TO/Pwr, flaps 0°, LG down,Pusher Ice Mode)	

3-3 Rejected Takeoff (Not engine related)

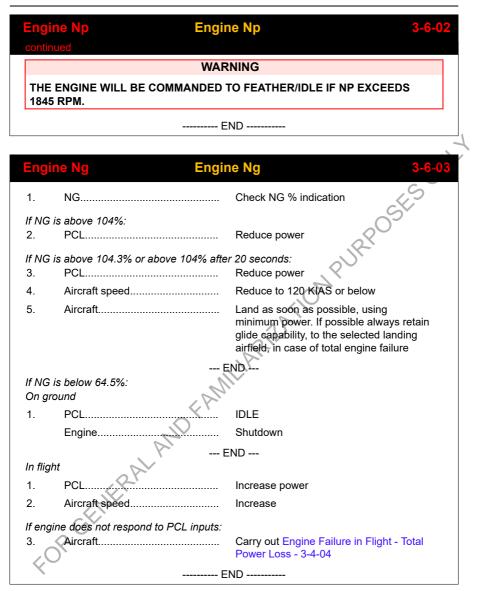

	ected Takeoff (Not engine r		
1.	PCL	Idle	
2.	Braking	. As required	
3.	Reverse	. As required	1
	C/	AUTION	1
	/ further taxiing is required soft I se may occur due to overheating	prake pedals and/or wheel fusible p g.	lugs
lf the	aircraft cannot be stopped on the r	emaining runway:	
4.	PCL	Idle 2	
5.	Engine switch	OFF	
6.	FUEL EMERG shut off	. Press latch down and pull lever up	
7.	MASTER POWER switch	. EMERG OFF	
After	the aircraft has stopped:		
8.	Aircraft	. Evacuate	
	¢7	UTION	
comp	ponents. The main wheels and b	ating of wheel and brake assembly rakes should be inspected for dama ponent manuals before the next fligi	
		- END	
ć	ENERALAN		



Section 3 - Emergency Procedures (EASA Approved) Engine Failure

If toto			
<i>it tota</i> 1.	l power loss:	Down if landing site allows, otherwise	
1.	Landing gear	Down, if landing site allows, otherwise keep landing gear up	
2.	Flaps	40°	
3.	Aircraft	Final Approach Speed for 10450 lb (4740 kg), not below DSB (1.3 V _S):)
	Speed	Flap setting	7
	101 KIAS	Flaps 15°	
	91 KIAS	Flaps 30°	
	88 KIAS	Flaps 40°	
4.	PCL	Idle	
5.	Engine switch	OFF	
6.	FUEL EMERG shut off	Press latch down and pull lever up	
		.0	
	touch down:		
7.	MASTER POWER switch	EMERGENCY OFF	
After	the aircraft has stopped:	211	
8.	Aircraft	Evacuate	
8.		Evacuate ND	
8.			
		ND	-04
		ND	-04
Engi		ND	-04
Engi	ine Failure in Flight - Total P	ower Loss 3-4-	-04
	ine Failure in Flight Total P	ower Loss 3-4- Use FLC (best glide speed) and HDG/T	-04
Engi	ine Failure in Flight - Total P	ower Loss 3-4- Use FLC (best glide speed) and HDG/T	-04
Engi	ine Failure in Flight - Total P	ower Loss 3-4- Use FLC (best glide speed) and HDG/T	-04
Engi	Autopilot Best glide (propeller feathered): weight 40,450 lb (4740 kg)	ower Loss 3-4- Use FLC (best glide speed) and HDG/T or NAV mode	.04
Engi	Autopilot Best glide (propeller feathered): weight 10,450 lb (4740 kg) 9920 lb (4500 kg)	Implementation 3-4- Use FLC (best glide speed) and HDG/T or NAV mode Implementation Speed 119 KIAS 116 KIAS	-04
Engi	Autopilot Best glide (propeller feathered): weight 10,450 lb (4740 kg) 9920 lb (4500 kg) 9040 lb (4100 kg)	ND ower Loss 3-4- Use FLC (best glide speed) and HDG/T or NAV mode speed 119 KIAS 116 KIAS 110 KIAS	-04
Engi	Autopilot Best glide (propeller feathered): weight 10,450 lb (4740 kg) 9920 lb (4500 kg) 9040 lb (4100 kg) 8160 lb (3700 kg)	ND ower Loss 3-4- Use FLC (best glide speed) and HDG/T or NAV mode speed 119 KIAS 116 KIAS 110 KIAS 105 KIAS	-04
Engi	Autopilot Best glide (propeller feathered): weight 10,450 lb (4740 kg) 9920 lb (4500 kg) 9040 lb (4100 kg)	ND ower Loss 3-4- Use FLC (best glide speed) and HDG/T or NAV mode speed 119 KIAS 116 KIAS 110 KIAS	-04
Engi	Autopilot Best glide (propeller feathered): weight 10,450 lb (4740 kg) 9920 lb (4500 kg)	ower Loss 3-4- Use FLC (best glide speed) and HDG/T or NAV mode	

Engii contii	ne Failure in Flight - Total P ^{nued}	ower Loss	3-4-0
3.	Aircraft	Proceed to nearest airfield or landing avoiding high terrain	g site
4.	Remaining fuel	Check	
lf no n 5.	nechanical damage suspected and t Aircraft	<i>ime permits:</i> Carry out Air Start	1
<i>lf cabi</i> 6.	n altitude is above 10,000 ft: Aircraft	Make an Emergency Descent	<u> </u>
lf no a 7.	<i>ir start:</i> Aircraft	Make a Forced Landing 3-9-02	
	E	END	
			_
Engi	ne Surging		3-4-0
1.	PCL	Reduce to minimum to sustain flight	
lf engi 2.	ine surge persists: ACS Bleed Air switch	OFF for 5 seconds, reset to ON	
lf engi 3.	ine surge persists: Electrical HEAT/COOL switch	INHIBIT	
lf engi 4.	ine surge persists: PCL	Set to IDLE and descent to denser a required to 15,000 ft	air, if
lf engi 5.	ne surge persists and flight altitude ACS Bleed Air switch	cannot be maintained: OFF	
If engi 6.	ne surge persists: Aircraft	Land as soon as possible. If possible always retain glide capability, to the selected landing airfield, in case of t engine failure	
Wate	r/ice ingestion can produce effects	lote similar to an engine surge, potentially	1
	ting in momentary surge.		

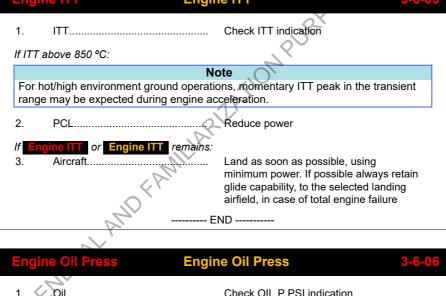


	start - With starter	3-5-02
conti	inued	
lf no a	air start:	
-	WARNING NOT ATTEMPT MORE THAN ONE AIR START. REPEATED AIR RT ATTEMPTS COULD DISCHARGE THE BATTERY TO A LEVE	L
	AT WOULD NOT BE ABLE TO SUPPORT ESSENTIAL ELECTRIC RVICES.	AL
-	.0	2
	END	
	Aircraft Make a Forced Landing - 59.0 END END PURPURPURPURPURPURPURPURPURPURPURPURPURP	
G		

3-6 Engine Emergencies

Prop	eller Low Pitch	3-6-0
Prope	ller Low Pitch warning and voice call	out "Propeller Low Pitch".
1.	PCL	Ensure forward of idle detent
lf it is i 2.	not possible to maintain speed and h Engine switch	oFF
3.	Aircraft	Carry out Emergency Descent and Emergency Landing procedures
	E	ND
		OSt.
Engi	ne Np Engi	ne Np 3-6-0
On gro	ound:	
1.	NP	Check PROP RPM
lf pron	eller RPM is below 900 (steady state	e in reverse region):
2.	PCL	Modulate power until Np is above 900 rpm
lf prop	eller RPM is below 900 (steady state	e in forward region):
3.	Engine	Shutdown as soon as possible
lf prop	eller RPM is above 1760 (steady sta	ite):
4.	PCL	IDLE
5.	Engine	Shutdown
		END
In fligh 1.	nt: NPO	Check PROP RPM
If prop 2.	eller RPM is below 1640 (steady sta PCL	te): Increase power
3.	Aircraft speed	Increase
\sim		
If prop 4.	eller RPM is above 1760 (steady sta PCL	ite): Reduce power
4. 5.	Aircraft speed	Reduce
	·	
lf prop 6.	eller RPM remains above 1760 (stea Aircraft	ady state): Continue flight, at low aircraft speed, using minimum possible power.
Continu	ed on next page	

Engine Torque


Engine Torque

1. TORQUE.....

Check torque indication

Continued on next page

Engine Torque continued	Engine Torque	3-6-04
If torque above 44.3 psi: 2. PCL	Reduce power	
If Engine Torque or Eng 3. Aircraft	gine Torque remains: Land as soon as possibl minimum power. If possi glide capability, to the se airfield, in case of total e	ble always retain elected landing
	END	0`
		K?
Engino ITT	Engino ITT	2 6 05

	10	OII	Check OIL P PSI Indication
	df Eng	gine Oil Press or Engine Oil Pres	s is confirmed:
)(2.	NG	Check NG above 72%
X	3.	Torque	Reduce to below 24 PSI
	lf <mark>En</mark> g	gine Oil Press or Engine Oil Pres	s remains:
	4.	Aircraft	Land as soon as possible, using minimum power. If possible always retain glide capability, to the selected landing airfield, in case of total engine failure
		E	ND

Engin	e Oil Temp En	gine Oil Temp 3-6-07
On grou	und:	
1.	Oil	Check OIL T °C indication
lf oil ter	mperature is high:	
2.	Aircraft	Position into wind
3.	PCL	Increase power
lf oil ter 4.	nperature does not return to nor ELECTRICAL HEAT/COOL switch	INHIBIT
lf <mark>Eng</mark> 5.	ine Oil Temp or Engine Oil Tengine.	
lf oil ter	mperature is low (below -40 °C):	200
6.	Engine	Do not start. Preheating is required.
	mperature is -40 °C or above:	2 Y
7.	PCL	Use low power settings (maximum 72% NG steady state) until oil temperature is above 15°C.
In flight		END V
1.	Oil	Check OIL T °C indication
It oil ter 2.	nperature is high: PCL	Reduce power
lf oil ter	mperature does not return to nor	
3.	Landing gear	Extend
lf <mark>Eng</mark> 4.	ine Oil Temp or Engine Oil Te	
After la 5.	nding: Engine	Shut down engine. Maintenance required
	2	END
-20)	
Starte	r Engaged	3-6-08

On ground (during an engine start):

1. Engine switch..... OFF

Continued on next page

4-3-04, Engine area, step 13

Star contin	ter Engaged	3-6-08			
2.	STARTER circuit breaker (Essential Bus _L L1)	PULL			
3.	EXT PWR (if available)	OFF			
4.	BAT 1 and BAT 2 switches	OFF			
5.	Aircraft	Maintenance action required			
	E	END			
In flig	ht (following an air start):	6M			
1.	BUS TIE circuit breaker (Electrical Power Management panel)	Maintenance action required END Pull OFF PURPOSES			
2.	STARTER circuit breaker (Essential Bus _L L1)	Pull			
3.	GEN 1 and GEN 2 switches	OFF			
lf <mark>St</mark> 4.	arter Engaged <i>extinguised:</i> GEN 1 and GEN 2 switches	RESET then ON			
5.	BUS TIE circuit breaker (Electrical Power Management panel)	Reset			
lf <mark>St</mark>	arter Engaged remains:				
6.	BAT 2 switch	OFF			
7.	GEN 1 switch	RESET then ON			
8.	BAT 1 switch	Check ON			
Sta	Note Starter Engaged will remain on.				
	END				
	AV .				
Engi	ine Oil Level	3-6-09			
Low e	engine oil level on ground				
1.	Engine	Servicing required as per POH Section 4, Preflight Inspection,Nose Section -			

- END -

12-C-A15-40-0306-00A-141A-A

Engi	ne Chip	3-6-10
On gro	ound: Before engine start:	
1.	Do not start engine	Maintenance required
	E	ND
On gro	ound: After engine start or after landii	ng:
1.	Aircraft	Return to parking area
2.	Engine	Shut down engine. Maintenance required
		ND
In fligh		O'
1.	Aircraft	Check and monitor engine parameters
2.	PCL	Reduce power to minimum required for safe flight
3.	Aircraft	Land as soon as practical
After la	anding:	
4.	Engine	Maintenance required.
	E	ND
		A
EPEC	CS Fail	3-6-11
On gro	ound:	14
1.	Engine	Do not start engine, shut down engine
2.	Engine	Maintenance required
In fliat	E nt with total or partial loss of engine c	ND
in nigi		ote
the p	rtain EPECS Fail conditions, the sys	stem commands flight idle and feathers ovide bleed air for cabin pressurization,
lf engi	ne running in idle and propeller feath	ered or engine stopped:
1.	Aircraft	Carry out Engine Failure in Flight - Total Power Loss - 3-4-04 procedure
lf engi	ne running and propeller not feathere	ed:
2.	PCL	Do not make fast PCL movements
3.	Aircraft	Land as soon as possible. Retain glide capability, to the selected landing airfield, in case of total engine failure
	E	ND

On gro 1.	vullu.	
	Engine	Do not start engine, shut down engine when possible
2.	Engine	Do an aircraft power reset
lf fault	remains:	
3.	Engine	Maintenance required
	E	END
In fligh	t:	0
1.	Aircraft	Check and monitor engine parameters. Possible degraded engine response. Prepare for uncommanded change in engine power.
2.	Autothrottle	Disconnect (if active)
3.	PCL	Do not make fast PCL movements
4.	Torque	If indication is invalid, slowly reduce power to idle prior to further engine pow changes (10 sec. rate from MCP to IDLE). If flight conditions permit, avoid high power settings
5.	Aircraft	Land as soon as practical
	,	ND
	MERALAND FAMILIE	

3-7 Fire, Smoke or Fumes

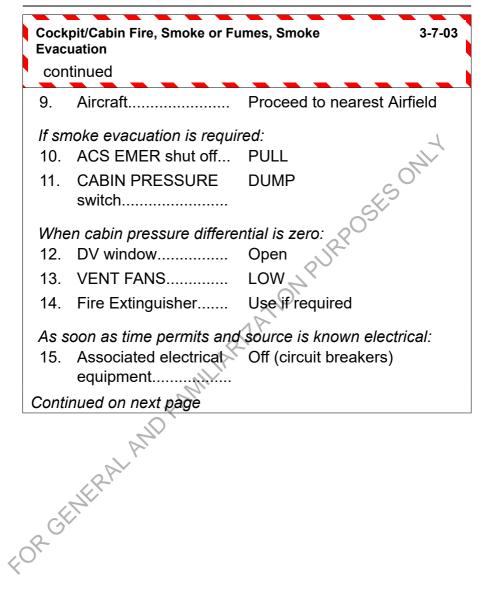
Fire Detector	3-7-01
A fault in the Fire detection s	ystem has occurred.
On ground	
1. Engine	Do not start engine, shut down engine
2. Engine	Maintenance action required
E	END 20
In flight	out
1. Engine	Check indications
2. Aircraft	Land as soon as practical
E	ND
Engine Fire	3-7-02

Engine Fire warning and voice callout "Fire".	
Possible smoke and/or fumes.	

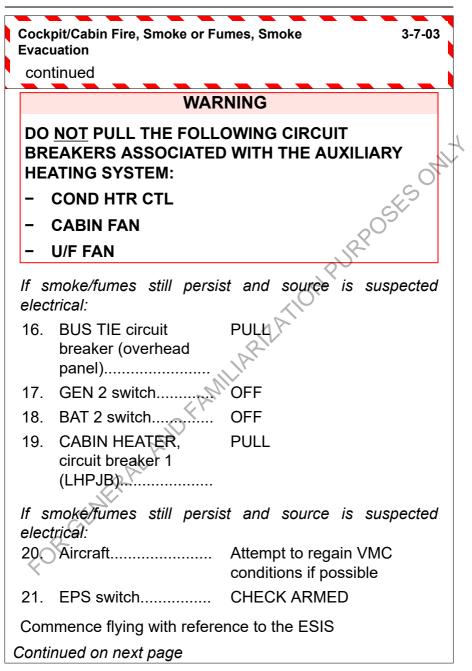
On ground 🔊

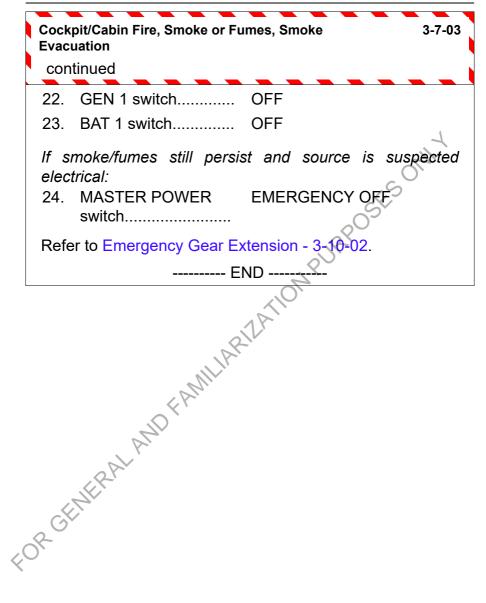
-	Y Y	
1.	PCL	Idle
2.	Engine switch	OFF
3.	ACS EMER shut off	PULL
594.	FUEL EMER shut off.	Press latch down and pull lever up
5.	Radio	Emergency call
6.	MASTER POWER switch	EMERGENCY OFF
Conti	nued on next page	

Section 3 - Emergency Procedures (EASA Approved) Fire, Smoke or Fumes

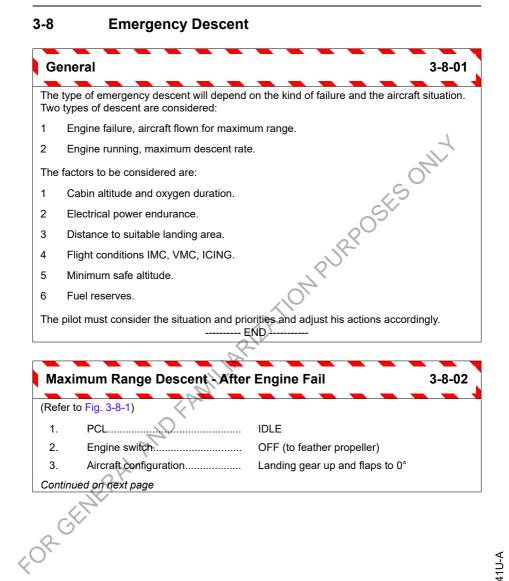

	<mark>gine Fire</mark> ntinued	3-7-02
7.		OFF (if possible)
8.	Aircraft	Evacuate
9.	Fire	Extinguish
		END
In	flight	
1.	Engine power	END Reduce to minimum acceptable according to flight situation PULL
2.	ACS EMER shut off	PULL
3.	Main OXYGEN lever.	Confirm ON
4.	Crew oxygen masks and smoke goggles (if equipped)	ON ATIC
		ote
P	rocedure to don the crew	oxygen masks:
1	Remove the normal he	adset.
2	Put the oxygen mask o	n.
3	Put the smoke goggles	on.
4	Put the normal headse	t back on.
5	Set MIC SELECT switc MASK.	ch on rear left panel to
5.	Crew Oxygen	EMGCY
Со	ntinued on next page	

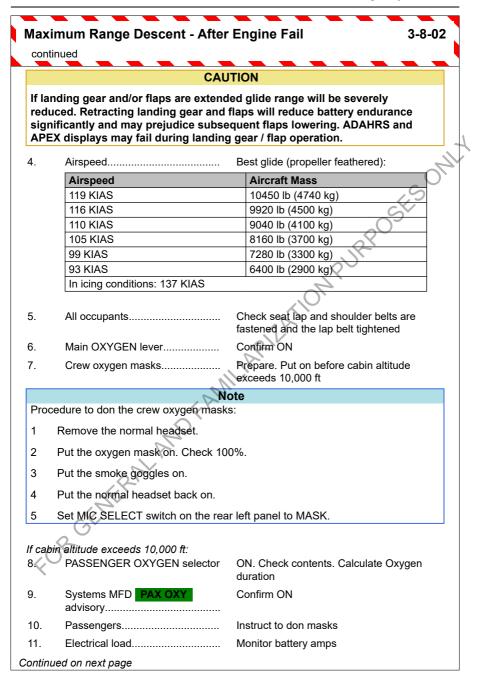
Section 3 - Emergency Procedures (EASA Approved) Fire, Smoke or Fumes

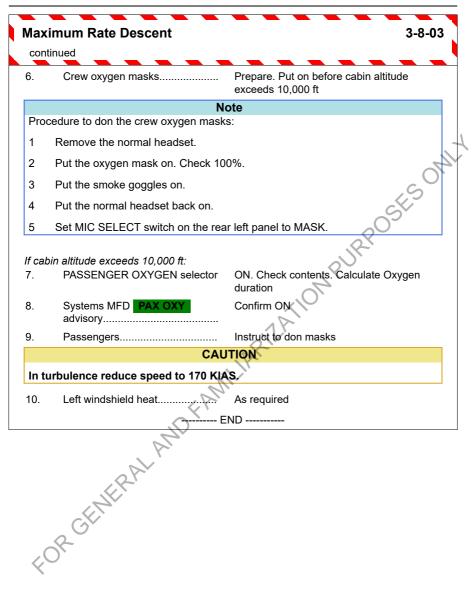

		ne Fire inued	3-7-02
	6.	Vent valve (if smoke goggles worn)	Open
	7.	PASSENGER OXYGEN selector	ON
	8.	Systems MFD PAX OXY advisory	Confirm ON
	9.	Passengers	Instruct to don masks
	10.	Aircraft	Check fire
	lf co	nfirmed that fire exists:	AN,
	11.	FUEL EMER shut off.	Press latch down and pull lever up
	12.	Engine switch	OFF
	lf sn	noke evacuation is requi	red:
	13.	CABIN PRESSURE	DUMP
	Whe	en cabin differential press	sure is zero:
	14.	DV window	Open
	15.	FANS VENT switch	LOW
	16. R	Aircraft	Carry out Emergency Descent and/or Emergency Landing procedures
K)	E	ND

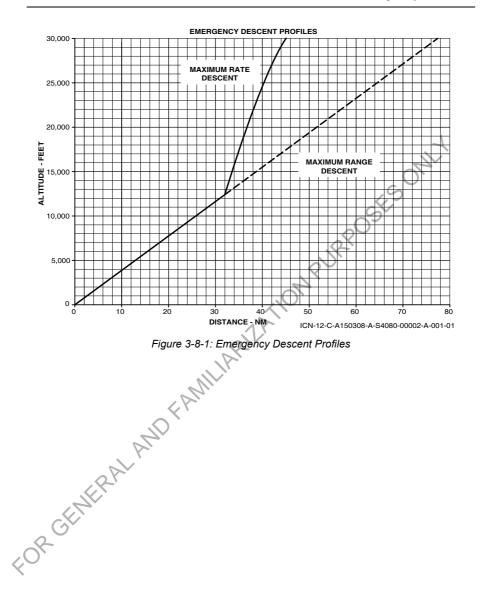

	kpit/Cabin Fire, Smoke or Fu cuation	umes, Smoke 3-7-03
1. 2.	Main OXYGEN lever. Crew oxygen masks and smoke goggles (if equipped)	Confirm ON ON
	N	ote
Pro	ocedure to don the crew	oxygen masks:
1	Remove the normal hea	adset.
2	Put the oxygen mask or	ote oxygen masks: adset. n. pupposes on. for pupposes
3	Put the smoke goggles	on.
4	Put the normal headset	back on.
5	Set MIC SELECT switc MASK.	h on rear left panel to
3.	Crew Oxygen	EMGCY
4.	Vent valve (if smoke goggles worn)	OPEN
5.	PASSENGER OXYGEN selector	ON
6.	Systems MFD PAX	Confirm ON
75	Passengers	Instruct to don masks
8.	Aircraft	Initiate descent to below 10,000 ft or to minimum safe altitude if higher

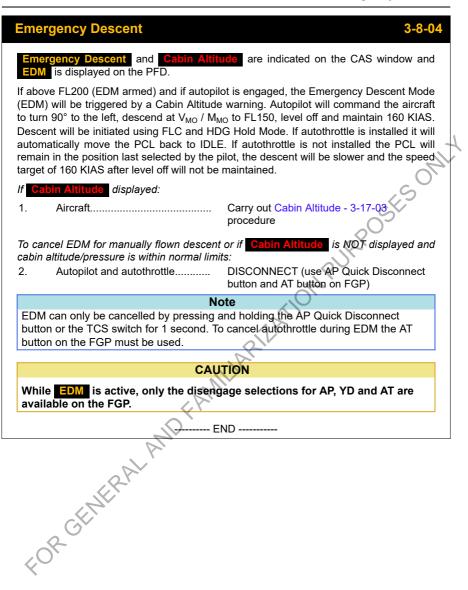
Continued on next page

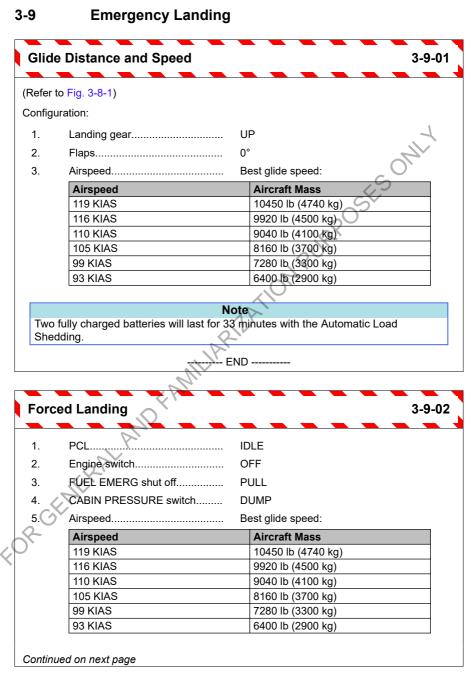



Section 3 - Emergency Procedures (EASA Approved) Fire, Smoke or Fumes

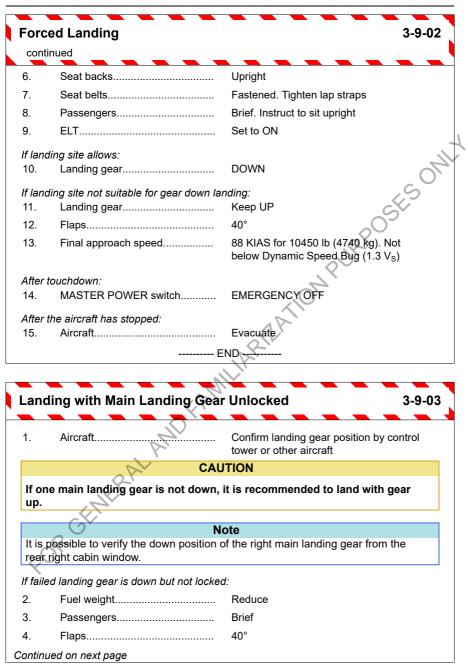

VATION PURPOSES ONLY .entic AMDFAMIL This Page Intentionally Left Blank

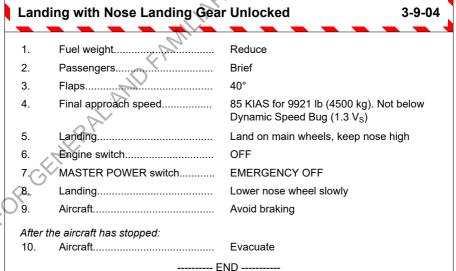


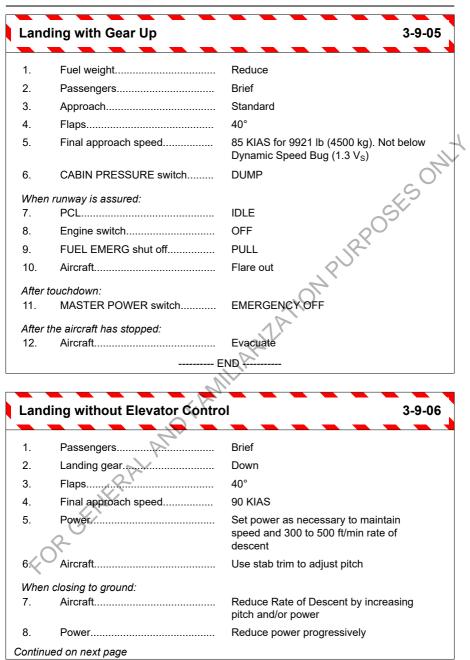


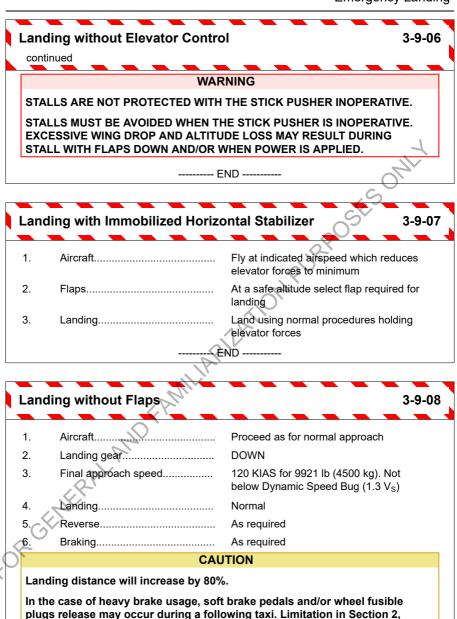

contir	nued	
		CAUTION
affec		f one indication is positive, switch OFF battery can be switched ON again. If ttery OFF.
		Note
	g extended glide period Engi ar - disregard for air start.	ne Oil Level and/or Engine Oil Temp may
12.	Engine	Restart as soon as possible (if applicable (refer to Air Start)
lf engil	ne restart was not successful o	r not applicable:
13.	Rate of descent	Adjust to achieve cabin altitude of 10,00 ft before oxygen supply exhausted
Below	10,000 ft:	R.
14.	ACS EMER shut off	PULL (cabin ventilation)
15.	Aircraft	
		END
Maxir	mum Rate Descent	3-8
Refer to	o Fig. 3-8-1)	
1.	PCL	IDLE
2.	Landing gear	Below 180 KIAS, down
3.	Aircraft speed	M _{MO} /V _{MO}
4.	All occupants	Check seat lap and shoulder belts are fastened and the lap belt tightened.
	Main OXYGEN lever	Confirm ON

Section 3 - Emergency Procedures (EASA Approved) Emergency Descent






Section 3 - Emergency Procedures (EASA Approved) Emergency Landing

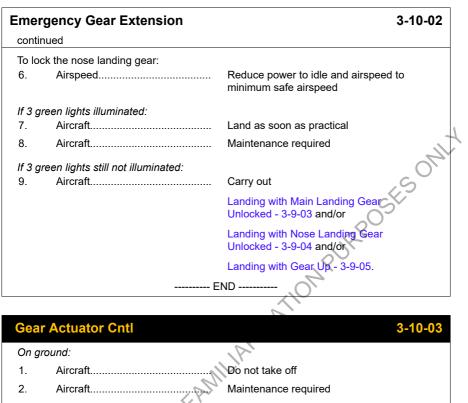


continued		
5.	Final approach speed	85 KIAS for 9921 lb (4500 kg). Not below Dynamic Speed Bug (1.3 V _S)
6.	Touchdown	Gently, avoid sideslip during touchdown
7.	Landing	Lower nose wheel immediately to maintain lateral control
8.	Roll out	Use full aileron during rollout to lift the wing with the failed landing gear
9.	PCL	IDLE 5
10.	Engine switch	OFF
11.	MASTER POWER switch	EMERGENCY OFF
After the aircraft has stopped:		
12.	Aircraft	Evacuate
13.	Aircraft	Do not move the aircraft before deficiency is rectified
	E	ND

Section 3 - Emergency Procedures (EASA Approved) Emergency Landing

----- END ------

Systems and Equipment Limits, Brakes applies.


Section 3 - Emergency Procedures (EASA Approved) Emergency Landing

3-10 Landing Gear System Failure

Landing Gear Fa	ails to Retract		3-10-01
All Landing Gear Indic	cator Lights do not cha	inge to UP.	
1. Airspeed		Below 180 KIAS	
Note			
during landing gea	r retraction moderate	oting is not recommended. However, turbulence and/or considerable G-lo ing the landing gear once, at his own	ad
2. Landing Gea	ar Selector	Select DN	
If 3 green lights not illuminated within 30 sec:			
3. Aircraft		Carry out Emergency Gear Extensi 3-10-02	on -
lf 3 green lights illum	ninated:		
		Land as soon as practical	
	E	END	
		18	
Emergency Gear	r Extension		3-10-02
Emergency Gear Incorrect Indication or Red unlocked lights or	landing gear indicato		3-10-02
Incorrect Indication on Red unlocked lights of	landing gear indicato		3-10-02
Incorrect Indication or Red unlocked lights or 1. Airspeed	n landing gear indicato n and/or green lights r	ot illuminated.	3-10-02
Incorrect Indication or Red unlocked lights or 1. Airspeed 2. Landing Gea	n landing gear indicato n and/or green lights r	not Illuminated. 120 KIAS Select DN	3-10-02
Incorrect Indication or Red unlocked lights of 1. Airspeed 2. Landing Gea If 3 green lights not 3. Emergency	n landing gear indicato n and/or green lights r ar Selector	not Illuminated. 120 KIAS Select DN	3-10-02
Incorrect Indication or Red unlocked lights of 1. Airspeed 2. Landing Get If 3 green lights not if 3. Emergency Lever Cover 4. Emergency	n landing gear indicato n and/or green lights r ar Selector illuminated within 30 s Gear Extension	not Illuminated. 120 KIAS Select DN ec:	3-10-02
Incorrect Indication or Red unlocked lights of 1. Airspeed 2. Landing Get If 3 green lights not i 3. Emergency Lever Cover 4. Emergency	n landing gear indicato n and/or green lights r ar Selector illuminated within 30 s Gear Extension r	not Illuminated. 120 KIAS Select DN ec: Open	3-10-02
Incorrect Indication or Red unlocked lights or 1. Airspeed 2. Landing Gea If 3 green lights not 3. Emergency Lever Cover 4. Emergency Lever	n landing gear indicato n and/or green lights r ar Selector <i>illuminated within 30 s</i> Gear Extension r Gear Extension not illuminated:	not Illuminated. 120 KIAS Select DN ec: Open	3-10-02
Incorrect Indication or Red unlocked lights of 1. Airspeed 2. Landing Gea If 3 green lights not 3. Emergency Lever Cover 4. Emergency Lever If 3 green lights still To lock the main land	n landing gear indicato n and/or green lights r ar Selector <i>illuminated within 30 s</i> Gear Extension r Gear Extension not illuminated:	not Illuminated. 120 KIAS Select DN ec: Open	ng

Section 3 - Emergency Procedures (EASA Approved) Landing Gear System Failure

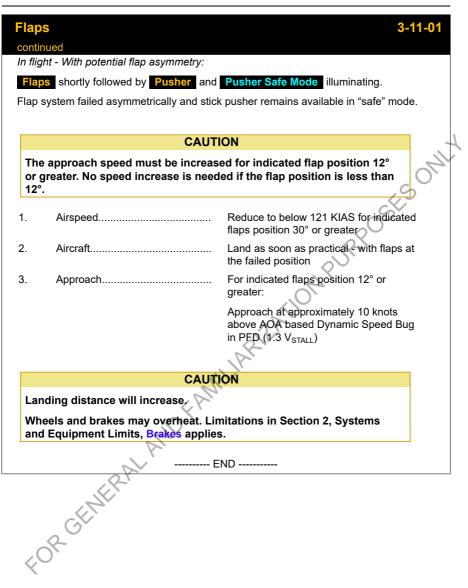
In flight: 1

2.

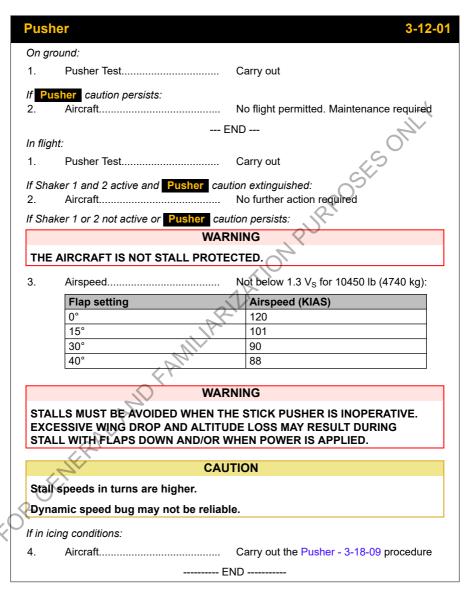
3

4.

END ----Landing gear. Do not cycle Before landing: Airspeed. Below 180 KIAS Landing Gear Selector..... Select DN If 3 green lights not illuminated within 30 sec: Aircraft..... Refer to Emergency Gear Extension -3-10-02 ----- FND -----


Section 3 - Emergency Procedures (EASA Approved) Landing Gear System Failure

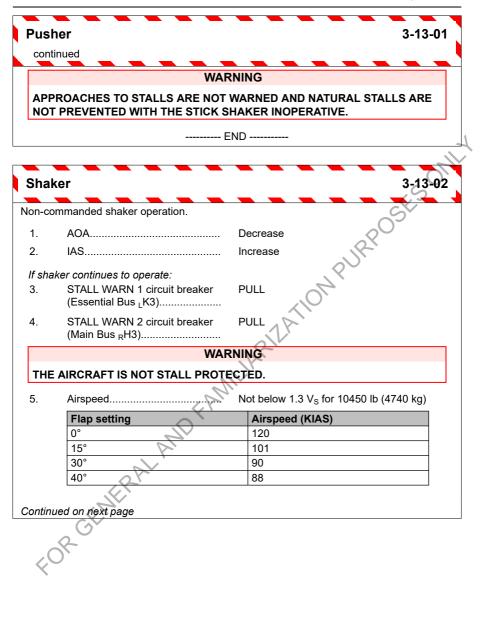
Ona	round:	
0// g/	Aircraft	Do not take off
1. 2	Aircraft	
Ζ.		Maintenance required
END		
		4
Gear	r Power Fail	3-10
On gi	round:	
1.	LDG CTL SEC circuit breaker (Essential Bus _L A2)	Check. Do not reset unless tripped
2.	LDG CTL PRI circuit breaker (Essential Bus _L B2)	Check. Do not reset unless tripped
3.	LDG GEAR PWR circuit breaker (RH PJB)	Check. Do not reset unless tripped
lf cau	tion remains:	St.
4.	Aircraft	Do not takeoff. Maintenance requried
		5ND
In flig	ht:	
1.	LDG CTL SEC circuit breaker (Essential Bus _L A2)	Check. Do not reset unless tripped
2.	LDG CTL PRI circuit breaker (Essential Bus _L B2)	Check. Do not reset unless tripped
3.	LDG GEAR PWR circuit breaker (RH PJB)	Check. Do not reset unless tripped
lf cau	ition remains:	
4.	Landing gear	Do not cycle
Befor	e landing:	
5.	Airspeed	Below 180 KIAS
6.0	Landing Gear Selector	Select DN
If 3 a	reens not illuminated within 30 sec:	
7.	Aircraft	Refer to Emergency Gear Extension - 3-10-02


WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

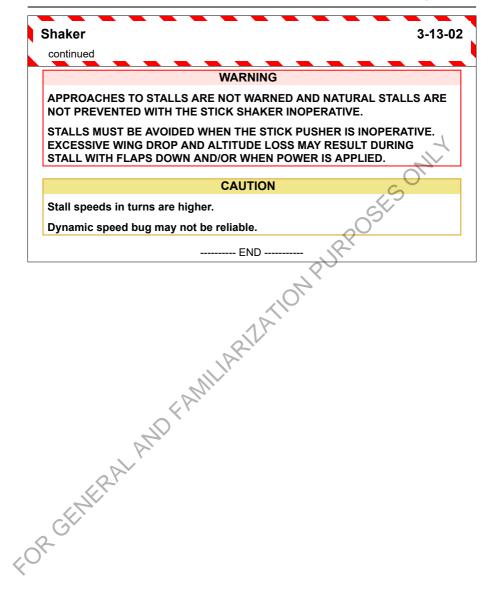
3-11 Flaps Failure

Flaps 3-11-01 On ground: FLAP circuit breaker (LH Rear 1. Check circuit breaker LP4)..... If tripped: FLAP circuit breaker (LH Rear Wait 5 minutes, reset circuit breaker 2. (max. 2 attempts) and continue normal P4)..... operation if Flaps goes off If not tripped: FLAP RESET switch (on Push (max. 1 attempt 3 maintenance panel, right sidewall behind copilot seat)...... If unsuccessful: No flight permitted. 4. Aircraft..... 5 Aircraft..... Maintenance action required END> In flight: Check circuit breaker 1. FLAP circuit breaker (LH Real LP4)..... If tripped: FLAP circuit breaker (LH Rear 2. Wait 5 minutes, reset circuit breaker (max. 2 attempts) and continue normal ₁P4)..... operation if Flaps goes off If unsuccessful: 3 Aircraft. Land with flaps at the failed position ---- END ----Continued on next page

3-12 Stick Pusher Failure

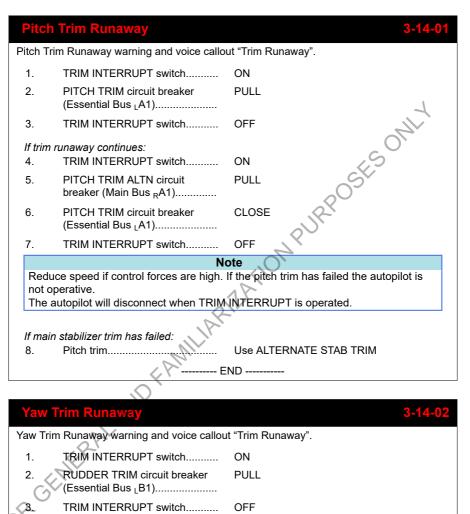


UATION PURPOSES ONLY Left F This Page Intentionally Left Blank


3-13 Inadvertent Pusher/Shaker Operation

Ion-commanded pusher operation, rapid nose pitch-down motion.		
Note Control wheel force to stop pusher operation is 60 to 65 pounds.		
Con	tiol wheel lorce to stop pusher opera	
1.	Control wheel	Hold against pusher action
2.	PUSHER INTR switch	Press and hold
3.	PUSHER SYS GND circuit breaker (RH Rear _R P3)	PULL
4. PUSHER SYS circuit breaker PULL (Essential Bus L3)		Hold against pusher action Press and hold PULL PULL
5.	If shaker continues to operate	Carry out the Shaker - 3-13-02 procedure
	WAR	NING
THE	AIRCRAFT IS NOT STALL PROTE	CTED
6.	Airspeed	Not below 1.3 V_8 for 10450 lb (4740 kg)
	Flap setting	Airspeed (KIAS)
	0°	120
	15°	101
	30° 40°	90
	40	00
WARNING		
NATURAL STALLS ARE NOT PREVENTED WITH THE STICK PUSHER INOPERATIVE. STALLS MUST BE AVOIDED WHEN THE STICK PUSHER IS INOPERATIVE. EXCESSIVE WING DROP AND ALTITUDE LOSS MAY RESULT DURING STALL WITH FLAPS DOWN AND/OR WHEN POWER IS APPLIED.		
		G
-	CAU	ITION
Stall speeds in turns are higher.		
Stal	amic speed bug may not be reliab	le.
	Pusher test	

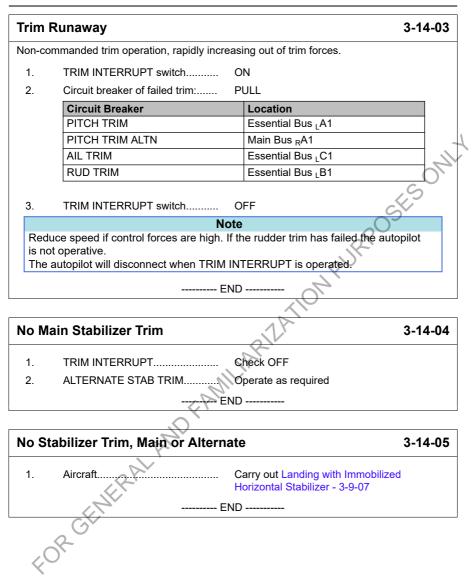
Section 3 - Emergency Procedures (EASA Approved) Inadvertent Pusher/Shaker Operation



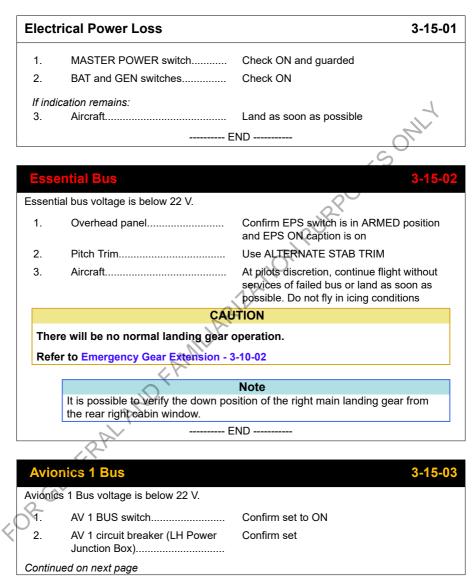
Section 3 - Emergency Procedures (EASA Approved) Inadvertent Pusher/Shaker Operation

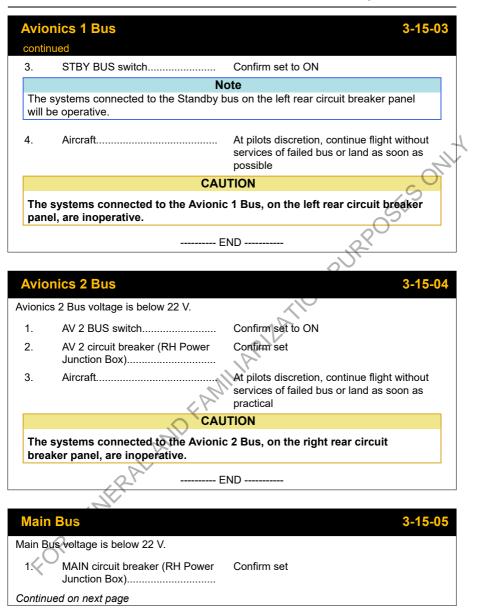
WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

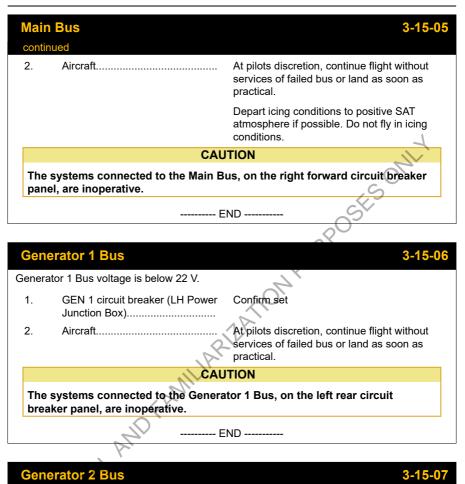
3-14 Electrical Trim


Note

Reduce speed if control forces are high. If the rudder trim has failed the autopilot is not operative.


The autopilot will disconnect when TRIM INTERRUPT is operated.


----- END ------


Section 3 - Emergency Procedures (EASA Approved) Electrical Trim

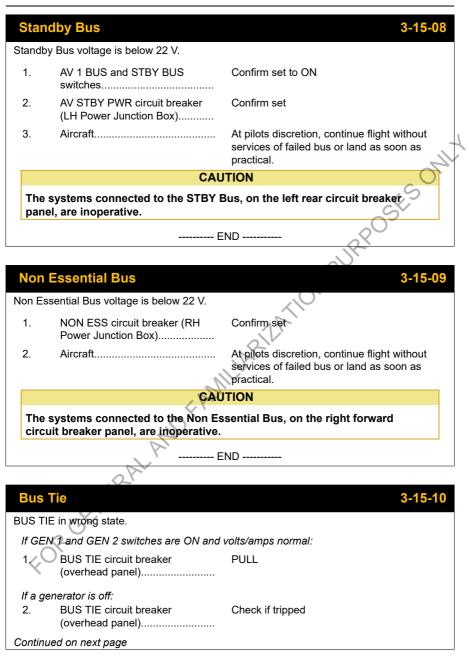
3-15 Electrical System Failures

Generator 2 Bus voltage is below 22 V.

GEN 2 circuit breaker (RH Power Junction Box)..... Aircraft.

Confirm set

At pilots discretion, continue flight without services of failed bus or land as soon as practical.

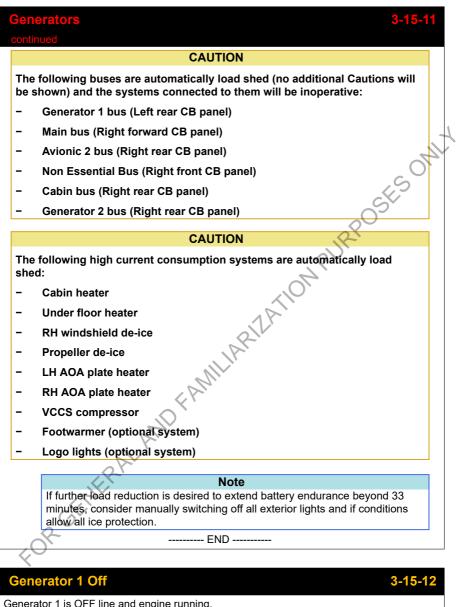

CAUTION

The systems connected to the Generator 2 Bus, on the right rear circuit breaker panel, are inoperative.

----- END -----

2

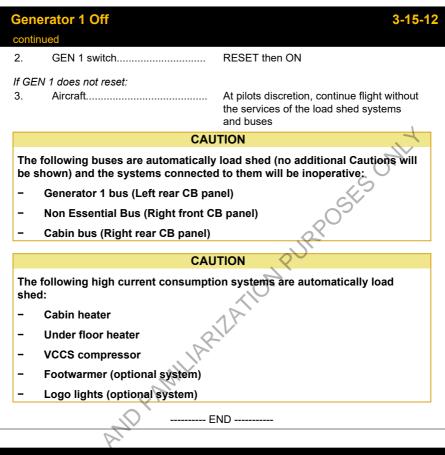
Section 3 - Emergency Procedures (EASA Approved) Electrical System Failures

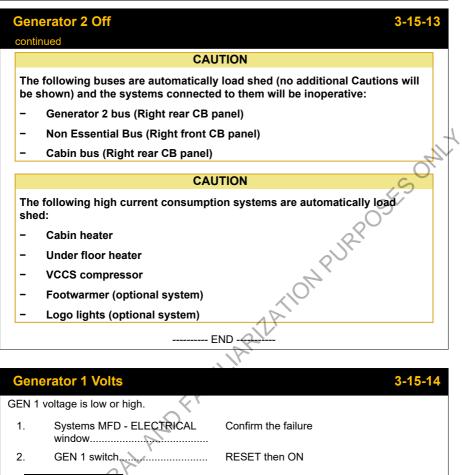


Section 3 - Emergency Procedures (EASA Approved) Electrical System Failures

C

Bus	Bus Tie		
conti	continued		
3.	BUS TIE circuit breaker (overhead panel)	Reset (max 1 attempt only)	
4.	Aircraft	Land as soon as possible	
	CAUTION		
	Buses are being powered only from a battery. Possible battery current caution.		
	FND		

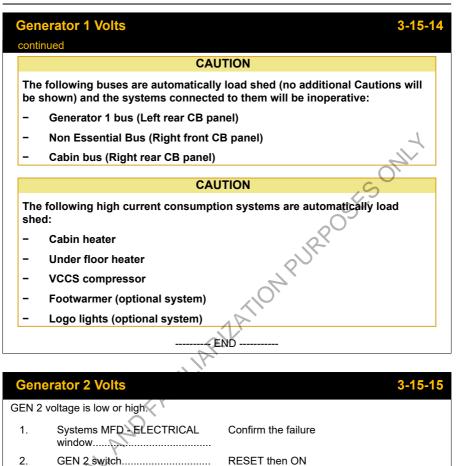

1. S V 2. O	I GEN 2 are off and engine running Systems MFD - ELECTRICAL vindow GEN 1 switch	Confirm the failures
2. (vindow	
	SEN 1 switch	
3 (RESET then ON
J. (GEN 2 switch	RESET then ON
4. 8	tors do not reset (Generators) re Systems MFD - ELECTRICAL vindow	mains on): Monitor BAT 1 and BAT 2
5. A	Aircraft	Land as soon as possible.
	, Mr.	Do not fly in icing conditions.
sheddin	No y charged batteries will last for 33 g. on next page	


Generator 1 is OFF line and engine running.

1 Systems MFD - ELECTRICAL Confirm the failure window.....

Continued on next page

Generator 2 Off 3-15-13 Generator 2 is OFF line and engine running. Systems MFD - ELECTRICAL 1 Confirm the failure window..... RESET then ON 2 GEN 2 switch..... If GEN 2 does not reset: 3 Aircraft..... At pilots discretion, continue flight without the services of the load shed systems and buses Continued on next page

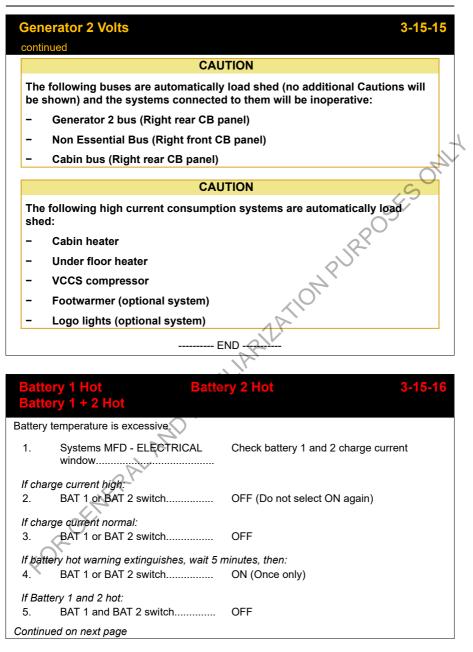

OFF

- If Generator 1 Volts remains: 3. GEN 1 switch.....
- 3.
 GEN 1 switch.....

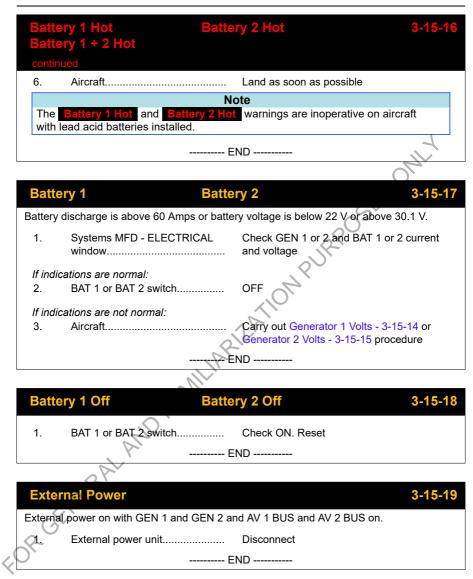
 4.
 Aircraft.....

At pilots discretion, continue flight without the services of the load shed systems and buses

Continued on next page



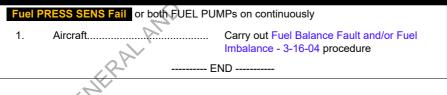
- lf Generator 2 Volts remains: GEN 2 switch.... 3
- Aircraft.....


OFF

At pilots discretion, continue flight without the services of the load shed systems and buses

Continued on next page

Section 3 - Emergency Procedures (EASA Approved) Electrical System Failures


WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

3-16 Fuel System

	Fuel F	Pressure Low	3-16-01
		on and off every 10 seconds.	IP indications on the MFD Fuel Window are
	1.	Fuel filter faults	Check
	2.	Fuel temperature	Monitor
	lf indica 3.	ated fuel temperature below 12 °C: Engine oil temperature	Check Monitor Monitor Do not take off END
	<i>lf</i> Fue 4.	I Pressure Low <i>persists:</i> Aircraft	Do not take off
	In flight		ND
	1.	RH FUEL PUMP switch	are displayed and fuel temperature is low:
	2.	Fuel temperature	Monitor
	2.	•	ote
			ed. A retracted landing gear helps to
	3.	Engine	Decrease power to increase fuel temperature
	4.	Aircraft	Descend to warmer air
	5.	Engine oil temperature	Monitor
	6.	Fuel state (imbalance)	Monitor
	Every	5 minutes:	
	7.	FUEL PUMP switches	AUTO
	8.	Fuel pump operation	Monitor
	If fault	persists:	
	9.	FUEL PUMP switches	ON
$\langle \rangle$	10.	CAS window	Check for fuel filter faults
	<i>lf <mark>Fue</mark> 11.</i>	Pressure Low is displayed and Power	Fuel TEMP <i>is not displayed:</i> Reduce to minimum to sustain flight
	Continue	ed on next page	

Fuel	Fuel Pressure Low 3-16-01				
contin	ued				
12.	Fuel pumps	Monitor automatic switching			
	Ν	ote			
	When the system switches FUEL PUMPs automatically to ON at lower engine				
powe	er, this is a result of degraded ejecto	r pump performance.			
	el Pressure Low persists:				
13.	FUEL PUMP switches	ON			
If ther	If there are 2 segments or more difference between the left and right: 14. FUEL PUMP switch (emptier AUTO side) 15. Fuel state Monitor				
14.		AUTO			
	side)	SV			
15.	Fuel state	Monitor			
Whon	fuel balanced:	PX			
16	FUEL PUMP switches	ON			
10.	TOLET OWN SWICHES				
lf <mark>Fu</mark>	el Pressure Low stays ON and the	FUEL PUMP switches are set to ON:			
17.	Aircraft				
		always retain glide capability to the			
		selected airfield in case of total engine failure			
		X			
	E	ND			

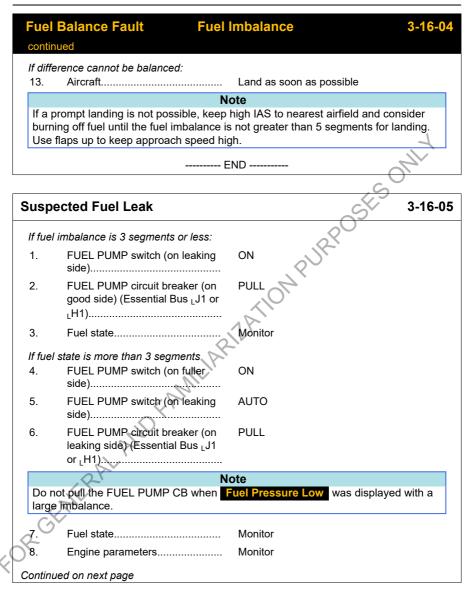
Fuel PRESS SENS Fail

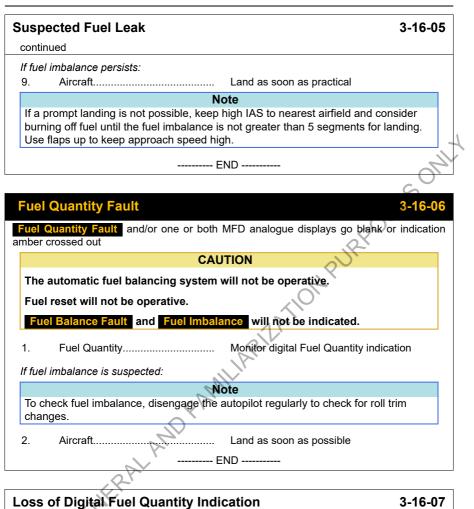
 LH Fuel Low
 RH Fuel Low
 3-16-03

 1.
 FUEL indications......
 Check

 If fuel leak from one wing is suspected:
 Check

 2.
 Aircraft.....
 Carry out Suspected Fuel Leak - 3-16-05 procedure


 Continued on next page
 Continued on next page


3-16-02

Section 3 - Emergency Procedures (EASA Approved) Fuel System

		RH Fuel Low	uel Low 3-16-03
	If LH I 3.	Fuel Low or RH Fuel Low is on: FUEL PUMP switch (fuller side)	ON
	4.	Fuel state	Monitor
	lf no fue 5. 6.	el leak is suspected and both LH Fu FUEL PUMP switches	uel Low and RH Fuel Low are on: ON Reduce to minimum to sustain flight
	0. 7.	Aircraft	Land as soon as possible. If possible always retain glide to the selected landing airfield in case of total engine failure
		El	ND
_			and the second s
	Fuel E	Balance Fault Fuel I	mbalance 3-16-04
	On gro	und:	×10.
	1.	Fuel L and R indications	Check for difference
		WAR	NING
		ERE ARE 4 SEGMENTS OR MORI T DO NOT TAKE OFF.	E DIFFERENCE BETWEEN LEFT AND
	lf fuel p	oump on fuller side is not running:	
	2.	FUEL PUMP switch (fuller side)	ON
	3.	Fuel state	Monitor
	lf diffen	ence cannot be balanced:	
	4.	Aircraft	Do not take off
	When f	uel balanced:	
	5.	FUEL PUMP switch	AUTO
	G	-	ND
6	In flight		
$\langle \rangle$	1.	Fuel L and R indications	Check for difference
ľ.	Continue	ed on next page	

Fuel continu		mbalance 3-16-04		
	CAUTION			
	If there are 3 segments or more difference between left and right, possible aileron deflection required for wings level flight, especially at low speed.			
If fuel	If fuel leak from one wing is suspected:			
2.	Aircraft	Carry out Suspected Fuel Leak - 3-16-05 procedure		
lf no fu 3.	<i>lel leak is suspected:</i> FUEL PUMP circuit breaker (on fuller side) (Essential Bus _L J1 or _L H1)	Reset ON PULL		
4.	FUEL PUMP switch (fuller side)	ON Reference		
5.	FUEL PUMP circuit breaker (on emptier side) (Essential Bus LJ1 or LH1)	PULL		
	Ν	ote		
	ot pull the FUEL PUMP CB when F imbalance.	was displayed with a		
6.	Fuel state	Monitor		
7.	Engine parameters	Monitor		
lf fuel i 8.	is balanced: FUEL PUMP circuit breakers (Essential Bus ⊾J1 and ⊾H1)	Reset		
9.	FUEL PUMP switches	AUTO		
	If difference cannot be balanced and fuel flow was above 400 LB/H with fuller side FUEL PUMP switch to ON:			
10.	Power	Reduce to approx. 300 LB/H fuel flow		
lf fault	clears:			
11.	Fuel flow	Maintain below 400 LB/H		
12.	Fuel temperature	Monitor		
Continu	Continued on next page			

If Fuel Flow digital indication is available, attempt to perform a fuel reset:

 1.
 Aircraft......

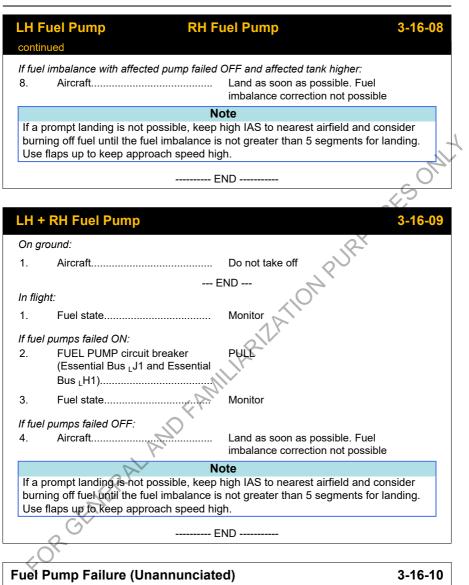
 1.
 Aircraft......

 2.
 Fuel Reset soft key......

 Press

 Note

 The Fuel Used will be reset to zero with fuel reset.


Digital fuel quantity digits replaced by amber dashes.

Pilot's Operating Handbook Issue date: Mar 06, 2020

oss	of Digital Fuel Quantity Indi	cation 3-16-07
conti	nued	
lf Fu	el Flow digital indication is invalid:	
3.	Fuel state	Monitor analogue Fuel Quantity on Fuel window or the digital fuel indication on Systems Summary window
	N	ote
	ntinued flight is possible without digita quantity is operating correctly.	I Fuel Quantity (QTY) providing analogue
	E	ND
		49
LH F	Fuel Pump RH F	uel Pump 3-16-08
On g	round:	.QX
1.	Aircraft	Do not take off
	E	END
In flig	ght:	
1.	FUEL PUMP switches	AUTO
2.	FUEL PUMP circuit breaker (on affected side) (Essential Bus LJ1 or Essential Bus LH1)	Reset
3.	FUEL PUMP switch (on affected side)	ON
After	10 seconds:	
4.	FUEL PUMP switch (on affected side)	AUTO
5.	Fuel state	Monitor

If fuel imbalance with affected pump failed ON and affected tank lower:

Continued on next page

Fuel pump(s) on for more than 10 seconds with fuel balanced and no Fuel Pressure

Continued on next page

Low and no Fuel PRESS SENS Fail, or

Fuel Pu	Fuel Pump Failure (Unannunciated) 3-16-10		
continue	-		
		econds with 2 or more segments difference	
Fail		essure Low and no Fuel PRESS SENS	
- Fuel	pumps not running with green PUM	MP advisory on, or	
– No	Fuel Pressure Low and no Fue	I PRESS SENS Fail and fuel pumps not	
runn	ing.	L	
1.	FUEL PUMP(S)	AUTO	
	FUEL CTL circuit breaker	Reset	
	(Essential Bus _L K1)	Reset	
3.	LH FUEL PUMP circuit breaker	AUTO Reset Reset	
	(Essential Bus _L J1)	20	
	RH FUEL PUMP circuit breaker	Reset	
	(Essential Bus _L H1)	\mathcal{R}^{\vee}	
If failure	is still present:		
5.	Fuel state	Monitor	
If fuel im	balance:	AN'	
6.	Aircraft	Carry out Fuel Balance Fault and/or Fuel	
	, pr	Imbalance - 3-16-04 procedure	
END			
	, Chr.		

Fuel IMP Bypass	•
-----------------	---

	Fuell	MP Bypass		3-16-11	
	On gro	V~·			
	If engine started with cold fuel (below 0 °C):				
	1.	Oil temperature	CHECK. Operate engine with oil temperature above 8 °C for at least minutes prior to take-off	5	
	lf engii	ne started with warm fuel (0 °C or ab	ove) or if indication remains active:		
	2.	Engine	Shut down		
2	3 .	Aircraft	Maintenance required		
		E	ND		
	In fligh	t:			
	1.	Fuel flow	Monitor		
	2.	Fuel temperature	Monitor		
	3.	Oil temperature	Monitor		
	Continue	ed on next page			

12-C-A15-40-0316-00A-141A-A

4.0

Fuel	IMP Bypass	3-16-11
contir	nued	
lf fuel 4.	<i>icing suspected:</i> FUEL PUMP switches	AUTO
	Ν	ote
	sider to retract landing gear if extendice oil cooling.	led. A retracted landing gear helps to
5.	Engine	tomporaturo
lf failu 6.	ire is still present and fuel icing is sus CAS Window	
7.	Aircraft	
lf fuel 8.	<i>l icing not suspected:</i> Aircraft	Continue flight
lf indi	cated fuel temperature below 12 °C c	Fuel Balance Fault
9.	Engine	
	E	ND
Fuel	Filter Blocked	3-16-12

On gro	ound:	
1.	Engine	Shut down
2.	Aircraft	Maintenance required
	E	ND
In fligh	t:	
1.	Fuel flow	Monitor
2.	Fuel temperature	Monitor
3.	Oil Temperature	Monitor
4.	Aircraft	Land as soon as possible. If possible always retain glide, to the selected landing airfield, in case of total engine failure
END		

	Fuel 1	TEMP	3-16-13
	On gro		
	•	ated fuel temperature low (less than	12 °C):
	1.	Oil Temperature	Monitor increasing
	1. 2.	•	5
	2. 3.	Fuel temperature	Monitor increasing
	э.	Engine	Increase power slightly if necessary to increase oil heating
	If indic	ated fuel temperature high (at or abo	ve 105 °C):
	4.	Engine	Shut down
	5.	Aircraft	Maintenance required
		E	ND
	In fligh	t:	20
	1.	Fuel temperature	increase oil heating ve 105 °C): Shut down Maintenance required ND Monitor 12 °C): AUTO
	If indica	ated fuel temperature low (less than	12 °C):
	2.	FUEL PUMP switches	
	0		ote
		e oil cooling.	ed. A retracted landing gear helps to
	Todao		
	3.	Engine	Decrease power to increase fuel temperature
	4.	Aircraft	Descend to warmer air if necessary
		ated fuel temperature remains low (le	
	5.	CAS Window.	Check for fuel filter faults
	If indica	ated fuel temperature decreases and	l remains below 0 °C:
	6.	Aircraft	Land as soon as practical
	If indica	ated fuel temperature high (at or abo	ve 105 °C):
	7.	FUEL PUMP switches	ON
	8.	Fuel temperature	Monitor
	9.	Aircraft	Climb to cooler air if necessary
2) If fuel t	emperature normalizes:	
	10.	FUEL PUMP switches	AUTO
	If indica	ated fuel temperature high (at or abo	ve 105 °C):
	11.	Aircraft	
		E	ND

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

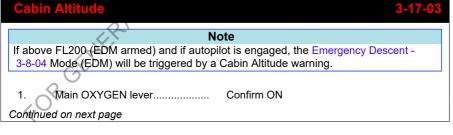
3-17 Cabin Environment Failures

Cab	Cabin Pressure 3-17-01		
Cabin	pressure differential of less than -0.25	psi or greater than 6.35 psi is exceeded.	
1.	Systems MFD ENVIRONMENT window	Check ΔP psi indication	
lf ∆P	Pless than -0.25 psi:	L	
2.	Aircraft	Reduce descent rate	
3.	CABIN PRESSURE switch	Reduce descent rate DUMP DUMP PULL Confirm ON	
lf ∆P	more than 6.35 psi:	6	
4.	CABIN PRESSURE switch	DUMP 5	
5.	ACS EMERG shut off	PULL	
6.	Main OXYGEN lever	Confirm ON	
7.	Crew oxygen masks	ON C	
	Note		
Pro	cedure to don the crew oxygen masks		
1	Remove the normal headset.	AL	
2	Put the oxygen mask on. Check 10	<u>2</u> %.	
3	Put the normal headset back on		
4	Set MIC SELECT switch on the rea	r left panel to MASK.	
0			
8.	PASSENGER OXYGEN selector	AUTO or ON	
9.	Systems MFD PAX OXY advisory	Confirm ON	
10.	Passengers	Instruct to don masks	
11.	Aircraft	Carry out Maximum Rate Descent -	
	SH'	3-8-03 procedure	
Ċ	END		

Cabin Pressure

3-17-02

Cabin pressure differential is greater than 6.0 psi.


- 1. CPCS SYSTEM MODE switch.... MANUAL
- 2. MANUAL CONTROL switch.....

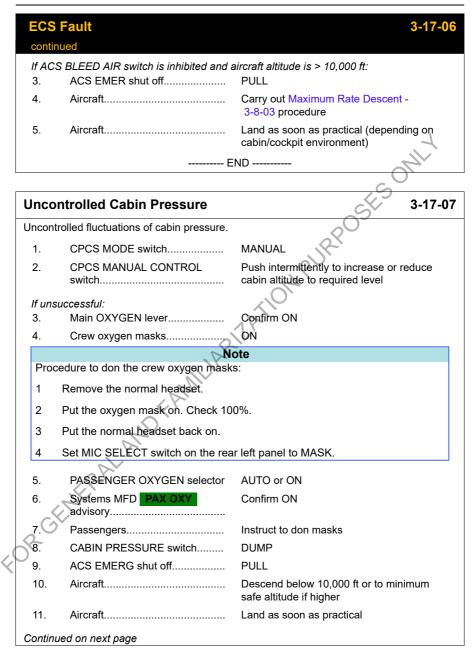
Push intermittently to CLIMB to reduce pressure differential to below 5.75 psi

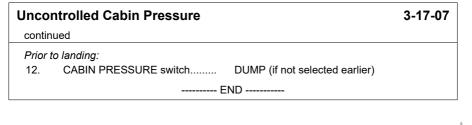
Continued on next page

12-C-A15-40-0317-00A-141A-A

	Cabin Pressure 3-17-02			
	lf uns	successful:		
	3.	CABIN PRESSURE switch	DUMP	
	4.	ACS EMERG shut off	PULL	
	5.	Main OXYGEN lever	Confirm ON	
	6.	Crew oxygen masks	ON	
			ote	
	Proc	cedure to don the crew oxygen masks	s:	
	1	Remove the normal headset.	15	
	2	Put the oxygen mask on. Check 100	0%.	
	3	Put the normal headset back on.	-RO-	
	4	Set MIC SELECT switch on the rea	r left panel to MASK.	
	7.	PASSENGER OXYGEN selector	AUTO or ON	
	8.	Systems MFD PAX OXY	Confirm ON	
		advisory		
	9.	Passengers	Instruct to don masks	
	10.	Aircraft	Carry out Maximum Rate Descent - 3-8-03 procedure	
	Prior to landing:			
	11.	CABIN PRESSURE switch	DUMP (if not selected earlier)	
		с Е	ND	

Cabin Altitude 3-17-03			
continued S=17-05			
2.	Crew oxygen masks	ON	
	Να	ote	
Proce	dure to don the crew oxygen masks	5:	
1 I	Remove the normal headset.		
2 I	Put the oxygen mask on. Check 100		
3 1	Put the normal headset back on.	A	
4 \$	Set MIC SELECT switch on the rea	r left panel to MASK.	
3.	PASSENGER OXYGEN selector	AUTO or ON	
4.	Systems MFD PAX OXY advisory	r left panel to MASK. AUTO or ON Confirm ON	
5.	Passengers	Instruct to don masks	
6.	CPCS MODE switch	MANUAL	
7.	MANUAL CONTROL switch	Push DESCENT intermittently to reduce cabin altitude to required level	
If unsu	ccessful:	1.8	
8.	Aircaft	Limit flight altitude to maintain cabin altitude below 10,000 ft	
If nece	ssary:		
9.	Aircraft	Carry out Maximum Rate Descent - 3-8-03 procedure	
Prior to	landing:		
10.	CABIN PRESSURE switch	DUMP	
	E	ND	
ACS !	_ow Inflow	3-17-04	
A-	ACS BLEED AIR switch	INHIBIT	
U ₂ .	ACS BLEED AIR switch	AUTO	
lf unsu 3.	ccessful: Aircraft	Limit Flight Altitude to maintain cabin altitude below 10,000 ft MSL or MSA	
lf cabin 4.	altitude climbs above 10,000 ft: ACS BLEED AIR switch	INHIBIT	


Continued on next page


	Low Inflow	3-17-04	
conti	nued		
5.	ACS EMERG shut off	PULL	
6.	Main OXYGEN lever	Confirm ON	
7.	Crew oxygen masks	ON	
	N	ote	
Proc	cedure to don the crew oxygen mask	5:	
1	Remove the normal headset.		
2	Put the oxygen mask on. Check 10	0%.	
3	Put the normal headset back on.	r left panel to MASK.	
4	Set MIC SELECT switch on the rea	r left panel to MASK.	
8.	PASSENGER OXYGEN selector	AUTO or ON	
9.	Systems MFD PAX OXY advisory	Confirm ON	
10.	Passengers	Instruct to don masks	
11.	Aircraft	Carry out Maximum Rate Descent - 3-8-03 procedure	
Wher	n cabin altitude below 10,000 ft:	RIV	
12.	CABIN PRESSURE switch	DUMP (cabin ventilation)	
	<u>4</u>	ND	
CPC	S Fault	3-17-05	
On g	round:		
1.	CPCS MODE switch	MANUAL for at least 1 sec then AUTO	
2.	CAS	Check	

On gro	ound:		
1.	CPCS MODE switch	MANUAL for at least 1 sec then AUTO	
2.	CAS	Check	
If CP	CS Fault remains:		
3.	CPCS AUTO circuit breaker	Open for 4 secs, then close	
, , , , , , , , , , , , , , , , , , ,	(ESS Bus LE1) and CPCS MON		
2	circuit breaker (EPS Bus _L R2)		
4.	CAS	Check	
5.	CPCS MODE switch	MANUAL for at least 1 sec then AUTO	
6.	CAS	Check	
END			
Continued on next page			

CF	PCS Fault	3-17-05
COI	ntinued	
In	flight and if ${\scriptscriptstyle \Delta} P$ and CAB ALT indications	are available:
1.	CPCS MODE switch	MANUAL for at least 1 sec then AUTO
2.	CAS	Check
lf	CPCS Fault remains:	
3.	CPCS MODE switch	MANUAL
4.	MANUAL CONTROL switch	Push intermittently to increase or reduce cabin altitude to required level
5.	Aircraft	Land as soon as practical
Pri 6.	ior to landing: CABIN PRESSURE switch F	Land as soon as practical DUMP ND B Fail):
In	flight and if ∆P not displayed (ADC A+E	Fail):
1.	CPCS MODE switch	MANUAL
2.	MANUAL CONTROL switch	Push DESCENT for 30 seconds to close OFV
3.	Cabin Altitude shows: Main OXYGEN lever	Confirm ON
4.	Crew oxygen masks	ON
P	rocedure to don the crew oxygen masks	s:
1	Remove the normal headset.	
2	Put the oxygen mask on. Check 10	0%.
3	Put the normal headset back on.	
4	Set MIC SELECT switch on the rea	r left panel to MASK.
5.	PASSENGER OXYGEN selector	AUTO or ON
6.(Systems MFD PAX OXY advisory	Confirm ON
-Ω7.	Passengers	Instruct to don masks
8.	CPCS MODE switch	MANUAL
9.	MANUAL CONTROL switch	Push intermittently to increase or reduce cabin altitude to required level
10	Aircraft	Land as soon as practical
Con	tinued on next page	

CPCS Fault	3-17-05
	3-17-05
continued	
Prior to landing: 11. CABIN PRESSURE switch	DUMP
F	
In flight and if ΔP and Cabin Altitude not	t displayed:
1. Main OXYGEN lever	Confirm ON
2. Crew oxygen masks	ON
No	ote
Procedure to don the crew oxygen masks	s:
1 Remove the normal headset.	St
2 Put the oxygen mask on. Check 100	0%.
3 Put the normal headset back on.	R
4 Set MIC SELECT switch on the rea	r left panel to MASK.
3. PASSENGER OXYGEN selector	s: 0%. r left panel to MASK. AUTO or ON Confirm ON
4 Systems MED PAX OXY	AUTO OF ON
advisory	Commiss
5. Passengers	Instruct to don masks
6. Aircraft	Descend below 10,000 ft or to minimum safe altitude if higher
7. Aircraft	Land as soon as practical
Prior to landing:	
8. CABIN PRESSURE switch	DUMP
E	ND
0 K	
ECS Fault	3-17-06
1. ECS circuit breaker (Essential Bus LE2)	Reset
If not successful:	
2. ACS BLEED AIR switch	INHIBIT if cabin temperature is unacceptable
Να	ote
If ACS bleed air switch is set to inhibit, th Low Inflow will come on.	e aircraft will depressurize and ACS
Continued on next page	

FOR GENERAL AND FAMILARIA TION PURPOSES ONLY

3-18 Deice Systems

		RNING
	LOSS OF PROPELLER DEICE IN ERE DEGRADATION IN AIRCRAF	ICING CONDITIONS CAN CAUSE T SPEED AND CLIMB PERFORMANCE
1.	PROP LOW SPEED switch (if installed)	Confirm OFF
2.	PROPELLER switch	Set to OFF and wait 10 seconds
3.	PROPELLER switch	Set to ON
4.	PROP DE ICE circuit breaker (LH PJB)	Check. Do not reset unless tripped
lf cap	tions go off after 5 seconds:	
5.	Aircraft	Continue flight and monitor system
lf can	tions remain on after 5 seconds:	
6.	PROPELLER switch	Maintain ON (together with INERT SEP OPEN) to maintain PUSHER ICE MODE
7.	Aircraft	DEPART ICING CONDITIONS to positive SAT atmosphere, if possible
lf pro	peller vibration occurs:	
8.	PCL	Increase or decrease power as required to minimize vibration and sustain level flight
9.	Aircraft	Avoid further icing conditions
lf nro	peller vibrations continue or attained p	arformanaa dagradaa
10.		Land as soon as possible
	Q	
с Х		
\mathbf{v}		

De lc	e Boots	3-18-02
De Ice	Boots with BOOTS off	
	WAR	NING
DEG	MATURE STALL. FLAP POSITION	AND CLIMB PERFORMANCE AND A
1.	PCL	Increase power
2.	BOOTS switch	Set to OFF and wait until caution resets (1 min approx.)
3.	BOOTS switch	Set ot 3 MIN or 1 MIN and let run for at least one full cycle
4.	BOOTS DE-ICE circuit breaker (Main Bus _R L2)	Check. Do not reset unless tripped
If capt	ion returns to normal operation:	
5.	Aircraft	Continue flight and monitor system. Avoid low power settings if possible
If capt	ions stay in failure status:	A
6.	Aircraft	DEPART/CING CONDITIONS to positive SAT atmosphere, if possible
7.	BOOTS switch	Set to OFF
8.	Aircraft	Avoid large or sudden changes in aircraft directional, longitudinal and lateral control until airframe is judged to be free of residual ice
9.	Aircraft	Avoid further icing conditions
lf airfra	ame is free of ice accretion:	
10.	Flap position	As required
	ame is not free of ice accretion:	
11.	Flap position	Limited to 0°
12.	Landing approach for 9921 lb (4500 kg) (MLW)	Keep minimum landing approach speed above 130 KIAS
;ontinu	ed on next page	

De Ice Boots

3-18-02

3-18-03

continued

CAUTION

On landing approach after boot failure (flaps 0°), the PFD dynamic speed bug will not be correct and should not be used as reference.

CAUTION

The total landing distance will be longer by up to 160%. Refer to Section 5, Performance, Flight in Icing Conditions, Flight in Icing Conditions - Landing Performance for the exact landing distance calculation.

CAUTION

In the case of heavy brake usage, soft brake pedals and/or wheel fusible plugs release may occur during a following taxi. Limitation in Section 2, Systems and Equipment Limits, Brakes applies.

-- END

Inertial Seperator

WARNING

AN INERTIAL SEPARATOR FAILURE IN ICING CONDITIONS CAN CAUSE DEGRADATION OF THE AIRCRAFT ENGINE PERFORMANCE (AN INCREASE IN ITT).

AN INERTIAL SEPARATOR FAILURE DURING OPERATIONS IN FOREIGN **OBJECT DAMAGE (FOD) ENVIRONMENTS MAY CAUSE LONG TERM** ENGINE DETERIORATION AND SHOULD BE REPORTED FOR POST FLIGHT MAINTENANCE.

- INERT SEP switch..... 1. Set to CLOSED and wait 30 seconds INERT SEP switch..... 2. Set to OPEN
- 3 NERT SEP circuit breaker Check. Do not reset unless tripped (Essential Bus | F2).....

If caption returns to normal operation after 45 seconds:

4 Aircraft..... Continue flight and monitor system

If caption stays in failure status after 45 seconds: INERT SEP switch

Maintain OPEN (together with ICE PROP PROTECTION PROPELLER ON) to maintain PUSHER ICE MODE

Continued on next page

5

	ial Seperator	3-18-03
contin	nued	
6.	Aircraft	DEPART ICING CONDITIONS to positive SAT atmosphere, if possible
7.	Aircraft	Avoid further icing conditions
lf any	attained performance degradation co	ontinues:
8.	Aircraft	
	E	ND
		0
	Vindshield Heat RH W RH Windshield Heat	/indshield Heat 3-18-04
1.	LH W/SHLD circuit breaker (LH PJB)	Check. Do not reset unless tripped
2.	LH WSHLD switch	Set to OFF then to LIGHT or HEAVY
3.	RH W/SHLD circuit breaker (RH PJB)	Check. Do not reset unless tripped
4.	RH WSHLD switch	Set to OFF then to LIGHT or HEAVY
If cap	tion returns to normal operation:	P
5.	Aircraft	Continue flight and monitor system
lf cap	tion stavs in failure status and forwar	d visibility through LH windshield is lost:
6.	Windshield	Use RH windshield
If tota	I forward visibility is lost:	
7.	Aircraft	DEPART ICING CONDITIONS to positive
		SAT atmosphere, if possible. Interior fogging can be cleared by hand
8.	Aircraft	Avoid further icing conditions
If wind	dshield has not cleared by time of lan	dina:
9.	Cabin pressure	Make sure depressurized
10.	DV window	Use, if required
20)` Е	ND

Probes Off

3-18-05

Probes not on with static air temperature below 10 °C.

1. PROBES switch..... Set to ON

----- END ------

WARNING AN AOA PROBE DEICE FAILURE IN ICING CONDITIONS CAN CAUSE A FALSE ACTIVATION OF THE STALL PROTECTION SYSTEM. 1. PROBES switch	AOA	De Ice	3-18-06
FALSE ACTIVATION OF THE STALL PROTECTION SYSTEM. 1. PROBES switch		WAF	RNING
 PROBES switch			
 LH AOA SENS DE-ICE circuit breaker (Essential Bus L2) LH AOA PLATE HEAT circuit breaker (Essential Bus K2) RH AOA SENS DE-ICE circuit breaker (Main Bus _RC2) RH AOA PLATE HEAT circuit breaker (Main Bus _RC2) RH AOA PLATE HEAT circuit breaker (Main Bus _RD2) Check. Do not reset unless tripped Continue flight and monitor system If caption returns to normal operation: Aircraft	1.	PROBES switch	Set to OFF and wait 3 minutes
 breaker (Essential Bus L2) LH AOA PLATE HEAT circuit breaker (Essential Bus LK2) RH AOA SENS DE-ICE circuit breaker (Main Bus RC2) RH AOA PLATE HEAT circuit breaker (Main Bus RC2) RH AOA PLATE HEAT circuit breaker (Main Bus RD2) Check. Do not reset unless tripped DEPART ICING CONDITIONS to positive SAT atmosphere, if possible CAUTION Stick shaker may activate at higher speeds than normal. If this occurs, increase speed until shaker stops. Aircraft	2.	PROBES switch	Set to ON
breaker (Essential Bus LK2) 5. RH AOA SENS DE-ICE circuit breaker (Main Bus RC2) Check. Do not reset unless tripped 6. RH AOA PLATE HEAT circuit breaker (Main Bus RD2) Check. Do not reset unless tripped 6. RH AOA PLATE HEAT circuit breaker (Main Bus RD2) Check. Do not reset unless tripped <i>If caption returns to normal operation:</i> 7. Continue flight and monitor system <i>If caption stays in failure status:</i> 8. Aircraft 8. Aircraft DEPART ICING CONDITIONS to positive SAT atmosphere, if possible CAUTION Stick shaker may activate at higher speeds than normal. If this occurs, increase speed until shaker stops. 9. Aircraft Avoid further icing conditions 10. Flap position Limited to 15° 11. Landing approach for 9921 lb (4500 kg) (MLW)	3.		Check. Do not reset unless tripped
a. breaker (Main Bus RC2) 6. RH AOA PLATE HEAT circuit breaker (Main Bus RD2) Check. Do not reset unless tripped 7. Aircraft Continue flight and monitor system 7. Aircraft Continue flight and monitor system 8. Aircraft DEPART ICING CONDITIONS to positive SAT atmosphere, if possible CAUTION Stick shaker may activate at higher speeds than normal. If this occurs, increase speed until shaker stops. 9. Aircraft Avoid further icing conditions 10. Flap position Limited to 15° 11. Landing approach for 9921 lb (4500 kg) (MLW) Keep minimum landing approach speed above 105 KIAS or shaker activation speed, whichever is highest CAUTION On landing approach after AOA deice failure, the PFD Dynamic Speed Bug will not be correct and should not be used as reference. CAUTION The total landing distance will be longer by up to 71%. Refer to Section 5, Performance, Flight in lcing Conditions, Flight in lcing Conditions. Performance for the exact landing distance calculation.	4.		Check. Do not reset unless tripped
breaker (Main Bus RD2) If caption returns to normal operation: 7. Aircraft	5.		Check. Do not reset unless tripped
 7. Aircraft Continue flight and monitor system If caption stays in failure status: 8. Aircraft DEPART ICING CONDITIONS to positive SAT atmosphere, if possible CAUTION Stick shaker may activate at higher speeds than normal. If this occurs, increase speed until shaker stops. 9. Aircraft Avoid further icing conditions 10. Flap position Limited to 15° 11. Landing approach for 9921 lb (4500 kg) (MLW) Bove 105 KIAS or shaker activation speed, whichever is highest CAUTION On landing approach after AOA deice failure, the PFD Dynamic Speed Bug will not be correct and should not be used as reference. CAUTION The total landing distance will be longer by up to 71%. Refer to Section 5, Performance, Flight in Icing Conditions, Flight in Icing Conditions - Landing Performance for the exact landing distance calculation. 	6.		Check. Do not reset unless tripped
 8. Aircraft			Continue flight and monitor system
Stick shaker may activate at higher speeds than normal. If this occurs, increase speed until shaker stops. 9. Aircraft Avoid further icing conditions 10. Flap position Limited to 15° 11. Landing approach for 9921 lb (4500 kg) (MLW) Keep minimum landing approach speed above 105 KIAS or shaker activation speed, whichever is highest CAUTION On landing approach after AOA deice failure, the PFD Dynamic Speed Bug will not be correct and should not be used as reference. CAUTION The total landing distance will be longer by up to 71%. Refer to Section 5, Performance, Flight in Icing Conditions, Flight in Icing Conditions - Landing Performance for the exact landing distance calculation.		Aircraft	SAT atmosphere, if possible
10. Flap position Limited to 15° 11. Landing approach for 9921 lb (4500 kg) (MLW) Keep minimum landing approach speed above 105 KIAS or shaker activation speed, whichever is highest CAUTION On landing approach after AOA deice failure, the PFD Dynamic Speed Bug will not be correct and should not be used as reference. CAUTION The total landing distance will be longer by up to 71%. Refer to Section 5, Performance, Flight in Icing Conditions, Flight in Icing Conditions - Landing Performance for the exact landing distance calculation.		k shaker may activate at higher sp	
11. Landing approach for 9921 lb (4500 kg) (MLW) Keep minimum landing approach speed above 105 KIAS or shaker activation speed, whichever is highest CAUTION On landing approach after AOA deice failure, the PFD Dynamic Speed Bug will not be correct and should not be used as reference. CAUTION The total landing distance will be longer by up to 71%. Refer to Section 5, Performance, Flight in Icing Conditions, Flight in Icing Conditions - Landing Performance for the exact landing distance calculation.	9.	Aircraft	Avoid further icing conditions
(4500 kg) (MLW) above 105 KIAS or shaker activation speed, whichever is highest CAUTION On landing approach after AOA deice failure, the PFD Dynamic Speed Bug will not be correct and should not be used as reference. CAUTION The total landing distance will be longer by up to 71%. Refer to Section 5, Performance, Flight in Icing Conditions, Flight in Icing Conditions - Landing Performance for the exact landing distance calculation.	10.	Flap position	Limited to 15°
On anding approach after AOA deice failure, the PFD Dynamic Speed Bug will not be correct and should not be used as reference. CAUTION The total landing distance will be longer by up to 71%. Refer to Section 5, Performance, Flight in Icing Conditions, Flight in Icing Conditions - Landing Performance for the exact landing distance calculation.	11.		above 105 KIAS or shaker activation
will not be correct and should not be used as reference. CAUTION The total landing distance will be longer by up to 71%. Refer to Section 5, Performance, Flight in Icing Conditions, Flight in Icing Conditions - Landing Performance for the exact landing distance calculation.	<	CAL	JTION
The total landing distance will be longer by up to 71%. Refer to Section 5, Performance, Flight in Icing Conditions, Flight in Icing Conditions - Landing Performance for the exact landing distance calculation.	On I will	anding approach after AOA deice not be correct and should not be	failure, the PFD Dynamic Speed Bug used as reference.
Performance, Flight in Icing Conditions, Flight in Icing Conditions - Landing Performance for the exact landing distance calculation.		CAL	JTION
END	Perf	ormance, Flight in Icing Condition	ns, Flight in Icing Conditions - Landing
		E	ND

Pitot	1 Heat Pitot	2 Heat 3-18-07
	WAF	RNING
		IN ICING CONDITIONS CAN CAUSE ASI AND/OR ALTIMETER AND VSI.
1.	PROBES switch	Set to OFF then ON again
2.	LH PITOT DE-ICE circuit breaker (Essential Bus _L J2)	Check. Do not reset unless tripped
3.	RH PITOT DE-ICE circuit breaker (Main Bus _R E2)	Check. Do not reset unless tripped
f capt 4.	ion returns to normal operation: Aircraft	Continue flight and monitor system
f capt	ion stays in failure status:	280
5.	Autopilot	Disconnect
6.	Aircraft	DEPART ICING CONDITIONS to positive SAT atmosphere, if possible
7.	Aircraft	Avoid further icing conditions
8.	Aircraft	Land as soon as possible
9.	Landing approach	Keep speed as indicated by Dynamic Speed Bug (1.3 V _S) with PUSHER ICE MODE and flaps 15°
	CAL	ITION
Perf	ormance, Flight in Icing Condition ormance for the exact landing dis	
	E	ND
	Ph	
Stati	c Heat	3-18-08
		RNING

WARNING

A PITOT AND STATIC DEICE FAILURE IN ICING CONDITIONS CAN CAUSE AN INCORRECT INDICATION ON THE ASI AND/OR ALTIMETER AND VSI.

- 1. PROBES switch.....
- Set to OFF then ON again
 - 2. LH STATIC DE-ICE circuit breaker (Essential Bus LH2)......
- Check. Do not reset unless tripped
- Continued on next page

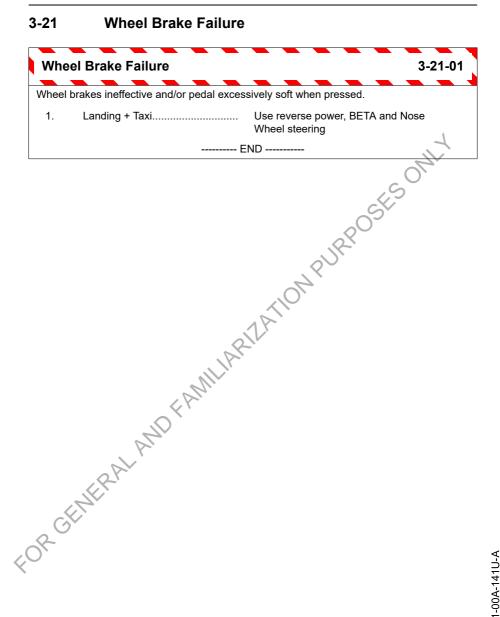
	ic Heat	3-1
3.	nued RH STATIC DE-ICE circuit breaker (Main Bus _R F2)	Check. Do not reset unless tripped
lf cai	otion returns to normal operation:	
4.	Aircraft	Continue flight and monitor system
lf cai	otion stays in failure status:	_
5.	Autopilot	Disconnect
6.	Aircraft	DEPART ICING CONDITIONS to positiv SAT atmosphere, if possible
7.	Aircraft	Avoid further icing conditions
8.	Aircraft	Land as soon as possible
9.	Landing approach	Keep speed as indicated by Dynamic Speed Bug $(1.3 V_S)$ with PUSHER ICE MODE and flaps 15° . Maintain speed above shaker activation
	CAL	ITION
Per	formance, Flight in Icing Condition formance for the exact landing dis	
Per	formance, Flight in Icing Condition formance for the exact landing dis	S Flight in Icing Conditions - Landing
Per Per	formance, Flight in Icing Condition formance for the exact landing dis	s, Flight in Icing Conditions - Landing Lance calculation.
Per Per	formance, Flight in Icing Condition formance for the exact landing dis	s, Flight in Icing Conditions - Landing Lance calculation.
Per Per	formance, Flight in Icing Condition formance for the exact landing dis	S, Flight in Icing Conditions - Landing ance calculation. ND ND STICK PUSHER SYSTEM TO RE- CONDITIONS CAN LEAVE THE
Per Per Pus A F. DAT AIR	formance, Flight in Icing Condition formance for the exact landing dis her AILURE OF THE STALL WARNING FUM TO ICE MODE WHEN IN ICINO CRAFT UNPROTECTED AGAINST	S. Flight in Icing Conditions - Landing tance calculation. ND 3-1 RNING VSTICK PUSHER SYSTEM TO RE- G CONDITIONS CAN LEAVE THE THE NATURAL STALL WITH
Per Per Pus A F. DAT AIR RES	formance, Flight in Icing Condition formance for the exact landing dis her WAF AILURE OF THE STALL WARNING FUM TO ICE MODE WHEN IN ICING CRAFT UNPROTECTED AGAINST SIDUAL ICE ON THE AIRFRAME.	S. Flight in Icing Conditions - Landing tance calculation. ND SND
Per Per Pus A F. DAT AIR RES 1. ()	formance, Flight in Icing Condition formance for the exact landing dis her AILURE OF THE STALL WARNING FUM TO ICE MODE WHEN IN ICING CRAFT UNPROTECTED AGAINST SIDUAL ICE ON THE AIRFRAME. STICK PUSHER test switch	S. Flight in Icing Conditions - Landing tance calculation. SND S
Per Per Pus A F, DAT AIR RES 1. (<i>f fail</i>)	formance, Flight in Icing Condition formance for the exact landing dis her WAR AILURE OF THE STALL WARNING FUM TO ICE MODE WHEN IN ICINO CRAFT UNPROTECTED AGAINST SIDUAL ICE ON THE AIRFRAME. STICK PUSHER test switch	S. Flight in Icing Conditions - Landing tance calculation. SND
Per Per Pus A F. DAT AIR RES 1. (<i>f fail</i>)	formance, Flight in Icing Condition formance for the exact landing dis formance for the exact landing dis ther WAR AILURE OF THE STALL WARNING FUM TO ICE MODE WHEN IN ICINO CRAFT UNPROTECTED AGAINST SIDUAL ICE ON THE AIRFRAME. STICK PUSHER test switch STICK PUSHER test switch	S. Flight in Icing Conditions - Landing tance calculation. SND

Pusher	3-18-09
continued	
4. PROP DE-ICE circuit breaker (LH PJB)	Check. Do not reset unless tripped
5. INERT SEP circuit breaker (Essential Bus LF2)	Check. Do not reset unless tripped
If captions return to normal operation with 6. Aircraft	
If caption stays in failure status: 7. Aircraft	DEPART ICING CONDITIONS to positive SAT atmosphere, if possible
8. Aircraft	Avoid further icing conditions
9. Flap position	
10. Landing approach for 9921 lb (4500 kg) (MLW)	Keep minimum landing approach speed above 105 KIAS
	AUTION
	nger by up to 71%. Refer to Section 5,
Performance, Flight in Icing Condition Performance for the exact landing di	ons, Flight in Icing Conditions - Landing
Performance for the exact landing di	
CA	AUTION
On landing approach after Pusher lo Bug will not be correct and should r	ce Mode failure, the PFD Dynamic Speed not be used as reference.
<u> </u>	
	- END
L'	
X-Y-	
A	
G	
K	
40	
FORCENERALAND	

imit	ON system in ambient temperatures se permanent damage to the boots. Set to OFF e conds after deice boots activation, the the deice boots in this initial 20 nee starts, this to prevent damage to outside of their operating envelope
the pneumatic de-ice boot and above +40 °C may caus S switch	system in ambient temperatures se permanent damage to the boots. Set to OFF e conds after deice boots activation, the the deice boots in this initial 20 noce starts, this to prevent damage to outside of their operating envelope
and above +40 °C may cause S switch	Se permanent damage to the boots. Set to OFF Conds after deice boots activation, the the deice boots in this initial 20 nce starts, this to prevent damage to outside of their operating envelope D
Note ation sequence begins 20 set ntroller allows deactivation of t timer before inflation sequer e de-ice boots due to inflation °C). ENI	e conds after deice boots activation, the the deice boots in this initial 20 nee starts, this to prevent damage to outside of their operating envelope
ation sequence begins 20 set ntroller allows deactivation of timer before inflation sequer de-ice boots due to inflation °C). ENI ENI	conds after deice boots activation, the the deice boots in this initial 20 nee starts, this to prevent damage to outside of their operating envelope
I timer before inflation sequer de-ice boots due to inflation °C). ENI imit n inadvertently extended more	ace starts, this to prevent damage to outside of their operating envelope
imit n inadvertently extended more	3-18-1
n inadvertently extended more	
n inadvertently extended more	
	e than 15° during de-ice boots operation
	Retract to previous position
A ENI)
NDFA	
	AL AND FAM

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

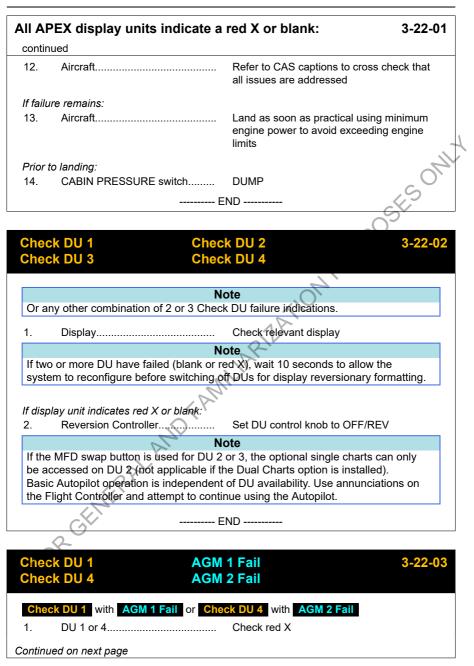
3-19 Passenger and Cargo Door

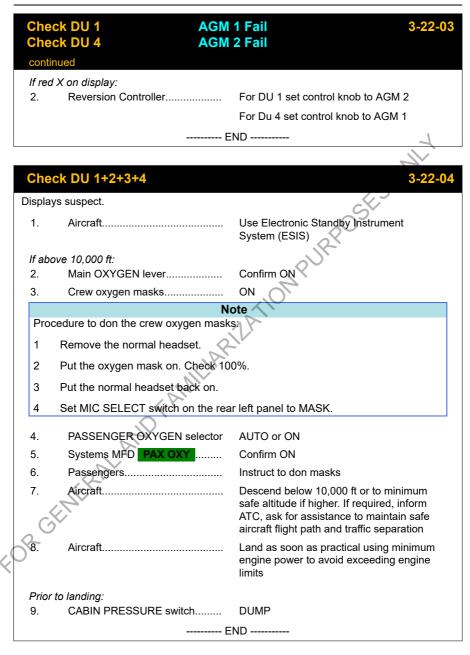

On gro	bund:	
1.	Passenger and/or Cargo Door	Visually check for the correct locking of the door latches (green indicators visibl
2.	Passenger Door	Check the handle lock pin for freedom of movement
		END
In fligh		ITION
Don	ot adjust the position of the door	
1.	All occupants	Check seat lap and shoulder belts are fastened and the lap belt tightened
2.	Airspeed	Reduce IAS to practical minimum
3.	Aircraft	Start a slow descent to 10,000 ft, or minimum safe altitude if higher
4.	CPCS SYSTEM MODE	Αυτο
5.	Aircraft	Land as soon as possible
	<u>р</u>	ND
Š	MERAL AND FAMILIE	

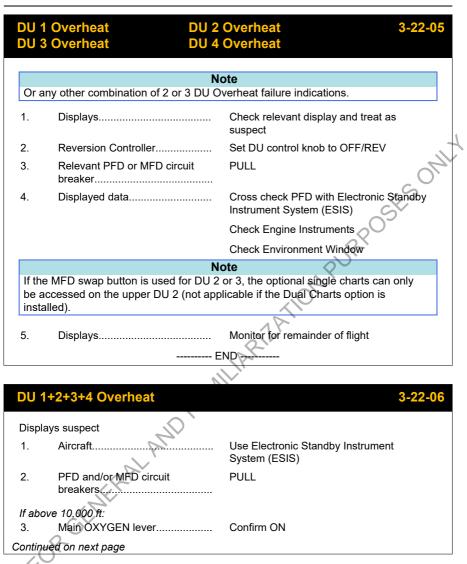
12-C-A15-40-0319-00A-141A-A

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

3. Aircraft Start a slow descent to 10,000 ft, or minimum safe altitude if higher 4. CPCS SYSTEM MODE AUTO 5. Aircraft Land as soon as practical Note When left hand front winshield is cracked and the visibility impaired, use direct vision window for landing.	Crad	cked Window in Flight	3-20-(
 Aircraft	1.	All occupants	•
 Minimum safe altitude if higher CPCS SYSTEM MODE AUTO Aircraft Land as soon as practical Note When left hand front winshield is cracked and the visibility impaired, use direct vision window for landing. 	2.	Airspeed	Reduce IAS to practical minimum
5. Aircraft Land as soon as practical Note When left hand front winshield is cracked and the visibility impaired, use direct vision window for landing.	3.	Aircraft	Start a slow descent to 10,000 ft, or minimum safe altitude if higher
Note When left hand front winshield is cracked and the visibility impaired, use direct vision window for landing.	4.	CPCS SYSTEM MODE	AUTO
When left hand front winshield is cracked and the visibility impaired, use direct vision window for landing.	5.	Aircraft	Land as soon as practical
vision window for landing.			Note
AMILARIZATIO			END P
		ANDFAMIL	ARILI
RAL		RALANDFAMIL	ARILI

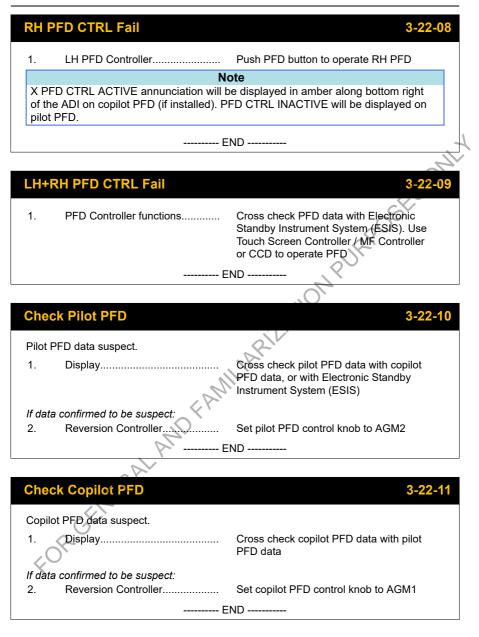

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

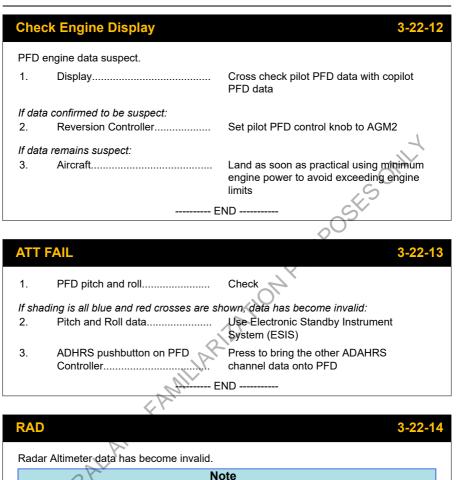



WATION PURPOSES ONLY Left r This Page Intentionally Left Blank

3-22 APEX Failures

1.	Primary flight information	Use ESIS to control safe aircraft flight path continuation
2.	Autopilot	Use the autopilot (if available) with mode annunciations on the flight controller
	N	ote
lf fa	sic autopilot operation is independent ailure remains, wait 10 seconds before es the system time to reconfigure.	of display unit availability.
		St
If ab 3.	ove 10,000 feet: Main OXYGEN lever	Confirm ON
3. 4.	Crew oxygen masks	Confirm ON ON
4.		ote
Pro	cedure to don the crew oxygen mask	
1	Remove the normal headset.	
		AP
2	Put the oxygen mask on. Check 10	0%.
3	Put the normal headset back on	
4	Set MIC SELECT switch on the rea	r left panel to MASK.
5.	PASSENGER OXYGEN selector	AUTO or ON
6.	Systems MFD, PAX OXY	Confirm ON
7.	Passengers	Instruct to don masks
8.	Aircraft	Descend below 10,000 ft or to minimum safe altitude if higher. If required, inform ATC, ask for assistance to maintain safe aircraft flight path and traffic separation
lf fai	Juré remains:	
9.	MAU CH A1 circuit breaker (Essential Bus LB3) and MAU CH B1 circuit breaker (Standby Bus LZ3)	Open, wait two seconds and close. Wait approximately 30 seconds for the system to reboot
		red X, but DU 3 and/or DU 4 have recovered
10.	Reversion Controller	Set PILOTS PFD control knob to AGM2
11.	Reversion Controller	Set UPPER MFD control knob to OFF/REV
Contir	nued on next page	


DU 1+2+3+4 Overheat 3-22-06				
contin 4.	nued Crew oxygen masks	On		
	Ν	ote		
Proc	cedure to don the crew oxygen mask	S:		
1	Remove the normal headset.			
2	Put the oxygen mask on. Check 10	0%.		
3	Put the normal headset back on.	- Alt		
4	Set MIC SELECT switch on the rea	r left panel to MASK.		
5.	PASSENGER OXYGEN	AUTO or ON		
6.	Systems MFD PAX OXY	Confirm ON		
7.	Passengers	Instruct to don masks		
8.	Aircraft	Descend below 10,000 ft or to minimum safe altitude if higher		
9.	Aircraft	Land as soon as practical using minimum engine power to avoid exceeding engine limits		
Prior	to landing:			
10.	CABIN PRESSURE switch	DUMP		
	http://	ND		


LH PFD CTRL Fail

1. RH PFD Controller..... Push PFD button to operate LH PFD

Note X PFD CTRL ACTIVE annunciation will be displayed in amber along bottom right of the ADL on pilot PFD. PFD CTRL INACTIVE will be displayed on copilot PFD (if installed).

----- END ------

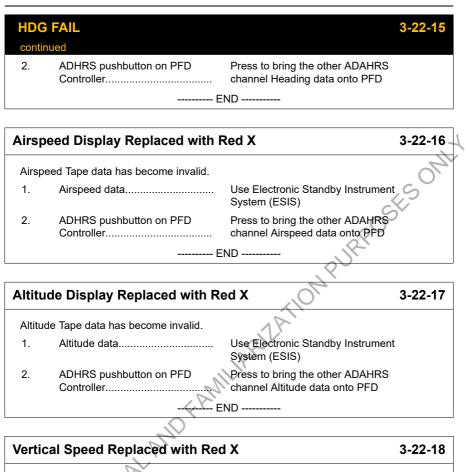
Autothrottle does not disconnect automatically when radar altimeter data is invalid and/or the radar altimeter system has failed.

----- FND ----

Altitude data.....

Use Altimeter Indicator

HDG FAIL


Heading data has become invalid.

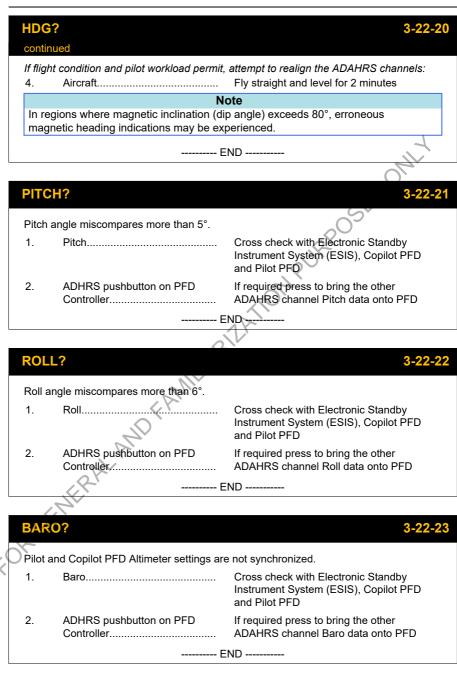
1.

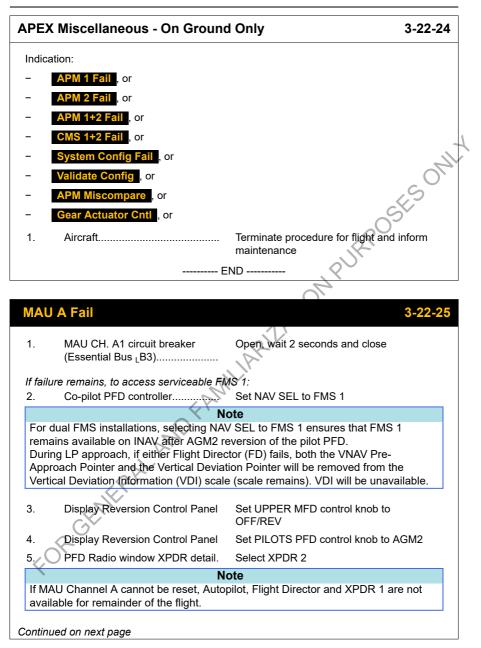
Heading data..... Use Standby Magnetic Direction Indicator

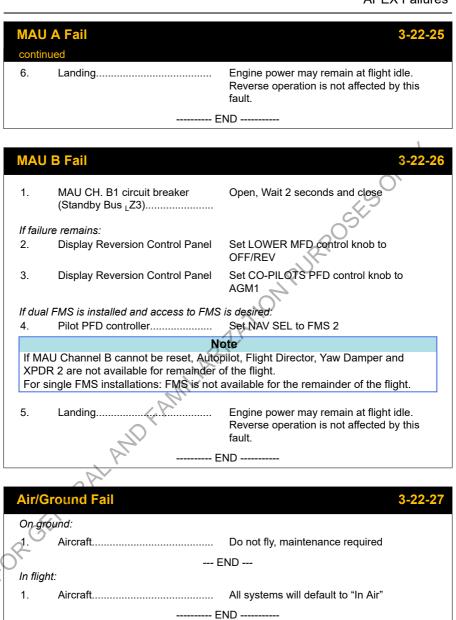
Continued on next page

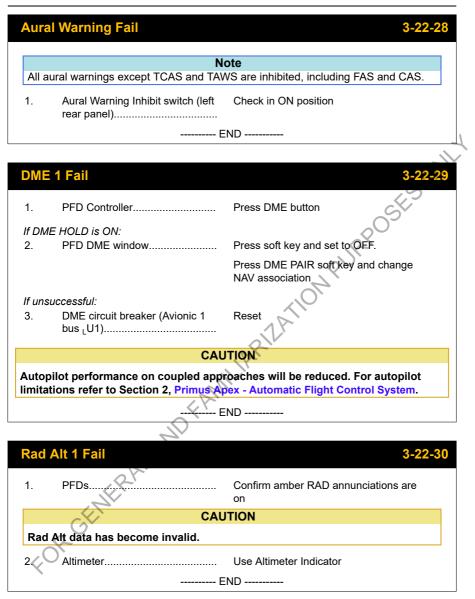
2-C-A15-40-0322-00A-141A-A

Vertical Speed Tape data has become invalid.


 1.
 Vertical Speed......
 Monitor altitude


 2.
 ADHRS pushbutton on PFD Controller.....
 Press to bring the other ADAHRS channel Vertical Speed data onto PFD

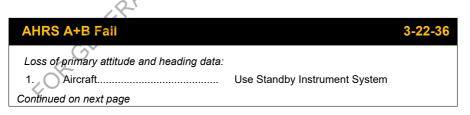

 ------- FND --------

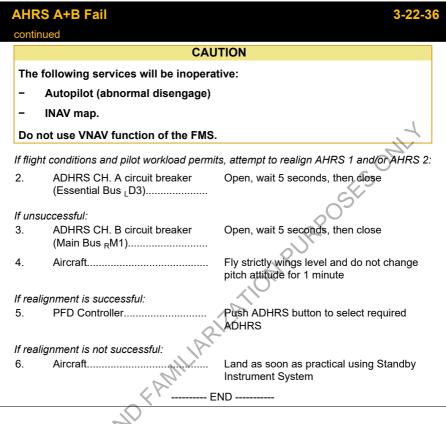

	eed and/or barometric Altitude misco ore than 10 KIAS / 200 feet.	ompare between ADAHRS 1 and ADAHR
,	Ν	ote
	itot static system, ADAHRS Channe	and static pressure information form the I B and the ESIS from he RH pitot static
	Ν	ote
	led pitot static system may cause er ations.	
1.	Baro setting	Check correct setting on Electronic Standby Instrument System (ESIS), Pilo PFD and Copilot PFD
2.	Airspeed and Altitude	Crosscheck with Electronic Standby Instrument System (ESIS) and Copilot PFD
If erro	neous pitot / static system cannot be	determined:
3.	Pilot	Advise ATC that the aircraft could be somewhere between both altitudes and the transponder altitude may be wrong
4.	PCL	Set maximum cruise power torque and cross check resulting IAS from Max cruise table (See Section 5-3-4, Performance Data - Cruise Performance against cockpit indications
5.	ADAHRS pushbutton on PFD controller	If determined which source is NOT correct press to bring the good ADAHRS channel Airspeed / Altitude data onto PFD
6.	L/R AFCS mode selector	Check coupled arrow pointing towards the selected PFD
7.	Aircraft	Land as soon as practical
U If erro	neous system cannot be determined.	<u>.</u>
	peed malfunctions:	
8.	Cruise and descent	Use only known power settings and aircraft attitudes
9.	Approach	Keep speed as indicated by Dynamic Speed Bug $(1.3 V_S)$ with PUSHER ICE MODE and flaps 15°

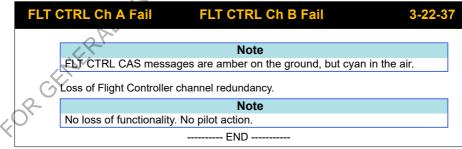
IAS?	ALT?	3-22-19	
contin			
	CAU	ITION	
The total landing distance will be longer by up to 71%. Refer to Section 5, Performance, Flight in Icing Conditions, Flight in Icing Conditions - Landing Performance for the exact landing distance calculation.			
10.	Aircraft	Land as soon as practical	
If Altin	neter malfunctions:		
Below	10,000 feet:	0	
11.	Depressurize aircraft	Select CPCS System Mode switch to MANUAL and Manual Control switch to CLIMB	
When	cabin pressure differential approach	es zero:	
12.	CABIN PRESS switch	DUMP	
13.	Cabin altimeter	Use to give approximate aircraft altitude	
14.	Aircraft	Land as soon as practical	
	E	ND	
		21	
HDGʻ	?	3-22-20	
Headi	ng data between pilot and copilot PF	miscompares more than 6°	
1.	Heading	Cross check with the magnetic heading indication on the Electronic Standby Instrument System (ESIS)	
2.	ADHRS pushbutton on PFD Controller	If required press to bring the other ADAHRS channel Heading data onto Pilot PFD and confirm a similar reading to the magnetic heading indication on the ESIS	
If mag 3.	netic heading indication on the ESIS GPS Sensors page	is not reliable: Cross check magnetic heading on the ESIS with the GPS TRK heading on the GPS Sensors page. If required select the other ADAHRS channel for display on the Pilot PFD	

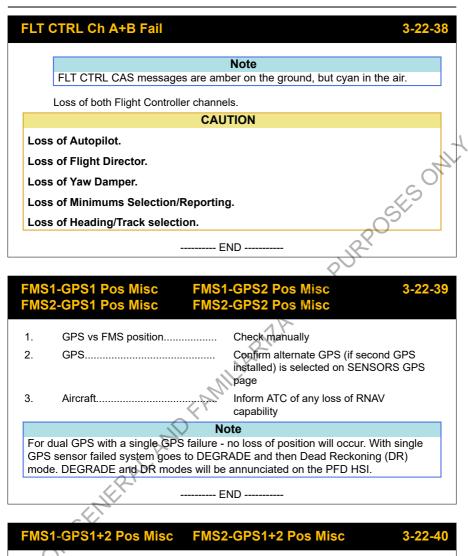
ADC	A Fail	3-22-3
1.	Pilot PFD Controller	Press ADHRS button to select ADAHRS B
2.	Pilots PFD Window	Confirm ADAHRS 2 flag which indicates attitude, heading and air data same source as copilot PFD. Compare with Electronic Standby Instrument System (ESIS)
	CAU	TION
The	autopilot will disengage.	SO
Do r	not use VNAV function of the FMS.	
3.	Autopilot	Re-engage, after PFD data displayed
4.	Altitude	Determine using ADAHRS 2 source
5.	Altitude	Cross-check aircraft altitude using ESIS. Record each altimeter reading. The differences between the operating ADAHRS 2 altimeter and the standby altimeter readings should be noted for use in additional contingency situations. Repeat procedure each hour
6.	Air Traffic Control	Inform to facilitate a route or an altitude change to exit RVSM airspace.
	All No	ote
	s should be aware of any national R\ ndancy of primary altimetry systems	VSM contingency procedures for loss of .
	E	ND

3-22-3
Press ADHRS button to select ADAHRS A
Confirm ADAHRS 1 flag which indicates attitude, heading and air data same source as pilot PFD. Compare with Electronic Standby Instrument System (ESIS)


	CAU	TION
The aut	opilot will disengage.	
Do not	use VNAV function of the FMS.	
3. A	Nutopilot	Re-engage, after PFD data displayed
4. A	Ntitude	Determine using ADAHRS 2 source
5. A	Ntitude	Cross-check aircraft altitude using ESIS Record each altimeter reading. The differences between the operating ADAHRS 2 altimeter and the standby altimeter readings should be noted for use in additional contingency situations. Repeat procedure each hour
6. A	ir Traffic Control	Inform to facilitate a route or an altitude change to exit RVSM airspace.
6. A	vir Traffic Control	altimeter readings should be noted use in additional contingency situati Repeat procedure each hour Inform to facilitate a route or an altit


ADC A+B Fail

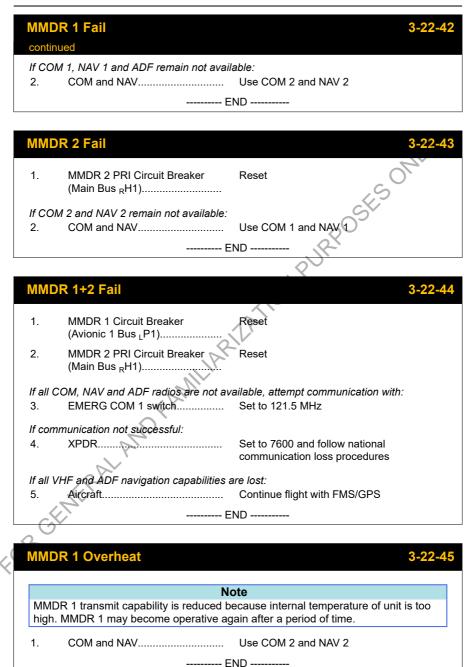

Loss c	of primary altitude and airspeed data:			
1.	Aircraft	Use Electronic Standby Instrument System (ESIS)		
2.	Altitude	Monitor and maintain assigned altitude by using ESIS		
3.	Air Traffic Control	Inform to facilitate a route or an altitude change to exit RVSM airspace.		
	C No	ote		
Pilots	Pilots should be aware of any national RVSM contingency procedures for loss of			
redur	ndancy of primary altimetry systems.			
X				
If loss	If loss of cabin pressure automatic control and ΔP display:			
4.	CPCS MODE switch	MANUAL		
5.	MANUAL CONTROL switch	Press DESCENT for 30 seconds to close OFV		
Continued on next page				

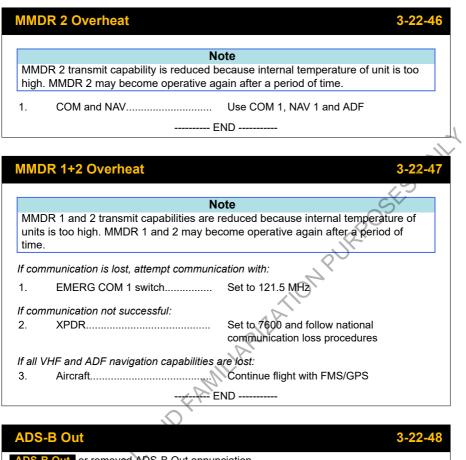

CAUTION				
CAUTION The following services will be inoperative: - Autopilot (abnormal disengage) - Overspeed warning - Altitude Alert Monitor - Air data to other systems Do not use VNAV functions of the FMS. /f Cabin Altitude comes on: 6. Main OXYGEN lever				
			 Air data to other systems 	R.
			Do not use VNAV functions of the FMS	SS
			If Cabin Altitude comes on:	Ski
			6. Main OXYGEN lever	Confirm ON
7. Crew oxygen masks	ON R			
Procedure to don the crew oxygen masks	s:			
1 Remove the normal headset.				
2 Put the oxygen mask on. Check 10	0%.			
3 Put the normal headset back on.				
4 Set MIC SELECT switch on the rea	r left panel to MASK.			
8. PASSENGER OXYGEN selector	AUTO or ON			
9. Systems MFD PAX OXY	Confirm ON			
10. Passengers	Instruct to don masks			
11. CPCS MODE switch	Confirm MANUAL			
12. MANUAL CONTROL switch	Push intermittently to DESCENT to			
R	reduce cabin altitude below 10,000 ft			
If unsuccessful:				
13. Aircraft	Limit flight altitude to maintain cabin altitude below 10,000 ft			
2				
If necessary: 14. Aircraft	Carry out emergency descent			
15. Aircraft	Land as soon as practical			
Prior to landing: 16. CABIN PRESSURE switch	DUMP			
-	ND			

AHR	S A Fail	3-22-34		
1.	Pilot PFD Controller	Press ADHRS button to select ADAHRS B		
2.	Pilot PFD window	Confirm ADAHRS 2 flag which indicates attitude, heading and air data same source as copilot PFD. Compare with Standby Instrument System		
	CAU	JTION		
The	autopilot will revert to roll and pit	ch mode.		
3.	Autopilot	Re-select as required after PFD data displayed		
END				
, Pt				
AHRS B Fail3-22-35				
1.	Copilot PFD Controller	Press ADHRS button to select ADAHRS A		
2.	Copilot PFD window	Confirm ADAHRS 1 flag which indicates attitude, heading and air data same source as pilot PFD. Compare with Standby Instrument System		
	CAU	JTION		
The	autopilot will revert to roll and pit	ch mode.		
3.	Autopilot	Re-select as required after PFD data displayed		
	E	END		

FMS PPOS position invalid, GPS position valid:

 1.
 Display.....
 Monitor position on Map and on SENSORS GPS page


 2.
 Aircraft.....
 Inform ATC of any loss of RNAV capability


FMS1 continu		-GPS1+2 Pos Misc	3-22-40		
	CAUTION				
Loss	Loss of GPS or FMS navigation				
RAIN	RAIM unavailable				
	Note With dual FMS, if only one FMS shows a position miscompare, select the other FMS to avoid loss of navigation and RAIM functionality.				
	Note				
	With both GPS sensors failed system goes to DEGRADE and then Dead Reckoning (DR) mode. DEGRADE and DR modes will be annunciated on the PFD HSI.				
	E	ND			
		. ?			
Unab	le FMS-GPS Mon		3-22-41		
	NI				
and e	Note Monitor Warning System continuously compares the position between each FMS and each GPS and annunciates miscompares between any if the threshold is exceeded. 1. SENSORS GPS page				
1.					
2.	If FMS or GPS has failed	Use other means of navigation			
lf airc recept	raft is SBAS capable and the GF ion:	PS shows problems with the GPS	GNSS)		
3.	SBAS sensor page	Swap to systems. Select sensor po on multipurpose window and select On drop-down menu, select SBAS and switch "Enroute SBAS" from E to Disable	ct GPS. Stab		
G		ote			
C Enrou capal	Disabling Enroute SBAS does not disable using SBAS for LPV approaches. If Enroute SBAS has been disabled due to SBAS problems, LPV approach capability may be affected. Plan an alternative IFR approach for the destination and alternate airports.				
4.	GPS 1 Circuit Breaker (Standby Bus LV3)	Open, wait 2 seconds and close			
Continu	ed on next page				

Unable FMS-GPS Mon 3-22-41		
continued		
If GPS 2 is installed: 5. GPS 2 Circuit Breaker (Avionic 2 Bus _R X1)	Open, wait 2 seconds and close	
If Unable FMS-GPS Mon remains and t 6. Aircraft (If in flight)		
CAU		
RAIM unavailable.	15	
	S	
	Note	
	CPCS will default to 10,000 ft Landing e-select the LFE to prevent over or under	
In flight (while conducting an FMS based a 7. Aircraft	approach): Terminate approach and execute a missed approach if required	
In flight (during RNP operation):	214	
8. Aircraft	Terminate and revert to other means of navigation	
In flight (during RNAV operation):		
9. FMS information	Cross check with VOR, DME and/or NDB information	
If FMS shows an acceptable level of navig	ation performance:	
10. Aircraft		
If FMS does not show an acceptable level 11. Aircraft	- ,	
	END	
MMDR 1 Fail	3-22-42	

1. MMDR 1 Circuit Breaker (Avionic 1 Bus LP1).....

Reset

ADS-B Out or removed ADS-B Out annunciation Single Transponder Installation (or single ADS-B Out)

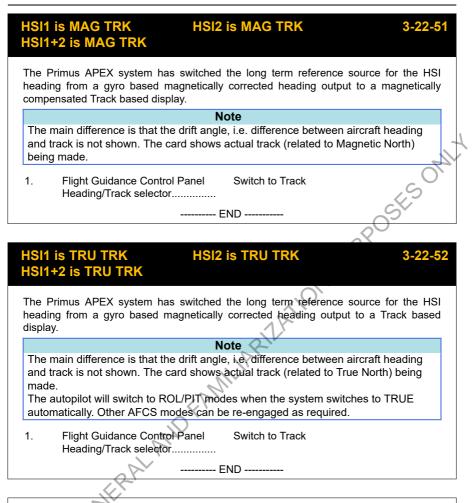
- If XPDR Fail is on: 1. XPDR 1 Circuit Breaker (Avionic Reset 1 Bus LV1).....
- If **XPDR Fail** remains: 2. Aircraft.....

Proceed according to ATC instructions, expect descent below controlled airspace or diversion to next suitable airfield

--- END ----

ADS-B Out 3-22-48					
Dual Transponder installation					
lf XF	PDR 1 Fail is on:				
1.	PFD radio window	Press bezel button adjacent to XPDR 1 window			
2.	PFD Controller	Press DETAIL button			
3.	XPDR detail page	Press XPDR SEL bezel button to change to XPDR 2			
lf 🗙	PDR 2 Fail is on:	.6			
4.	PFD radio window	Press bezel button adjacent to XPDR 2 window			
5.	PFD Controller				
6.	XPDR detail page	Press XPDR SEL bezel button to change to XPDR 1			
lf XF 7.	PDR 1+2 Fail <i>is on:</i> XPDR 1 Circuit Breaker (Avionic 1 Bus _L V1)	Reset			
8.	XPDR 2 Circuit Breaker (Avionic 2 Bus _R U1)	Reset			
lf XF 9.	PDR 1+2 Fail remains: Aircraft.	Proceed according to ATC instructions, expect descent below controlled airspace or diversion to next suitable airfield			
	E	ND			
	P				

ASCB Fail


		N	ote	
By checking available data the dual ASCB bus failure.			e crew can determine if the caution is for a single or	
. (Single	e ASCB Failure		
\langle	1.	Cockpit data	Continues to be displayed (Flight data looks normal)	
	2.	Displayed data	Cross check PFD with Electronic Standby Instrument System (ESIS)	
			Check Engine Instruments	
			Check Environment Window	
	Continu	ied on next page		

ASCB Fail 3-22-49			
cont	inued		
3.	Displays	Monitor for remainder of flight	
	E	END	
Dua	I ASCB Failure		
1.	Displays suspect (Loss of displayed data)	Use Electronic Standby Instrument System (ESIS)	
lf ab 2.	ove 10,000 ft and ΔP and CAB ALT ind Main OXYGEN lever	dications are suspect or lost:	
3.	Crew oxygen masks	Confirm ON ON	
5.	,,,	ote	
Pro	ocedure to don the crew oxygen mask	\sim	
1	Remove the normal headset.	e que	
2	Put the oxygen mask on. Check 10	0%.	
3	Put the normal headset back on.	all'	
4	Set MIC SELECT switch on the rea	r left panel to MASK.	
4.	PASSENGER OXYGEN selector	AUTO OF ON	
5.	Systems MFD PAX OXY	Confirm ON	
6.	Passengers	Instruct to don masks	
7.	Aircraft	Descend below 10,000 ft or to minimum safe altitude if higher	
8.	Aircraft	Land as soon as practical using minimum engine power to avoid exceeding engine limits	
Prio	r to landing:		
9.	CABIN PRESSURE switch	DUMP	
	E	ND	
	CV CV		
\langle	OPGER		

AFC	S uncommanded deviation from fligh	t path	
Abrupt control and/or airplane motion			
Acco	mplish steps 1 and 2 simultaneously		
1.	Airplane Control Wheel	GRASP FIRMLY and regain aircraft control	
2.	Autopilot Disengage switch	PRESS to disengage the autopilot (pilot or copilot yoke)	
3.	Aircraft	RETRIM manually as necessary	
4.	A/P SERVO circuit breaker (Avionic 1 Bus _L Z2)	PULL	
	WA	RNING	
	NOT ATTEMPT TO RE-ENGAGE 1 OPILOT OR AUTOTRIM MALFUN	THE AUTOPILOT FOLLOWING AN	
Abno	rmal disconnect	2 ² Pr	
Flash	ing red AP on PFD and continuous "	Cavalry Charge" aural warning	
1.	Airplane Control Wheel	GRASP FIRMLY and regain aircraft control	
2.	Autopilot Disengage switch	PRESS to disengage the autopilot (pilot or copilot yoke)	
3.	Aircraft	RETRIM manually as necessary	
4.	Aircraft	If no AFCS associated CAS messages attempt to re-engage autopilot once	
		END	
	Caution messages		
AP	HOLD LH (RH) WING DN , or AP	HOLD NOSE UP (DN) , or YD HOLD NO	
AP I LEFT	HOLD LH (RH) WING DN , or AP (RIGHT)	HOLD NOSE UP (DN) , or YD HOLD NO	
AP	HOLD LH (RH) WING DN , or AP	Grasp and position feet to gain aircraft	
AP I LEFT	HOLD LH (RH) WING DN , or AP (RIGHT) Airplane Control Wheel and	Grasp and position feet to gain aircraft control	
AP I LEFT	HOLD LH (RH) WING DN , or AP (RIGHT) Airplane Control Wheel and rudder pedals	Grasp and position feet to gain aircraft control PRESS to disengage the autopilot (pilot or copilot yoke)	
AP 1 LEFT 1. 2.	HOLD LH (RH) WING DN , or AP (RIGHT) Airplane Control Wheel and rudder pedals Autopilot Disengage switch Aircraft	Grasp and position feet to gain aircraft control PRESS to disengage the autopilot (pilot or copilot yoke)	

Automatic Flight Control System Failures 3-22				
If no AFCS associated CAS messages: 4. Aircraft Aircraft Attempt to re-engage autopilot once Maximum Altitude losses due to autopilot malfunction:				
Configuration	Altitude Loss			
Cruise, Climb, Descent	480 ft			
APR 3°	90 ft			
E	ND			
Yaw damper has failed above 15,500 ft:				
YD Fail shows on the CAS window.	ote			
be proficient in accomplishing the two ste QRH. 1. Airplane control wheel and rudder pedals 2. Aircraft	ed to memory. It is important that the pilot eps without reference to the POH or the Grasp and position feet to gain aircraft control Minimize side slip, do not make abrupt or large rudder or aileron control deflections. Keep the slip-skid indicator centered to +/- 1 trapezoid.			
CAUTI	ON			
Above 15,500 ft: Fly smoothly and as above 140 KIAS and make only gentle power changes.				
Reset the AFCS as follows: 3. AP SERVO circuit breaker (Avionic 1 Bus L22) and A/P SERVO ENABLE circuit breaker (Avionic 1 Bus LY2)	Open, wait 2 seconds, and close (max. 1 attempt per flight only)			
4. CAS window	Check for AFCS faults			
If no AFCS related CAS messages:				
5. Aircraft	Attempt to re-engage Yaw Damper and Autopilot (max. 1 attempt)			
Continued on next page				

utor	matic Flight Control Syste	m Failures	3-22
	ire persists:		
6.	Aircraft	 At pilot's discretion cont the yaw damper or land practical 	
	-	END	
Yaw d	damper is OFF above 15,500 ft:		7
YD	Off shows on the CAS window.		- L
		Note	0,
	rgency procedures that are comn roficient in accomplishing the two I.		
1.	Airplane control wheel and rudder pedals	Grasp and position feet	to gain aircraft
2.	Aircraft	Minimize side slip, do no large rudder or aileron of deflections. Keep the slip centered to +/- 1 trapezo	ontrol p-skid indicator
	CAL	JTION	
abo	ove 15,500 ft: Fly smoothly and ove 140 KIAS and make only ge wer changes.		
3.	Yaw Damper switch	Press to engage Yaw D	amper
	~ ` · · · · · · · · · · · · · · · · · ·	END	
Ś	INFRA!		

CAS Miscompare

3-22-53

MW shows on left side of CAS window.

Monitor Warning Function Channels A and B miscompare.

1. CAS Window.....

Toggle MW soft key to see alternatively Channel A or B of the MWF to find out which message is triggering the MW miscompare condition

CASI	Miscompare	3-22-5
contin	nued	
2.	Aircraft	Ascertain the reason for the miscompare flag and take appropriate action, using the affected CAS message and Abnormal Procedures
	E	ND
		L
Stuck	Mic	3-22-5
	nuous transmit indication on one of th adio Window.	ne MMDRs and/or a "Stuck Mic" indication on
lf "Stu	ick Mic" is annunciated on the radio w	/indow:
1.	Affected MMDR	Check "T" is removed by the "Stuck Mic" detection
lf "T" i	is not removed and affected MMDR c	ontinues to transmit:
2.	Affected audio panel	Select PA to disconnect PTT to MMDR
3.	Other audio panel	Use 2 nd audio panel, 2 nd headset and 2 nd PTT to re-establish ATC communication ND
ATC	Datalink Fail	3-22-5
PM-C	PDLC datalink with ATC failed	
1.	Aircraft	Use voice to communicate with ATC
	F	ND
6	E	
8-		
)`		

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

SECTION 3A

Abnormal Procedures (EASA Approved) Table of Contents

Subjec	t	Page
3A-1	General	3A-1-1
3A-1-1	General	3A-1-1
3A-2	CAS Advisories	3A-2-1
3A-2-1	CAS Advisories	3A-2-1
3A-3	CAS Advisories CAS Status CAS Status	3A-3-1
3A-3-1	CAS Status	3A-3-1
3A-4	Primary Altimeter Diverge by 200 ft or More	3A-4-1
3A-5	Loss of Autopilot Altitude Hold Function in RVSM Airspace	3A-5-1
3A-5-1	Procedure: Loss of Autopilot Altitude Hold Function in RVSM Airspace	3A-5-1
3A-6	Flight Training	3A-6-1
3A-6-01	Emergency Gear Extension Lever Reset	3A-6-1
3A-7	Smartview	3A-7-1
3A-7-1	Smartview Procedures	3A-7-1
3A-7-2	Smartview status and failure indications	3A-7-2
3A-8	LPV/LP Approach (Optional)	3A-8-1
3A-9	Engine Dry Motoring	3A-9-1
3A-9-01	Dry Motoring Run	3A-9-1
FORCE	MERAL	

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

3A-1 General

34-1-1 General

This section provides a description and any actions that can be taken for the Crew Alerting System (CAS) cyan advisory and white status messages. There are failures of system module or element parts that are not of an emergency nature.

any act any act of the set of the The information is given in the form of a list of all the cyan CAS Advisories and the white CAS Status messages and their meaning, any effect on flight and where possible any actions that

UATION PURPOSES ONLY Left F This Page Intentionally Left Blank

3A-2 CAS Advisories

3A-2-1 CAS Advisories

This section provides a description and any actions that can be taken for the Crew Alerting system (CAS) cyan advisory messages.

* These cyan advisory messages require maintenance action if they cannot be cleared before flight, or dispatch the aircraft under the provisos of an approved and permissible PC-12 aircraft MEL.

During flight, continue with remaining operational equipment and report on landing.

C	AS Advisory Message	Meaning, Effects and Possible Actions
*	MWF A Fail MWF B Fail	A failure has been detected in either Monitor Warning Function A or B. No effect on flight. An amber "MW" miscompare annunciation will be displayed on the left of the CAS window, in the event of the MWF determining a miscompare of MW lists in the two MWF Channels. Pressing the MW bezel button allows toggle between the MWF source. The displayed source is shown below the CAS annunciation in larger white font. The pilot should select the source determined to be correct.
*	AIOP A Module Fail AIOP B Module Fail	Actuator I/O Processor module A or B has failed. The AFCS monitoring function between modules is inoperative. Effect on flight, loss of AFCS, FD and YD. Loss of corresponding MWF Channel.
*	CSIO A Fail	Custom I/O module A or B or A and B failed.
*	CSIO B Fail	A single A or B failure will have no effect on flight, an A and B
*	CSIO A+B Fail	failure will result in some invalid data on PFD/MFD windows.
*	MAU A Overheat	An overheat condition has been detected for MAU CH A
*	MAU B Overheat	and/or B. Auto-shutdown of the MAU is possible if
*	MAU A+B Overheat	temperature continues to rise. When temperature returns to a safe level, the MAU will reset automatically. Effect on flight, loss of MAU CH A or B.
	MAU Fan Fail	No flight crew action required. Corresponding MAU Overheat advisory may occur.
*	GIO A Fail	Generic I/O module A or B or A and B failed. A single A or B
*	GIO B Fail	failure will have no effect on flight, an A and B failure will
*	GIO A+B Fail	result in some invalid data on PFD/MFD windows.
$\mathbf{\nabla}$	AGM 1 Fail	Advanced Graphics Module 1 or 2 failed. AGM 1 (MAU Ch.
*	AGM 2 Fail	A) drives the Pilot PFD and upper MFD. AGM 2 (MAU Ch. B) drives the Copilot (when installed) and lower MFD. Refer to Section 3, APEX Failures for more information.
	CMS 1 Fail CMS 2 Fail	Configuration Management System has detected a failure in the monitoring software of CMS 1 or 2. No effect on flight.

CAS Advisory Message	Meaning, Effects and Possible Actions
YD Fail	Yaw Damper has failed below 15,500 ft PA.
	Minimize sideslip by using rudder pedals and manual rudder
	trim.
	Above 15,500 ft PA, refer to the Automatic Flight Control
	System Failures - 3-22-50 procedure.
	Reset the AFCS as follows:
	Open the A/P SERVO (Avionic 1 Bus Z2) and A/P SERVO
	ENABLE (Avionic 1 Bus LY2) circuit breakers for 2 secs, then
	close. Check CAS. Only one reset attempt per flight.
AP Fail	Autopilot is not available.
	Reset the AFCS as follows:
	Open the A/P SERVO (Avionic 1 Bus _L Z2) and A/P SERVO
	ENABLE (Avionic 1 Bus LY2) circuit breakers for 2 secs, then
	close. Check CAS. Only one reset attempt per flight.
FD Fail	Flight Director is not available Reset the AFCS as follows:
	Open the A/P SERVO (Avionic 1 Bus Z2) and A/P SERVO
	ENABLE (Avionic 1 Bus Y2) circuit breakers for 2 secs, then
	close. Check CAS. Only one reset attempt per flight.
AECS Foult	Fault detected in the AFCS system.
AFCS Fault	Reset the AFCS as follows:
	Open the A/P SERVO (Avionic 1 Bus Z2) and A/P SERVO
	ENABLE (Avionic 1 Bus Y2) circuit breakers for 2 secs, then
	close. Check CAS. Only one reset attempt per flight.
All on together:	Reset the AFCS as follows:
FD Fail	Trim the aircraft straight and level. Wait two minutes. If the
AP Fail	CAS messages go off, re-engage autopilot.
YD Fail	ADAHRS reset can only be achieved in stable pitch and no
	bank condition, also only light turbulence. Only one reset
	attempt per flight.
7	If the CAS messages stay on or recur, trim the aircraft
	straight and level with autopilot and yaw damper disengaged.
A Pr	Open the ADAHRS CH B circuit breaker (Main Bus _R M1),
	wait 5 seconds then close the circuit breaker. Wait two
	minutes. If the CAS messages go off, engage the autopilot. If the CAS messages reoccur, and autopilot is required for
	continued safe flight, open the ADAHRS CH B circuit breaker
GENERAL	(Main Bus $_{\rm B}$ M1) and leave open for the rest of the flight.
* FMS Fail, or	Flight management System is not available, use remaining
* FMS1+2 Fail (if dual	operational navigation equipment as required. The CPCS will
FMS installed)	use the default Landing Field Elevation (LFE) of 10,000 ft to
,	determine the target cabin altitude. Therefore, the flight crew
	must manually re-select the LFE early enough to prevent
	over or under pressurization. Alternatively, the CPCS
	SYSTEM MODE switch may be selected to MANUAL for
	manual control of the cabin altitude.
FMS1 Fail, or	If required use the NAV source select button on the PFD
FMS2 Fail	Controller to select the cross-side FMS for navigation.

CAS Advisory Message	Meaning, Effects and Possible Actions
FMS Synch Error	FMS1 and FMS2 are operating independently (not synchronized). Non-coupled FMS will not receive any changes made to the flight plan. See Section 7-33, FMS Synchronization, for a description of how to synchronize FMS1 and FMS2.
* Gear Control Fault	Indicates loss of redundancy in landing gear control system, such as a stuck landing gear selector position switch. Gear will still function normally with a single fault.
Takeoff Config	Takeoff configuration incorrect. Correct prior to takeoff.
* Pusher Safe Mode	Stick pusher computer has gone into pusher safe mode. Sta warning trigger thresholds operate at the 0° flap position settings irrespective of the flap position.
 * LH OAT Fail * RH OAT Fail * LH+RH OAT Fail 	Loss of total and static air temperature from ADAHRS Channel A or B or A and B. Refer to Section 3, APEX Failures for more information.
 * LH PFD CTRL Fail * RH PFD CTRL Fail * LH+RH PFD CTRL Fail 	Cross check PFD data with Electronic Standby Instrument System (ESIS). Use Touch Screen Controller / MF Controlle to operate Radio window. Use PFD knob on serviceable PF
	Controller to set up both Pilot and Copilot PFD.
(In Flight Only)	Single channel failure has no effect.
FLT CTRL Ch A Fail	Dual channel failure results in loss of AP/FD/YD.
FLT CTRL Ch B Fail FLT CTRL Ch A+B Fail	1A
* GPS 1 Fail * GPS 2 Fail * GPS 1+2 Fail	GPS has no satellite signal reception or GPS unit failed. If CAS message does not clear after approx. 2 mins: For Single GPS installation: Use remaining operational navigation equipment as required. For Dual GPS installation: If single GPS fail, the FMS will automatically select the alternate GPS. If needed, select alternate GPS on Sensors page. For Dual GPS installation: If dual GPS fail: Use remaining operational navigation equipment as required. Open the circuit breaker of the failed GPS (GPS 1 Standby Bus LV3 and/or GPS 2 Avionic 2 Bus _R X1), wait 5 seconds then close the circuit breaker.
	Note
-P-GL	The FMS will use ADAHRS data to dead reckon, based on the previously known GPS position prior to the failure.
Traffic Fail	Loss of TCAS.
TAWS Fail	Loss of TAWS.
Terr Inhib Active	Terrain alerting Inhibit selected.
Terr Inhib not Avail	Terrain alerting visual and aural inhibit is not available.
No Altitude Reporting	XPDR not transmitting altitude. Select TA on Radio window or ALT if no TCAS system is installed.
Flameout	Indicates an uncommanded engine flameout has been detected.

CAS Advisory Message	Meaning, Effects and Possible Actions
* EPECS Fault	On ground:
	Engine data from one EEC channel is not available for display.
	In flight:
	Monitor engine parameters. Consider diversion to an airfield
	with appropriate maintenance capability. Dispatch in
	subsequent flight is prohibited.
Prop Reverse Fail	A failure has been detected in the propeller system. Propeller reverse is not available. Plan landing with reverse not
	available.
AT Fail	Auto throttle not available. Control PCL manually.
TF Fail	Tactile feedback not available.
CIO 1 Fail	Internal hardware/software failures leading to loss of
	Datalink, CPDLC and ADS-B IN.
PROC 1 Fail	Internal hardware/software failures leading to loss of
	Datalink, CPDLC and EGPWS.
TCAS Fail	TCAS hardware/software fault leading to loss of Traffic
	Collision Avoidance System (TCAS) and Cockpit Display of
	Traffic Information (CDTI).
ADS-B In Fail	TCAS hardware/software fault leading to loss of CDTI.
VSA Unavailable	Required parameter levels not available leading to loss of Vertical Separation Approach (VSA).
SURF Traffic UNAVAIL	Required parameter levels not available leading to loss of
	Surface Traffic function.
TERR INHIB Active	Terrain Inhibit selected by pilot.
G/S INHIB Active	Glide slope inhibited for EGPWF while flying backcourse
FLAP OVRD Active	approach.
STEEP APR Active	Flap Override selected for EGPWF. Steep Approach Active.
Terrain Fail	Terrain Awareness inoperative leading to loss of display.
RAAS Fail	Internal hardware / software or input failures leading to loss
	of Runway Awareness and Advisory System (RAAS)
	function.
RAAS Inhibit	RAAS inhibit selected by pilot.
RAAS Not Available	Missing RAAS Parameter (e.g. Airport not in Database)
	leading to loss of RAAS function.
AOC Uplink	Datalink Airline Operational Control incoming message.
. Or	Accept/acknowledge message to delete PFD amber
	message box.
ATS Uplink	Datalink Air Traffic Services incoming message. Accept/acknowledge message to delete PFD amber
	message box.
ATC Uplink	Datalink Air Traffic Control incoming message.
	Accept/acknowledge message to delete PFD amber
	message box.

CAS Advisory Message	Meaning, Effects and Possible Actions		
TSC Fail	The Touch Screen Controller is turned off or has failed.		
	1 Make sure that the TSC is turned on using the TSC dimming knob on the display reversionary control panel.		
	2 If the TSC has been turned on for at least 1 minute and TSC Fail remains, reset the TSC as follows:		
	 Open and close the TSC circuit breaker (Standby Bus LR3). 		
	 If reset unsuccessful, use remaining operational navigation equipment as required. 		
TSC Fan Fail	One or both of the two internal TSC fans have failed.		
	Unless TSC Fail is shown, no flight crew action is required.		
	Touch screen may be hot. If TSC not required it can be		
	turned off temporarily using the TSC dimming knob on the		
	display reversionary control panel.		
JK.			

	The Aircraft Diagnostic and Maintenance System (ADMS) has failed. Does not prevent the aircraft from dispatching,
	may impact mechanic's ability to diagnose and repair the aircraft in a timely manner.
	One or more of the Aircraft Condition Monitoring Function - Aircraft, Navigation or Engine data logs are full. Data will be lost if not transferred.
	One or more of the Aircraft Condition Monitoring Function - Aircraft, Navigation or Engine data logs are more than 80% full. Data may be lost if not transferred.
Engine Log Full	The Engine Trend Recording Stable Cruise data log is full. Data will be lost if not transferred.
	Engine Trend Recording Stable Cruise data log is more than 80% full. Data may be lost if not transferred.
	One of the two aural drivers is inhibited or has failed. There is a loss of redundancy in the aural warning system. No effect on flight.

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

3A-3 CAS Status

3A-3-1 CAS Status

This section provides a description and any actions that can be taken for the Crew Alerting system (CAS) white status messages.

* These white status messages require maintenance action if they cannot be cleared before flight, or dispatch the aircraft under the provisos of an approved and permissible PC-12 aircraft MEL.

During flight, continue with remaining operational equipment and report on landing.

Airborne CAS Status Message	Meaning, Effects and Possible Actions	
Event	A 5 second airborne indication, to show that a crew initiated event, by pressing the EVENT button on the Touch Screen Controller (TSC) / MF Controller, has been recorded.	
Function Unavailable	Indicates that an unavailable function has been selected by the crew.	
,0,		

	Meaning, Effects and Possible Actions	
* FCMU Fault	The Fuel Control and Monitoring computer has a fault condition, Automatic fuel balancing, analog fuel quantity and low level indication may be suspect.	
* Low Lvl Sense Fault	The fuel low level sensing part of the Fuel Control and Monitoring computer has a fault condition. Fuel low level CAS cautions may be inoperative.	
* Fuel Filter Replace	The fuel filter is contaminated and should be serviced/ replaced within 150 flying hours.	
Maint Memory Full	The Fault History Database for the aircraft member system has become full. Fault History will be lost if not transferred.	
No Engine Trend Store	Indicates that a Stable Cruise flight data store condition wa not achieved. Will remain on until a Stable Cruise flight data store is successful.	

On Ground CAS Status Message	Meaning, Effects and Possible Actions
Engine Exceedance	Reminds on the ground that during flight a WARNING was displayed for an exceedance of one or more of the following engine parameters:
	- Oil Pressure
	- Oil Temperature
	- ITT
	- TORQUE
	- NG 5
	- NP
	 TORQUE NG NP Fuel Temperature High
	exceedance is permanently recorded on the ACMS file for periodic maintenance analysis.
Aircraft Exceedance	Reminds on the ground that during flight an Airspeed WARNING was displayed or, an acceleration parameter (g limit) was exceeded. If no exceedances were noted by the pilot, continue flight and report to maintenance personnel. If an exceedance was noted, maintenance action may be required before continued flight, depending on the extent of the exceeded parameter. The CAS message will always be displayed on the ground as a reminder. The message is cleared by the next power cycle. The exceedance is permanently recorded on the ACMS file for periodic maintenance analysis.
Crew Event Store	Indicates that a crew initiated event has been recorded.
* LH WOW Fault * RH WOW Fault * LH+RH WOW Fault	Indicates that the Modular Avionics Unit (MAU) has determined that either of the main landing gear proximity switches is in disagreement with the aircraft Air/Ground determination.
* AGM 2/FMS1 GFP inop	Indicates graphical Flight Planning function failed in Aircraft Graphics Module.
* AGM 1 DB Error	Indicates an error has been detected in the navigation or
* AGM 2 DB Error * AGM 1+2 DB Error	charts database on one or both Advanced Graphics Module (AGM).
* AGM 1 DB Old * AGM 2 DB Old * AGM 1+2 DB Old	Indicates the navigation or charts database in one or both Advanced Graphics Module (AGM) is out of date.
EPECS MAINT Mode	Indicates the EPECS is in maintenance mode. In maintenance mode the following functions are available:
	 Dry motoring
	 Wet motoring
	 EPECS fault clearing
	- ITT trim update.

* EPECS TLD	Meaning, Effects and Possible Actions
	The engine is cleared for Time Limited Dispatch (TLD), follow the applicable time limits.
Dry Motoring	Indicates that a dry motoring run is in progress.
Maintenance Feather	Indicates the propeller is feathered for maintenance purposes.
Wet Motoring	Indicates that a wet motoring run is in progress.
Prop Feather Inhibit	Indicates propeller feathering is inhibited during engine shutdown.
	Indicates that a wet motoring run is in progress. Indicates propeller feathering is inhibited during engine shutdown.

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

3A-4 Primary Altimeter Diverge by 200 ft or More

If able to identify defective altimetry system⁽¹⁾:

- 1 Determine aircraft altitude using operating ADAHRS channel.
- 2 Disengage autopilot and flight director.
- 3 Select operating ADAHRS channel, using the flight director couple select switch (L/R).
- 4 Re-engage autopilot and flight director.
- 5 Perform appropriate national RVSM contingency procedures for loss of redundancy of primary altimeters.

If unable to determine accuracy of either altimetry system, perform appropriate national RVSM contingency procedures for loss of all primary altimetry systems.

Note

(1)The copilot's and ESIS share a common static source. Therefore the ESIS should not be used in determining which altimetry system is defective.

UATION PURPOSES ONLY Left F This Page Intentionally Left Blank

3A-5 Loss of Autopilot Altitude Hold Function in RVSM Airspace

3A-5-1 Procedure: Loss of Autopilot Altitude Hold Function in RVSM Airspace

WATION PURPOSES ONLY Left ' This Page Intentionally Left Blank

3A-6 Flight Training

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

3A-7 Smartview

Sma	rtview abnormal proce	dures 3A-7-
lf Sm	artview information is inconsist	tent with APEX primary flight indications:
1.	PFD	Select OVRLY menu
2.	SV	OFF
		Note
SV c	an be set to OFF by deselect	ting the checkmark "SVS ON".
3.	PFD	Verify SV is removed
4.	Aircraft	Use APEX primary flight indications
		END
If AF form poin	PEX operation in reversionary at reverts to SV off (blue over ter (X-Ptr). After approximatel	Note Mote mode (due to DU 1 or AGM failure), the PFD r brown) and to the default flight director cross ly 2.5 minutes the SV is displayed automatically
If AF form point and	PEX operation in reversionary at reverts to SV off (blue over ter (X-Ptr). After approximated the pilot can reselect the prefe	Note mode (due to DU 1 or AGM failure), the PFD r brown) and to the default flight director cross
If AF form poin and Exam	PEX operation in reversionary at reverts to SV off (blue over ter (X-Ptr). After approximatel the pilot can reselect the prefi- ple:	Note mode (due to DU 1 or AGM failure), the PFD r brown) and to the default flight director cross ly 2.5 minutes the SV is displayed automatically
If AF form poin and Exam	PEX operation in reversionary at reverts to SV off (blue over ter (X-Ptr). After approximated the pilot can reselect the prefe	Note mode (due to DU 1 or AGM failure), the PFD brown) and to the default flight director cross ly 2.5 minutes the SV is displayed automatically erred flight director mode on the FCS tab.
If AF form poin and Exam	PEX operation in reversionary at reverts to SV off (blue over ter (X-Ptr). After approximatel the pilot can reselect the prefi- ple: Indication: Check DU 1	Note mode (due to DU 1 or AGM failure), the PFD r brown) and to the default flight director cross ly 2.5 minutes the SV is displayed automatically erred flight director mode on the FCS tab.
If AF form poin and Exam - - 1.	PEX operation in reversionary at reverts to SV off (blue over ter (X-Ptr). After approximatel the pilot can reselect the pref- ple: Indication: Check DU 1 Condition: Pilot PFD is blank o	Note mode (due to DU 1 or AGM failure), the PFD r brown) and to the default flight director cross ly 2.5 minutes the SV is displayed automatically erred flight director mode on the FCS tab.
If AF form poin and Exam - 1. 2.	PEX operation in reversionary at reverts to SV off (blue over ter (X-Ptr). After approximatel the pilot can reselect the prefi- ple: Indication: Check DU 1 Condition: Pilot PFD is blank of Reversion Controller	Note mode (due to DU 1 or AGM failure), the PFD r brown) and to the default flight director cross ly 2.5 minutes the SV is displayed automatically erred flight director mode on the FCS tab.
If AF form poin and Exam - 1. 2.	PEX operation in reversionary at reverts to SV off (blue over ter (X-Ptr). After approximatel the pilot can reselect the prefi- ple: Indication: Check DU 1 Condition: Pilot PFD is blank of Reversion Controller Aircraft	Note mode (due to DU 1 or AGM failure), the PFD r brown) and to the default flight director cross ly 2.5 minutes the SV is displayed automatically erred flight director mode on the FCS tab. or suspect Set DU 1 control knob to OFF/REV PPFD is shown on upper MFD in SV off format (blue over brown) and pitch based X Ptr default flight director is active

3A-7-2 Smartview status and failure indications

Smartview related status and failure indications on the SV Status / Failure field:

SV Indication	Description
SV	Position and altitude used to position the synthetic scenery meets the integrity requirements. SV is selected ON and displayed.
SV OFF	Position and altitude used to position the synthetic scenery meets the integrity requirements, but SV is not selected ON.
SV RATE	SV is selected but not being displayed due to a too low refresh rate.
SV POS	SV is selected but not being displayed due to position/altitude failure, or SV is being displayed but a position integrity error was detected.
SV FPS	SV is selected but not being displayed due to the Flight Path Symbol (FPS) being invalid.
SV TER	SV is selected but not being displayed due to a terrain rendering failure.
SV TRK	SV is selected but not being displayed because APEX has been switched to track mode (e.g. at high latitudes).
SV REV	SV is selected but not being displayed due to the PFD being switched to composite mode.

Note

The SV related status and failure indications are for information only. No pilot action is required.

FOR GENERAL AND FAM

3A-8 LPV/LP Approach (Optional)

- 1 If PRIMUS APEX avionics suite GPS navigation information is not available or invalid, utilize remaining operational navigation equipment as appropriate.
- 2 Degradation of Approach Capability (LPV UNVL or LP UNVL) in the terminal or initial approach phase of flight (prior to FAF). Descent to LPV/LP minima is not allowed

LPV Approach:

- On STAR/Landing page (RNAV tab) select LNAV/(VNAV) minima
- Brief new LNAV or LNAV/VNAV approach (or different approach type), as applicable
- Set minimum accordingly.

LP Approach:

- Choose different navigation type/source, or initiate a Go-Around
- 3 Degradation of Approach Capability (**LPV UNVL** or **LP UNVL**) on the final approach segment (after FAF). Descent to LPV/LP minima is not allowed. Vertical guidance information is not provided.
 - If runway threshold is visible continue approach by using visual references
 - If runway threshold is not visible proceed as follows:

LPV Approach:

- Descent to LNAV minimum is allowed if "DGRD" message is not displayed
- If below LNAV minimum, initiate a Go-Around and follow published standard missed approach procedure as long as "DGRD" message is not displayed. If "DGRD" message is displayed, avoid obstacles with remaining operational navigation equipment as applicable.

LP Approach:

Initiate a Go-Around and follow published standard missed approach procedure as long as "DGRD" message is not displayed. If "DGRD" message is displayed, avoid obstacles with remaining operational navigation equipment as applicable.

Predicted Degradation of Approach capability ("PREDICT LPV UNAVAIL" or "PREDICT LP UNAVAIL" message on the INAV). The predicted performance of the navigation system is not sufficient to conduct approach to LPV/LP minimum.

- Select other approach or continue with LPV/LP approach
- If LPV/LP approach is continued then monitor the LPV/LP status indication. Revert to applicable procedures in case the LPV UNVL or LP UNVL message is displayed.

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

3A-9-01

3A-9 Engine Dry Motoring

Dry Motoring Run

	No				
This procedure is used to remove internally trapped smoke, fuel and vapor within the engine gas path. Do a dry motoring cycle once the ITT has stabilized.					
Note					
A dry motoring run can always be aborted by setting the Master Power switch to EMERGENCY OFF.					
Allow min 30 sec draining period, then:					
1. Engine switch		OFF			
2. POWER CONTR	OL LEVER	IDLE DETENT			
3. EPECS MAINTER switch		ON			
(on maintenance sidewall behind c	panel, right				
4. CAS window		CHECK EPECS MAINT Mode is on			
5. BAT 1 and BAT 2	indicators	CHECK 24 VDC min			
6. EXT PWR switch	R	ON (if available)			
7. STARTER switch		PUSH momentarily (less than 2 seconds)			
To crank for a pilot determined amount of time, hold the push button for longer than 2 seconds					
8. CAS window	2	CHECK Dry Motoring comes on			
9. Engine		CHECK dry motoring run is performed for 30 seconds			
10. EPECS MAINTE	NANCE MODE	OFF			
switch					
sidewall behind c	(on maintenance panel, right sidewall behind co-pilot seat)				
11. Engine		If required, do an Engine Start (With or Without External Power) - 4-5-01			
	CAUTI	ON			

Observe engine starting cycle limits. Refer to Section 2, Limitations, Power Plant Limitations, Starter.

Continued on next page

Section 3A - Abnormal Procedures (EASA Approved) Engine Dry Motoring

FOR GENERAL AND FAMILARIA TION PURPOSES ONLY

SECTION 4

Normal Procedures (EASA Approved) Table of Contents

	Subject		Page
	4-1	General	4-1-1
	4-2	Airspeeds for Normal Operations	4-2-1
	4-3	Preflight Inspection Empennage Right Wing Trailing Edge Right Wing Leading Edge Nose Section Left Wing Leading Edge Left Wing Trailing Edge Cabin Cockpit Before Starting Engine Before Starting Engine	4-3-1
	4-3-01	Empennage	4-3-1
	4-3-02	Right Wing Trailing Edge	4-3-2
	4-3-03	Right Wing Leading Edge	4-3-2
	4-3-04	Nose Section	4-3-3
	4-3-05	Left Wing Leading Edge	4-3-4
	4-3-06	Left Wing Trailing Edge	4-3-5
	4-3-07	Cabin	4-3-5
	4-3-08	Cockpit	4-3-6
	4-4	Before Starting Engine	4-4-1
	4-4-01	Before Starting Engine	4-4-1
	4-5	Engine Starting	4-5-1
	4-5-01	Engine Start (With or Without External Power)	4-5-1
	4-6	Before Taxiing	4-6-1
	4-6-01	Before Taxiing	4-6-1
	4-7	Taxiing	4-7-1
	4-7-01	Taxiing	4-7-1
	4-8	Before Takeoff	4-8-1
	4-8-01	Before Departure	4-8-1
	4-8-02	Line Up Check	4-8-1
7	4-9	Takeoff	4-9-1
	4-9-01	Takeoff	4-9-1
	4-10	Flight into Known Icing Conditions	4-10-1
	4-10-01	Flight into Known Icing Conditions	4-10-1
	4-11	Climb	4-11-1
	4-11-01	Climb	4-11-1
	4-12	Cruise	4-12-1

Subject		Page
4-12-01	Cruise	4-12-1
4-12-02	Cruise within RVSM Airspace	4-12-1
4-13	Descent	4-13-1
4-13-01	Descent	4-13-1
4-14	Before Landing	4-14-1
4-14-01	Approach Check	4-14-1
4-14-02	Final Check	4-14-1
4-15	Balked Landing (Go-Around)	4-15-1
4-15-01	Balked Landing (Go-Around)	4-15-1
4-16	Landing Normal Short Field After Landing After Landing Shutdown Shutdown Parking Parking Oxygen System Oxygen System	4-16-1
4-16-01	Normal	4-16-1
4-16-02	Short Field	4-16-1
4-17	After Landing	4-17-1
4-17-01	After Landing	4-17-1
4-18	Shutdown	4-18-1
4-18-01	Shutdown	4-18-1
4-19	Parking	4-19-1
4-19-01	Parking	4-19-1
4-20	Oxygen System	4-20-1
4-20-01	Oxygen System	4-20-1
4-21	Noise Level	4-21-1
4-22	Automatic Flight Control System Operation	4-22-1
4-23	Crosswind Operation	4-23-1
4-24	Flight in Icing Conditions	4-24-1
4-25	Severe Icing Conditions	4-25-1
4-26	CPCS Low Cabin Mode Operation	4-26-1
4-27	SV Selection and Brightness Control	4-27-1
4-28	LPV/LP Detailed Operating Procedures	4-28-1
4-28-1	Introduction	4-28-1
4-28-2	Operating Procedures for Approach to LPV Minimum	4-28-1
1-28-3	Flight Director/Autopilot Coupled Operation	4-28-2

4-1 General

This section provides the normal operating procedures. All of the procedures required by regulation as well as those procedures which have been determined as necessary for the operation of this airplane are provided.

Normal operating procedures associated with optional systems or equipment which require supplements are contained in Section 9, Supplements, General.

Pilots must familiarize themselves with these procedures to become proficient in the normal operation of the airplane.

It is recommended that these procedures be followed for the normal operation of the aircraft. When the aircraft has been in extended storage, had recent major maintenance or been operated from prepared unpaved surfaces the full preflight inspection procedure given in this section is recommended.

WATION PURPOSES ONLY Left r This Page Intentionally Left Blank

4-2 Airspeeds for Normal Operations

Airspeeds for normal operations are listed below. Unless otherwise noted, all airspeeds are based on a maximum takeoff weight of 10,450 lb (4740 kg) at sea level under ISA standard day conditions.

	Takeoff (V _R):	
	Flaps 15°	82 KIAS
	Flaps 30°	76 KIAS
		OK I
	Maximum Climb:	5
	Best Angle (V _X)	120 KIAS
	Best Rate (V _Y) Flaps 0º:	82 KIAS 76 KIAS 120 KIAS 130 KIAS 125 KIAS
	Sea level	130 KIAS
	5000 ft	125 KIAS
	10,000 ft	125 KIAS
	15,000 ft	125 KIAS
	20,000 ft and above	120 KIAS
	Recommended Climb Speed with Flaps	135 KIAS
	retracted and Pusher Ice Mode	
	AL	
	Maximum Operating Maneuvering Speed (Vo)	166 KIAS
	(10,450 lb/ 4740 kg)	
	Maximum Flaps Extended (V _{FE}):	
	Flaps 15°	(≤ 15º) 165 KIAS
	Flaps 30° / 40°	(> 15°) 130 KIAS
	Maximum Landing Gear:	
	Extension (VLO)	180 KIAS
	Retraction (VLO)	180 KIAS
	Extended (V _{LE})	240 KIAS
	C.	
(Landing Approach Speed (based on Maxim	
$\langle \rangle$	Flaps 0°	120 KIAS
	Flaps 15°	99 KIAS
	Flaps 30°	89 KIAS
	Flaps 40°	85 KIAS
	with residual ice on the airframe	
	Flaps 15°, Pusher Ice Mode	105 KIAS

Balked Landing (Go-Around):

TO/Pwr, Flaps 15º, LG down	98 KIAS
TO/Pwr, Flaps 30º, LG down	89 KIAS
TO/Pwr, Flaps 40º, LG down	85 KIAS
TO/Pwr, Flaps 15º, LG down, Pusher Ice	105 KIAS
Mode	

Maximum Demonstrated Crosswind for Takeoff and Landing (not a limitation):

aoff and Landing (not a limitation): 30 kts 25 kts 20 kts 15 kts
212ATION PURPO
eoff and Landing (not a limitation): 30 kts 20 kts 15 kts 00 kts 15 kts

4-3 Preflight Inspection

E	mper	inage	4-3-0
	1.	Luggage	CHECKED and SECURED
2	2.	Cargo (Combi Interior)	CHECK that cargo is located against retainer angles installed on seat rails
	3.	Tie Down Straps (Combi Interior)	CHECK fittings properly inserted into seat rails and that the straps are tight
4	4.	Cargo Door	After cargo loading / unloading: CHECK lower attachment lugs for condition
į	5.	Cargo Door	CLOSED and LOCKED (check for green flags)
(6.	Static ports and skin inspection	CHECKED
		No	ote
	within	the static port orifice.	nsure that no foreign matter is found
-	7.	Tail tie-down	DISCONNECTED
8	8.	External Power Door	CLOSED / AS REQUIRED
ę	9.	Oxygen rupture disc	INTACT (if a larger capacity oxygen system is installed in the rear fuselage)
	10.	Rudder and trim tab	CHECK VISUALLY
	11.	Vertical stabilizer	CHECK VISUALLY
	12.	Elevator assembly	CHECK VISUALLY
	13.	Horizontal stabilizer	CHECK VISUALLY, Stabilizer Trim Mark within green range
	14.	Deicing boots	CHECK VISUALLY
	15.	Static discharge wicks	CHECK
0	16.	Dorsal and ventral fairings	CHECK
2	17.	General condition	CHECK
E	Battery	compartment:	
	18.	LDR Circuit Breaker	CHECK IN
	19.	ELT	CHECK CONDITION
2	20.	Autopilot servos and cables	CHECK CONDITION
-		d on next page	

	ennage	4	-3-01
contir	nued		
21.	Power junction box circuit breakers	CHECK IN	
22.	Steering bar	STOWED and SECURED	
23.	Battery	CONNECTED	
24.	Battery compartment	CHECK CLOSED	
	E	ND	
			0
Right	Wing Trailing Edge	4	P3-02
1.	Flaps	CHECK CONDITION	
2.	Aileron and flettner tab	CHECK CONDITION	
3.	Fuel tank vents (three)	CLEAR of OBSTRUCTIONS	
4.	Static discharge wicks	CHECK SECURITY and CONDITION	
5.	General condition	CHECK	
	E	ND	
		214	
Right	Wing Leading Edge		-3-03
1.	Nav/Strobe light	CHECK CONDITION	
1. 2.	Nav/Strobe light Fuel quantity and filler cap	CHECK CONDITION CHECK and SECURE	
2.	Fuel quantity and filler cap	CHECK and SECURE	E
2. 3.	Fuel quantity and filler cap	CHECK and SECURE COVER REMOVED and CHECKED COVER REMOVED and CHECK FRE	E
2. 3. 4.	Fuel quantity and filler cap Pitot probe AOA probe	CHECK and SECURE COVER REMOVED and CHECKED COVER REMOVED and CHECK FRE MOVEMENT	E
2. 3. 4. 5.	Fuel quantity and filler cap Pitot probe AOA probe Wing tie-down / wheel chocks	CHECK and SECURE COVER REMOVED and CHECKED COVER REMOVED and CHECK FRE MOVEMENT DISCONNECTED and REMOVED	E
2. 3. 4. 5. 6.	Fuel quantity and filler cap Pitot probe AOA probe Wing tie-down / wheel chocks De-icing boot	CHECK and SECURE COVER REMOVED and CHECKED COVER REMOVED and CHECK FRE MOVEMENT DISCONNECTED and REMOVED CHECK GENERAL CONDITION	E
 2. 3. 4. 5. 6. 7. 	Fuel quantity and filler cap Pitot probe AOA probe Wing tie-down / wheel chocks De-icing boot Right main lading gear	CHECK and SECURE COVER REMOVED and CHECKED COVER REMOVED and CHECK FRE MOVEMENT DISCONNECTED and REMOVED CHECK GENERAL CONDITION CHECK	E

Servi	ice Bay (right) (If a standard oxygen s	system is installed):
1.	Oxygen Press	CHECK
2.	Oxygen and ECS Doors	CLOSED
3.	Oxygen rupture disc	INTACT
		END
Engir	ne Area:	1
1.	Cowling RH	CHECK and SECURE REMOVED and STOWED
2.	Propeller - Blade Anchor	REMOVED and STOWED
3.	Propeller - Blade	CHECK
	e aircraft for reference and damage	rtzell Service Letter 61-360 (latest issue) assessment recording during the blade
4. -	Propeller - De-icing Boots	CHECK GENERAL CONDITION
5.	Propeller - Spinner	CHECK
6.	Air Inlet and Exhaust Covers	REMOVED and STOWED
7.	Air Inlets	CHECK ENGINE AIR INTAKE, OIL COOLER, ECS and GENERATOR for OBSTRUCTIONS
	Exhaust system	CHECK
8.	,	
8. 9.	Nose Gear and Doors	CHECK
•••		CHECK REMOVED
9.	Nose Gear and Doors	
9. 10.	Nose Gear and Doors, Wheel Chocks	REMOVED
9. 10. 11. 12.	Nose Gear and Doors Wheel Chocks Engine drain mast (LH)	REMOVED CHECK. No leaks permitted

Nose Section	4-3-04
continued	
WAI	RNING
DO NOT TOUCH OUTPUT CONNECTO EXCITER WITH BARE HANDS.	DRS OR COUPLING NUTS OF IGNITION
13. Oil Quantity	CHECK SIGHT GLASS AND DIPSTICK FOR SECURITY (green markings aligned)
	Check oil level in green range of sight glass within 10 to 20 minutes after engine shut down. If engine has been shut down for more than 30 minutes, check dipstick indication and if it indicates that oil is needed, check for oil leaks in the engine bay, start the engine and run at ground idle for 5 minutes. Recheck oil level using dipstick and refill if necessary. For a better view, the check of the dipstick security may be conducted from the RH cowling.
14. General Condition	CHECK
15. Cowling LH	CHECK and SECURE
16. Windshield	CHECK CLEAN
2	END
Service Bay (left)	0
1. Service Bay Doors	CLOSED
	END

Left Wing Leading Edge

4-3-05

1.	Two fuel drains	SAMPLE and SECURE
2.	Left main lading gear	CHECK
3.	Left brake assembly	CHECK
4.	De-icing boot	CHECK GENERAL CONDITION
5.	Pitot probe	COVER REMOVED and CHECKED
6.	AOA probe	COVER REMOVED and CHECK FREE MOVEMENT
7.	Wing tie-down / wheel chocks	DISCONNECTED and REMOVED
8.	Fuel quantity and filler cap	CHECK and SECURE
Contini	ued on next page	

Left V	Ving Leading Edge	4-3-05
contin	ued	
9.	Nav/Strobe light	CHECK CONDITION
10.	General condition	CHECK
	E	ND
Left V	Ving Trailing Edge	4-3-06
1.	Static discharge wicks	CHECK SECURITY and CONDITION
2.	Fuel tank vents (three)	

- Aileron and trim tab..... CHECK CONDITION
 Flaps..... CHECK CONDITION
- 5. General condition..... CHECK

----- END ------

Cabin		4-3-07
1.	Passenger Door	CLOSED and LOCKED (check for 6 green flags)
2.	Hand luggage	SECURED / STOWED
3.	Passenger Seat	CHECK backrests in upright position (for takeoff and landing)
4.	Passenger Seat Belts	FASTENED
5.	Overwing Emergency Exit	LOCK PIN REMOVED, EXIT CHECKED and LOCKED
6.	Fire Extinguisher	CHECK ATTACHMENT and PRESSURE
For flig	hts above 10,000 ft altitude:	
7.	Passenger Oxygen Masks	CONNECTED and STOWED (for each passenger)
S-	E	ND

4-3-08

Note Items marked thus: * only necessary on first flight of day. REMOVED and placed in STOWAGE 1. Flight Control Lock..... POINT 2. EMERG COM 1 switch..... NORM SESONI 3. Aural Warning Inhibit Switch...... ON * LH MASK/MIC switch..... 4. CHECK MIC 5 ELT.... ARMED / GUARDED LH Circuit Breakers..... 6 CHECK IN 7 SET / PUSH BRAKE PEDALS Parking Brake Handle..... PURP 8. ICE PROTECTION switches...... OFF INERT SEP switch..... AS REQUIRED 9. Landing Gear Selector..... DN ON 10. Main OXYGEN lever..... **CHECK 100%** 11 * Crew Oxvgen Masks..... 12 Environmental (ACS. AUTO ELECTRICAL, FANS) and CPCS switches..... * RH MASK/MIC switch..... 13. CHECK MIC 14 RH Circuit Breakers..... CHECK IN 15 TRIM INTERRUPT switch. Check OFF FLAP INTERRUPT switch 16 Check NORM/GUARDED POWER CONTROLLEVER...... 17. **IDLE DETENT** 18. Flap Lever..... 0° Cockpit / Instrument / Cabin OFF 19. Light switches..... 20. Fuel Firewall Shut-off lever..... FULLY IN Emergency Gear Extension 21. STOWED fever..... 22. ACS Firewall Shut-off lever..... FULLY IN 23. FUEL PUMPS switches..... AUTO 24 Engine switch..... OFF IGNITION switch..... 25 AUTO 26 EXTERNAL LIGHTS switches OFF Continued on next page

Cockpit

oonan	ued	
27.	PASSENGER WARNING switches	OFF
28.	EPS switch	OFF
29.	MASTER POWER switch	ON and GUARDED. Check condition of guard
30.	BAT 1, BAT 2, STBY BUS	CHECK OFF
31.	EXT PWR	CHECK CENTER
32.	AV 2 BUS, CABIN BUS, AV 1 BUS, GEN 1, GEN 2	CHECK ON
	E	ND
		ZA
	AMILIAR	JA.
	MERALANDFAMILLAR	JA
<pre>%</pre>	MERAL AND FAMILIAR	OFF ON and GUARDED. Check condition of guard CHECK OFF CHECK CENTER CHECK ON ND

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

4-4 Before Starting Engine

Before Starting Engine

4-4-01

1.	Preflight inspection	COMPLETE
2.	STBY BUS switch	ON wait until MFD powers up (30 secs) prior to switching batteries on
3.	Display reversion control panel	PILOTS PFD NORM, CO-PILOTS PFD NORM (if installed)
		Adjust lower MFD brightness and set other DU's brightness control similarly
4.	ATIS and start up clearance	RECEIVED
5.	FMS programming	COMPLETED
6.	Seats	ADJUSTED and LOCKED
7.	Seat belts	FASTENED
8.	EPS switch	TEST (minimum 5 seconds)
9.	EPS - Green TEST indicator	ON during test
10.	EPS - EPS switch	ARMED
11.	EPS - Red EPS ON indicator	ON
12.	EPS - ESIS	ALIGNING
13.	BAT 1 and BAT 2 switches	ON
14.	Red EPS ON indicator	Check OFF
15.	BAT 1 and BAT 2 indicators	CHECK 24 VDC min
Extern	al power (if available):	
16.	External power unit	ON. Check 28 VDC
17.	External power unit	CONNECT. Check OHP AVAIL is on
18.	EXTPWR switch	ON
19.	BAT 1 and BAT 2 indicators	CHECK 28 VDC
	No	ote
		craft will disconnect the EPU if the output
voltag	je is above 29.5 or below 22 VDC.	
20.	Landing Gear 3 greens	CHECK
21.	FUEL quantity	SUFFICIENT for flight, balanced within 3 segments for departure
Continue	ed on next page	
<u>.</u>		

Section 4 - Normal Procedures (EASA Approved) Before Starting Engine

e Starting Engine	4-4-01
ued	
FIRE WARN test switch	PUSH. (CAS Engine Fire and Fire Detector annunciations ON while switch is pushed, callout heard if powered from GPU)
LAMP test switch	PUSH. (Master Warning and Caution and Trim Interrupt)
Oxygen pressure gage	CHECK 1,850 psi MAX
PASSENGER OXYGEN selector	AUTO. SET switch to OFF if no passengers on board CLOSED and LOCKED
Direct Vision Window	CLOSED and LOCKED
Radios / Avionics	SET as required. ESIS aligned
E	ND
ANDFAM	HARILE
	FIRE WARN test switch LAMP test switch Oxygen pressure gage PASSENGER OXYGEN selector Direct Vision Window Radios / Avionics

4-5 Engine Starting

ngir	ne Start (With or Without Ex	ternal Power) 4-5	
1.	External lights	AS REQUIRED	
	-	lote	
	d prolonged use of the beacon and crease in battery power and affect t	logo lights (if installed), as this can cause he engine starting.	
2.	Propeller area	CLEAR. Confirm CLEAR of obstructions	
3.	CAS window	CHECK no door warnings, no oil temperature warning and no oyan autopilot messages	
	-	lote	
cont extir	rol inputs or an engine start before	servo calibration is not affected by any the CAS cyan autopilot messages are edure will possibly affect the autopilot	
	-	lote	
The EPECS will automatically abort an engine start if any of the following ca occur:			
0000			
-	ITT exceedance		
-	ir: ITT exceedance Hung start No light-off		
-	No light-off		
-	The starter switch is pushed during the starting sequence.		
In th	is event the EPECS will immediatel	y command a 30 second dry motor run,	
the g	green STARTER annunciator in the	PFD engine window comes on.	
The		lote omatic dry motoring run can always be	
	ted by setting the engine switch to		
		d prior to a subsequent start attempt.	
2			
4.	Engine switch	RUN	
5.	Fuel window	CHECK two green PUMP indications	
6.	STARTER switch	PUSH momentarily	
7.	Oil pressure	CHECK rising	
8.	Ng approx. 16%	CHECK light up	
• <i>''</i>	ued on next page		

Engine Start (With or Without External Power) 4-5-01				
contin	nued			
9.	ITT	MONITOR		
		 MAXIMUM 1000 °C 		
		 900 - 1000 °C for max 5 sec. 		
		- 850 - 900 °C for max 20 sec.		
	re is a rapid increase in ITT toward ed, then:	s 1000 °C and the start is not automatically		
10.	STARTER switch	PUSH momentarily		
If ITT	stays within limits:	19		
11.	Ng	STABLE at 64.5%		
If Ng :	stays below 50% and the start is not a	automatically aborted:		
12.	STARTER switch			
If NG	stable:			
13.	Starter sequence	COMPLETED		
14.	Engine instruments	STABLE in green range		
15.	GEN 1 and GEN 2	Check volts and amps		
16.	FUEL RESET soft key	Push to reset		
17.	External Power Unit (if used)	Disconnect		
	K	ND		

4-6 Before Taxiing

Before	Taxiing	4-6-01
1.	Flaps Lever	15°
If icing	conditions expected or first flight of t	the day:
2.	ICE PROTECTION switches	Set all on for 1 minute (windshield heavy)
3.	CAS window	No cautions. Check PROPELLER
4.	ICE PROTECTION switches	Set as required
5.	Inertial Separator	OPEN, if operating on unprepared surface or for bird strike protection
Stick P	usher test:	0
6.	PCL	SET 5 - 10 psi
7.	STICK PUSHER test switch (Overhead Panel)	PUSH and HOLD
8.	PCL	SET to idle
9.	Elevator Control	PULL
10.	Shaker for 2 sec Break for 1 sec Shaker for 2 sec Break for 1 sec Pusher, Shaker	CHECK correct operation
11.	ICE PROTECTION PUSHER ICE MODE advisory	CHECK ON
When p	ousher operates:	
12.	PUSHER INTR switch (control wheel)	PRESS and HOLD, check pusher interrupts
13.	STICK PUSHER test switch	RELEASE
14.	Pusher	CHECK OFF
15.	Pusher	CHECK ON (visual and aural) after 3 seconds
16.	PUSHER INTR switch	RELEASE
17.	Pusher	CHECK OFF (visual and aural)
18.	Elevator control	CHECK FULL and FREE movement
19.	PFD, MFD, CAS, ESIS	No flags or red warning captions, all aligned
Continue	ed on next page	

Section 4 - Normal Procedures (EASA Approved) Before Taxiing

Before Taxiing	4-6-01
continued	
20. PFD Engine Window Check T1	
Note Engine takeoff power is calculated based on displayed T1.	
END	
Engine takeoff power is calculated based on displayed T1.	SES ONI

4-7 Taxiing

	ng	4-1
1.	EXTERNAL LIGHTS switches	AS REQUIRED
2.	PASSENGER WARNING switches (if installed)	ON
3.	Parking Brake	RELEASE
4.	Brakes	CHECK
5.	PCL	CHECK beta is available, return to IDLE
6.	Display units	Compare ADIs, speeds, Altitude, Headin and check no flags
	CAL	JTION O
	VAC	
(aft	not leave the PCL stationary for m of idle detent) to avoid an EPECS dow.	ore than 30 seconds in the beta range Degraded message on the CAS Note
(aft	not leave the PCL stationary for m of idle detent) to avoid an EPECS dow. If operating conditions allow, use t control taxi speed and reduce wea	ore than 30 seconds in the beta range Degraded message on the CAS Note he beta range (aft of the idle detent) to ar on brakes.
(aft	not leave the PCL stationary for m of idle detent) to avoid an EPECS dow. If operating conditions allow, use t control taxi speed and reduce wea For the periodical brake conditioni	ore than 30 seconds in the beta range Degraded message on the CAS Note he beta range (aft of the idle detent) to
(aft win	not leave the PCL stationary for m of idle detent) to avoid an EPECS dow. If operating conditions allow, use t control taxi speed and reduce wea For the periodical brake conditioni Paragraph in Section 8.	ore than 30 seconds in the beta range Degraded message on the CAS Note he beta range (aft of the idle detent) to ar on brakes.

4-8 Before Takeoff

Befor	e Departure	4-8-01
1.	Takeoff power setting	CALCULATED
2.	Engine instruments	CHECK
3.	Flaps	15° (for reduced takeoff distance flap 30° may be used)
4.	Trim	SET GREEN range
	If CG is 236 inches (6 meters) or further aft of datum	SET GREEN range SET GREEN DIAMOND
5.	Fuel quantity	CHECK
6.	CPCS	Check FMS identifier and ELEV, if no FMS ELEV adjust landing ELEV, check mode. Check no CPCS faults.
		If identifier and ELEV miscompare, select and deselect DEST ELEV
7.	DC Amps Batteries	CHECK both BAT 1 and BAT 2 indicate less than 30 amps. If greater than 30 amps is indicated, delay takeoff until indications are at or below 30 amps
8.	Flight controls	FULL, FREE and CORRECT
9.	Radios / Navigation / FD	SET and checked
10.	Departure and emergency briefing	COMPLETED
	E	ND
Line l	Jp Check	4-8-02
1.	PROBES switch	ON
2.0	Windshield Heat	AS REQUIRED
3.	INERT SEP	AS REQUIRED
4.	External light switches	AS REQUIRED
5.	Transponder	AS REQUIRED
6.	Runway	IDENTIFIED. Heading verified and Heading Bug synchronized
7.	CAS window	CHECK

----- END ------

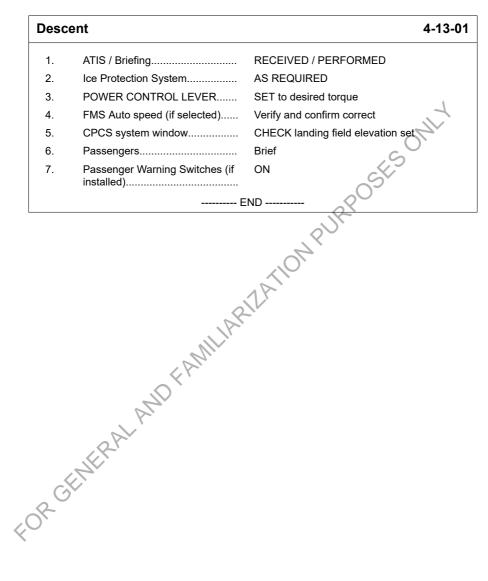
4-9 Takeoff

	off	4-9
1.	ACS BLEED AIR switch	INHIBIT
		(If static takeoff torque is below flat rating and additional torque should be achieved.)
2.	POWER CONTROL LEVER	SET to T/O
		(EPECS sets power to ambient O
	CAL	ITION
exce	eedance.	not protect against all possibilities of
3.	Engine instruments	MONITOR:
		– Torque
		- <\tr
		Ng
	0	Oil Temp / Pressure
	Aircraft	
4.	Aircran	Rotate at V_R , initial climb at V_X or V_Y as required
4. After	lift-off and positive rate of climb:	
After	MILI	
	lift-off and positive rate of climb:	required
After 5.	lift-off and positive rate of climb: Brakes	required PRESS to stop wheel rotation
After 5. 6.	lift-off and positive rate of climb: Brakes Landing Gear Selector	required PRESS to stop wheel rotation UP
After 5. 6. 7.	lift-off and positive rate of climb: Brakes Landing Gear Selector Yaw Damper	required PRESS to stop wheel rotation UP ON

4-10 Flight into Known Icing Conditions

Flight i	nto Known Icing Condition	ons	4-10-01
	WA	RNING	
-	IN ICING CONDITIONS IS PRO	DHIBITED IF THERE IS A KNOWN ECTION SYSTEMS.	
	WA	RNING	1
		IS OR FLIGHT WITH ANY VISIBLE E FOLLOWING FLAP EXTENSION)
– wi	TH OPERATIONAL AIRFRAME	PNEUMATIC DEICE BOOTS = 15	° FLAP.
	TER FAILURE OF THE AIRFR AP.	AME PNEUMATIC DEICE BOOTS =	= 0°
		Note d with full operational status of all air ay be activated before takeoff.	craft
		Note	
Icing cor		Abbreviations, and Terminology.	
Before en	tering icing conditions set the de	icing switches as follows:	
	PROP		
		ON OPEN	
	INERT SEP		ed
5.		Note	
	e boots failure indication can oc re altitudes. Refer to De Ice Boo	cur at low power settings while in hig ts - 3-18-02 Emergency Procedure for	
4.	LH and RH WHSLD switches	ON and LIGHT or HEAVY as requ	uired
		Note	
When DE ICING switch PROP is set to ON and INERT SEP is set to OPEN, th stick shaker/pusher system is automatically reset to provide stall protection at lower angles of attack. The ICE PROTECTION advisory caption PUSHER ICE MODE comes on to inform the aircrew of this mode change. In this mode the shaker and pusher are activated at higher airspeeds.		at ICE	
5.	cing conditions: Wing leading edge d on next page	MONITOR for continual shedding	ofice

Fligh	t into Known Icing Condition	ns	4-10-01			
conti	•					
6.	MFD ICE PROTECTION window	MONITOR for correct function of ic protection systems	e			
	WARNING					
IF ANY OF THE AIRCRAFT ICE PROTECTION SYSTEMS FAIL DURING FLIGHT IN ICING CONDITIONS, EXIT ICING CONDITIONS. CONTACT ATC FOR PRIORITY ASSISTANCE IF REQUIRED.						
	WARNING					
HAI	EVERE ICING CONDITIONS ARE E NDLING FROM AIR TRAFFIC CONT TITUDE CHANGE TO EXIT THE ICIN	ROL TO FACILITATE A ROUTE				
After	departure of icing conditions with resi	idual airframe ice:				
7.	PROP	Maintain ON				
8.	INERT SEP	Maintain OPEN 💫				
This MO	s ensures that the stick shaker/pushe	ote r system is maintained in PUSHER	ICE			
9.	BOOTS	ON and 3 MIN or 1 MIN as require	d			
10.	LH and RH WHSLD	ON and LIGHT or HEAVY as requi	red			
11.	Flaps	Do not extend beyond 15° or if extend to not retract to 0°	ended			
After	removal of residual airframe ice:					
12.	PROP	OFF				
13.	INERT SEP	CLOSED				
14.	BOOTS	OFF				
15.	LH or RH WHSLD	LIGHT or HEAVY as required				
16.	FLAPS	AS REQUIRED				
	E	ND				


4-11 Climb

limb		4-11
1.	Ice Protection System	AS REQUIRED
2.	Autopilot	AS REQUIRED
3.	FMS Auto speed (if selected)	Verify and confirm correct
4.	POWER CONTROL LEVER	SET to MCP
		(EPECS sets power to ambient conditions)
	CAU	ITION
	tor for exceedances. EPECS will edance.	not protect against all possibilities of
5.	ACS BLEED AIR switch	AUTO (if selected INHIBIT for takeoff)
6.	Cabin pressure	Monitor
Engine	e instruments:	St l
∟ngine 7.	Torque	MONITOR (max. 44.8)
8.	ITT	MONITOR (max. 825)
9.	Ng	MONITOR (max. 104)
W/hon	passing transition altitude:	
10.	Baro	SET STD and cross check
	CAU	ITION
engin If the	ne torque exceedances.	
		V

4-12 Cruise

4-12-01 Cruise 1 Cabin Pressurization Monitor 2 POWER CONTROL LEVER...... SET as required 3. Engine instruments..... MONITOR 4. Fuel state..... MONITOR Note On longer flights the digital fuel quantity value can be updated to the actual fuel content by pressing the FUEL RESET soft key, on Systems MFD FUEL window. Reset only when wings are level, pitch within ±3°, with unaccelerated flight and no turbulence present. 5. FMS Auto speed (if selected)..... Verify and confirm correct 6 AS REQUIRED Ice Protection System..... - END **Cruise within RVSM Airspace** 4-12-02 1. Cross check altimeters.... Maximum differences 200 feet (1) 2 Altimeters..... Record indicated altitudes (2) 3 Autopilot / Altitude Hold. Verify altitude hold within ±65 feet (3) Note ⁽¹⁾ Ensure matched altimeter baro-settings (STD). ⁽²⁾ Record pilot, co-pilot and ESIS readings in the flight plan master log upon entering RVSM airspace and each hour thereafter while in RVSM airspace for contingency situations. ⁽³⁾ The flight director couple select switch (L/R) ensures that the autopilot and transponder are coupled to the same ADAHRS channel. ----- END -----

4-13 Descent

4-14 Before Landing

Appro	oach Check	4-14-01
1.	Altimeter	SET
2.	Ice Protection system	AS REQUIRED
3.	Inertial Separator	OPEN, if operating on unprepared surface or for birdstrike protection ${\cal A}$
4.	Fuel Quantity	CHECK
5.	Landing Gear	DOWN (below 180 KIAS)
6.	Taxi and Landing Lights	CHECK DOWN (below 180 KIAS) (AS REQUIRED) AS REQUIRED
7.	Flaps	AS REQUIRED
	With residual airframe ice	SET maximum 15°
	Boot failure	Maintain at 0°
	N	ote
If the		ote
	e optional TAWS Class A or RAAS a	ote re installed, activate FLAP OVRD for ngs are intentionally at less than 40° to
	d an aural flaps annunciation during	
8.	Speed	As indicated by Dynamic Speed Bug (1.3 $V_{\rm S})$
9.	FMS Auto speed (if selected)	Verify and confirm correct
	E	ND
	20	
Final	Check	4-14-02
1.0	Landing Gear	3 Green Lights
2.	Flaps	40° or AS REQUIRED
7	With residual airframe ice	SET maximum 15°
	Boot failure	Maintain at 0°
Continu	led on next page	

	Check	4-14-02
continu	ued	
3.	Speed	REDUCE to Dynamic Speed Bug (1.3 ${\rm V_S})$ and STABILIZED
	Boot failure	130 KIAS
	AOA Deice or PUSHER ICE MODE failure	105 KIAS
4.	Cabin Pressurization	Diff Pressure below 0.7 psi decreasing
5.	AP, AT (if installed), YD (prior to landing)	DISENGAGED (use red AP QD button on the yoke)
	N	ote
For ci - Perf	formance.	eeds for Normal Operations and Section 5
	E	ND
	E	

4-15 Balked Landing (Go-Around)

E	Balked	Landing (Go-Around)		4-15-01
	1.	Go Around switch (if Autopilot engaged)	PRESS	
	2.	POWER CONTROL LEVER	SET to T/O	
			(EPECS sets power to ambient conditions)	1 -
		CAU	TION	
		or for exceedances. EPECS will I dance.	not protect against all possibiliti	es of
	3.	Climb airspeed	85 KIAS	
	4.	Flaps - Normal	SET 15° (max 165 KIAS)	
		Flaps - With residual airframe ice	Maintain at 15°	
		Flaps - Boot failure	Maintain at 0°	
	5.	Climb airspeed - Pusher Normal Mode	95 KIAS	
		Climb airspeed - Pusher Ice Mode	105 KIAS	
		Climb airspeed - Boot failure	130 KIAS	
	6.	Landing Gear Selector	Up with positive rate-of-climb	
	7.	Yaw Damper	ON	
	8.	Flaps - Normal	AS REQUIRED	
		Flaps - With residual airframe ice	Maintain at 15°	
		Flaps - Boot failure	Maintain at 0°	
	9.	Ice Protection System	AS REQUIRED	
	C	CAU	TION	
5	airfrar	event of a balked landing (go-ard ne, the flaps should not be retrac t after selection (remaining red/v	cted. The landing gear may not f	ully
		E	ND	

4-16 Landing

4-16-01 Normal 1 Aircraft..... Touch down main wheels first 2. Aircraft..... Do not flare with high pitch angle 3. Power Control Lever..... **IDLE DETENT** 4. AS REQUIRED Braking..... <u>s</u>fr ----- END ------4-16-02

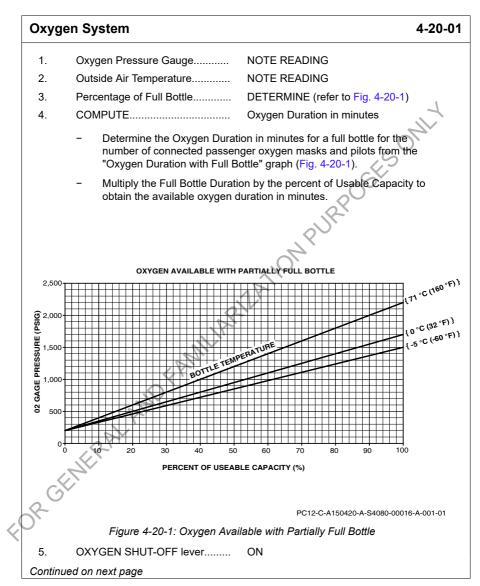
Short Field

1.	Aircraft	Touch down main wheels first
2.	Aircraft	Do not flare with high pitch angle
3.	Power Control Lever	REVERSE
4.	Braking	FIRM
5.	Power Control Lever	IDLE
	E	ND
SP-CF	ENERAL AND FAMILIAR	

4-17 After Landing

After	Landing		4-17-01
Whe	n runway vacated:		
1.	Flaps	UP	
2.	Trims	SET GREEN RANGE	
3.	External Lights	AS REQUIRED	L
4.	Ice Protections switches	OFF or as required	N.
5.	Transponder	STBY or check GND	0
6.	WX Radar	STBY	5
		END	
	RALANDFAMI	UP SET GREEN RANGE AS REQUIRED OFF or as required STBY or check GND STBY CONDUCTOR	
	SK'		

4-18 Shutdown


	W	ARNING			
IN C	ASE OF ENGINE FIRE, DO THE	ENGINE FIRE - 3-7-02 PROCEDURE.			
		Note 4			
-	Allow ITT to stabilize at least two	o minutes at ground idle			
-	Monitor compressor deceleration	n after shutdown for possible engine damage			
-	In case of an unusual amount of smoke from the engine exhaust after shutdown, allow ITT to stabilize and then conduct a Dry Motoring Run - 3A-9-01.				
		Note			
appro moto PFD A dry	If a shutdown is commanded with indicated T1 temperature at or above approximately 23 °C, the EPECS will command a momentary (15 second) dry motoring cycle during the shutdown sequence, indicated by STARTER on the PFD engine window and DRY MOTORING on the CAS window. A dry motoring run at shutdown can always be aborted by setting the Master Power switch to EMERGENCY OFF.				
1.	Power Control Lever	IDLE DETENT			
2.	Parking Brake				
3.	ICE PROTECTION switches				
4.	Inertial Separator	OPEN, if operating on unprepared surface			
5.	Feather Inhibit switch (if installed)	PUSH and HOLD (if desired, refer to note)			
	24	Note			
a nor	After 9 consecutive engine shutdowns using the propeller feather inhibit function, a normal engine shutdown must be performed (refer to Section 2, Limitations, Power Plant Limitations, Feather Inhibit (optional)).				
6.	Engine switch	OFF			
		Note			
push	The optional Feather Inhibit function activates when the Feather Inhibit switch is pushed and held while at the same time the Engine switch is set to OFF. Once the Feather Inhibit status message shows on the CAS, the pilot can release the Feather Inhibit switch and the function will continue to execute automatically.				

Shuto	lown	4-18-01
contir		
7.	CAS Feather Inhibit status (if installed and activated)	СНЕСК
8.	Feather Inhibit switch (if installed and activated)	Release
9.	External Lights switches	OFF
10.	PASS-Warning switches (if installed)	OFF
11.	Main OXYGEN lever	OFF
12.	Engine Oil Level (60 sec. minimum after shutdown)	CHECK. Refill engine with an approved oil
13.	CPCS	CHECK cabin depressurized
14.	STBY BUS switch	OFF C
15.	EPS switch	OFF O
16.	Battery 1 and 2 switches	OFF
17.	Crew oxygen masks	CHECK 100% (if oxygen system is used)
	E	ND
	DR GENERAL AND FAM	ILARI
< ⁽	SP GEL	

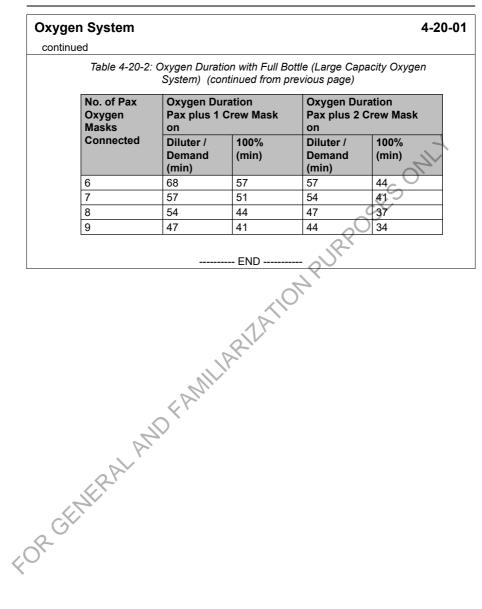
4-19 Parking

arki	ng		4-19
1.	Flight Control Lock	INSTALLED	
2.	Wheel Chocks	AS REQUIRED	
3.	Tail Stand	AS REQUIRED	1
	N Ill the tail stand when the aircraft is p ccted.	ote barked outside and we	et snow fall is
4.	Tie Downs	AS REQUIRED	49
	CAU	JTION	S
	e sure the propeller anchor is pro ne damage due to windmilling wit		event possible
	Ν	ote	
Mak	e sure that the rudder/nose wheel is		
5.	Propeller Anchor	INSTALLED	
6.	External Covers	INSTALLED	
		ND	
	ENERAL AND FAMILIA		

4-20 Oxygen System

Oxyger continue	n System				4-20-01
	Passenger Oxyg	en control valve	e ON		
	Table 4-20-1: Ox		Insert the o outlet and the mask. leave the r and turn th AUTO.	verify proper o For flights abo nasks connect ne Oxygen Cor	ve 10,000 feet ed to the outlets ttrol Valve to
	No. of Pax OxygenOxygen Duration Pax plus 1 Crew		tion	on Oxygen Duration w Mask Pax plus 2 Crew Mask	
	Masks Connected	on Diluter / Demand (min)	100% (min)	on Diluter / Demand (min)	100% (min)
	0	141	59	71	29
	1	70	42	47	24
	2	47	32	35	21
	3	35	26	28	18
	4	28	22	23	16
	5	23	19	20	14
	6	20	17	17	13
	7	17	15	16	12
	8	16	13	14	11
	9	14 🗸 🏹	12	13	10
	Table 4-20-2: Oxygen Duration with Full Bottle (Large Capacity Oxygen System)No. of Pax Oxygen Oxygen Oxygen MasksOxygen Duration Pax plus 1 Crew Mask onOxygen Duration Pax plus 2 Crew Mask on				
	Connected	Diluter /	100%	Diluter /	100%
	GV	Demand (min)	(min)	Demand (min)	(min)
	0	477	200	240	98
$\langle \cdot \rangle$	1	237	142	159	81
*	2	159	108	118	71
	3	118	88	95	61
	4	95	74	78	54
	1 -	1			

Continued on next page


5

78

64

47

68

4-21 Noise Level

The noise levels stated below have been verified and approved by FOCA in noise level test flights conducted on the PC-12/47E. The PC-12/47E model is in compliance with all ICAO Annex 16 and Swiss VEL noise standards applicable to this type.

No determination has been made by EASA (FOCA) for the FAA that the noise levels of this airplane are or should be acceptable or unacceptable for operation at, into, or out of, any airport.

	L.	
ICAO Annex 16, Chapter 10	77.0 dB(A)	
Swiss VEL	77.0 dB(A)	
FAR Part 36 Appendix G	77.0 dB(A).	
Swiss VEL FAR Part 36 Appendix G	ARIANONPURPO	

4-22 Automatic Flight Control System Operation

The flight director uses the data displayed on either PFD for calculation of the guidance commands. The pilot may toggle his selection by pressing the L/R button on the flight controller. The AFCS transmits the pilots selection to the display. The display will indicate the PFD data selected for use, by displaying the couple arrow pointing toward the selected PFD (left/right). At power up, the default setting is L pilot side PFD.

A brief description of the AFCS is given in Section 7 of this POH. Refer to the Pilot's Guide for ener in the AFI in the the Advanced Cockpit Environment (ACE[™]) (powered by Honeywell) for the Pilatus PC-12/47E for complete information on the description and operation of the AFCS

4-23 **Crosswind Operation**

CAUTION

On runways with pools of standing water and/or poor braking action it may not be possible to maintain centerline and/or the correct alignment of the aircraft on the runway in conditions of strong crosswind.

The maximum demonstrated crosswind for takeoff and landing for all flap configurations is - Operator shown in Section 4-2 - Airspeeds for Normal Operations.

For further information on crosswind operation refer to Section 10-3 - Operational Tips.

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

4-24 Flight in Icing Conditions

Icing conditions can exist when:

- The Outside Air Temperature (OAT) on the ground and for takeoff, or Static Air Temperature (SAT) in flight, is 10°C or colder, and visible moisture in any form is present (such as clouds, fog or mist with visibility of one mile or less, rain snow, sleet and ice crystals).
- The OAT on the ground and for takeoff is 10°C or colder when operating on ramps, taxiways or runways, where surface snow, ice, standing water, or slush may be ingested by the engine, or freeze on the engine, or the engine nacelle.
- There are visible signs of ice accretion on the aircraft.

Severe icing may result from environmental conditions during flight in freezing rain, freezing drizzle, or mixed icing conditions (supercooled liquid water and ice crystals) which may result in ice build-up on protected surfaces exceeding the capability of the ice protection system, or may result in ice forming aft of the protected surfaces.

Information on the removal of snow, ice and frost from the aircraft is provided in Section 10, Safety and Operational Tips, Removal of Snow, Ice and Frost from the Aircraft.

Freezing rain, freezing fog, freezing drizzle and mixed conditions and descent into icing clouds from above freezing temperatures can result in excessive accretion of ice on the protected surfaces. They may also result in unback ice forming beyond the protected surfaces over a large percentage of the chordwise extent of the lifting surfaces. This ice cannot be shed and it may seriously degrade performance and control of the aircraft.

Flight in severe icing conditions should be avoided, as this may exceed the capabilities of the aircraft ice protection systems. Severe icing conditions can be identified by excessive ice accretion on the visible parts of the airframe including the protected surfaces. This might affect the aircraft performance and handling qualities, and cause significant loss in powerplant performance. If this occurs request priority assistance from ATC to facilitate a route or an altitude change to exit the icing conditions.

Operation on deep slush or snow covered runways greater than 1 inch (2.5 cm) may result in contamination of the flap drive mechanism resulting in failure to retract. If possible operation on deep slush and snow compacted runways should be avoided.

CAUTION

For flight in heavy precipitation the inertial separator must be open.

For takeoff and landing on runways covered with surface snow, ice, standing water, or slush, the inertial separator must be open.

Detection of icing conditions and ice accretion on the aircraft is by pilot visual identification on the left hand wing leading edge. A wing inspection light is provided for night time operations.

Prior to entering icing conditions, activate all ice protection systems as required. If not already activated, select all systems as required, immediately icing conditions are identified.

The procedures for selection of the ice protection systems are provided in Section 4, Normal Procedures, Flight into Known Icing Conditions.

During all icing encounters or times with visible ice accretion on any part of the airframe the flaps must not be extended beyond certain limits. These limits eliminate the possibility of tailplane stall which results in an uncontrolled aircraft pitch down moment.

- With operational airframe pneumatic deice boots 15° flap
- After failure of the airframe pneumatic deice boots 0° flap.

For the minimum recommended speeds for icing encounters and with residual ice on the airframe, refer to Table 4-24-1.

Table 4-24-1: Minimum Recommended Speeds for Icing Encounters and with Residual Ice on the Airframe

Configuration	Minimum recommended speed (KIAS)
Climb, Flaps 0°, Pusher Ice Mode	135
Holding Pattern, Flaps 0°	145 to 175
Landing Approach, Flaps 15°, Pusher Ice Mode	105
Landing Approach, Flaps 0°, Boot Failure, Pusher Ice Mode	130
Balked Landing (Go-Around) Flaps 15°, LG down, Pusher Ice Mode	105
Balked Landing (Go-Around) Boot failure, Flaps 0°, LG down, Pusher Ice Mode	130

Flight in icing conditions is only permitted with full operational status of all aircraft de-icing systems. This includes:

- Propeller Deice
- Wing and Horizontal Tail Deice Boots
- Inertial Separator
- Windshield Deice
- Probes Deice
- Stick Pusher Ice Mode

The propeller de-ice is activated from the ICE PROTECTION switch panel by the switch labeled PROPELLER being pushed to ON. In this mode the propeller de-ice system will be automatically selected to the correct cycle with reference to outside air temperature. No further aircrew input is required. The green ICE PROTECTION caption PROPELLER will be continuously illuminated. If a system failure occurs when activated, the green PROPELLER caption will go off and the CAS caption **Propeller De Ice** will be illuminated and an aural gong will sound.

The wing and horizontal tail de-ice boots are activated from the ICE PROTECTION switch panel by the switch labeled BOOTS being pushed to either 3MIN or 1MIN. 3MIN is to be selected in icing conditions with moderate ice accretion rates as judged by the aircrew. 1MIN is to be selected in icing conditions with high ice accretion rates. When activated in either 1MIN or 3MIN mode and operating correctly, the green ICE PROTECTION caption BOOTS will be continuously illuminated. If a system failure occurs when activated, the green BOOTS caption will go off and the CAS **De Ice Boots** caption will be illuminated and an aural gong will sound.

The engine inertial separator is activated to its open (icing encounter) position from the ICE PROTECTION switch panel by the switch labeled INERT SEP being pushed to OPEN. Once activated the inertial separator door will reach its fully open position in approximately 30 seconds and the green ICE PROTECTION caption INERT SEP will be continuously illuminated. If the door does not reach its fully open position or moves away from its fully open position when still selected, the green INERT SEP caption will go off and the CAS caption Inertial Separator will be illuminated and an aural gong will sound.

The LH side and RH side windshield deice is activated from the ICE PROTECTION switch panel by two switches labeled LH WSHLD and RH WSHLD respectively, being pushed to either LIGHT or HEAVY depending on the severity of the icing encounter.

Deicing of all probes, AOA (vane and mounting plate), pitot and static, is activated from the ICE PROTECTION switch panel by a switch labeled PROBES being pushed to ON. If deicing of the left pitot or right pitot probes fails when selected, then either the CAS caption **Pitot 1 Heat** or **Pitot 2 Heat** will be illuminated and an aural gong will sound. If the static ports fail a CAS **Static Heat** caption will be illuminated and an aural gong will sound. If deicing of the AOA probes fails when selected, then the CAS caption **AOA De Ice** will be illuminated and an aural gong will sound.

When the propeller de-ice is selected to ON and the inertial separator selected to OPEN, the stall protection system, stick pusher/shaker system is re-datumed to provide both shake and push functions at lower angles of attack and higher speeds. This is to protect against the natural stall through the effects of residual ice on the protected surfaces of the airfoil leading edges. When the system is in the re-datum mode, the aircrew are alerted by illumination of the green ICE PROTECTION caption PUSHER ICE MODE. Failure of the system in ice mode will result in the caption being extinguished and the CAS caption **Pusher** will be illuminated and an aural gong will sound.

Night time flight in icing conditions is only authorized with full operational status of all the aircraft de-icing systems above, plus the wing inspection light.

The wing inspection light is activated from the overhead EXTERNAL LIGHTS switch panel by the switch labeled WING being moved to on. No functional or failure indications are provided.

A full description of all of the de-ice systems, their switch terminology and caution and warning logic is provided in Section 7, Airplane and Systems Description, Airfoil De-ice System.

The probes de-ice should be selected to on, prior to, and during all flights.

During the icing encounter the pneumatic de-ice boots will operate continuously in either 3min or 1min cycle mode as selected by the aircrew. During this time the aircrew should frequently monitor the continual shedding of ice from the wing leading edge and the airframe for ice accretion on all visible surfaces that could affect aircraft controllability. It should be noted that some residual ice will be maintained on the wing leading edge during cycling of the boots.

During the icing encounter continue to monitor the ICE PROTECTION window and the CAS for correct function of the ice protection systems.

During flight in icing conditions the aircraft may be subject to a slight degradation in aircraft performance and engine performance. This may be recognized by a required increase in engine power to maintain a constant indicated airspeed and an increased engine ITT to maintain a constant power respectively. If failure of any of the ice protection systems occurs this degradation may become more severe. After such failure the pilot should make immediate arrangements for departure of icing conditions as soon as practicable. If required ATC priority assistance should be requested.

The emergency procedures, concerning failure of the ice protection systems during flight in icing conditions, are provided in Section 3, Emergency Procedures, Deice Systems.

On departure from icing conditions the inertial separator (INERT SEP) and the propeller deice system (PROPELLER) should be kept OPEN and ON respectively until all visible and unprotected areas of the aircraft are observed as being free of ice. This protects the engine from possible ice ingestion and maintains the stick shaker/pusher computer in PUSHER ICE MODE therefore protecting the aircraft against the onset of natural stall. The flaps are not to be extended beyond 15° or in the case of deice boot failure, left at 0°. If the flaps are in an extended position, do not retract them until the airframe is clear of ice.

If flaps are extended to positions that are not allowed, the CAS caption **Flaps EXT Limit** will be displayed and an aural gong will sound.

On departure of icing conditions the deice boots are to be selected OFF and the windshield heat is to be selected as required for good visibility, irrespective of the presence of residual ice.

Once all visible protected and unprotected areas are observed as being free of ice then the inertial separator and the propeller deice system can be selected CLOSED and OFF respectively. This will return the stick shaker/pusher computer to its normal mode. The flaps can be extended or retracted to any required position.

When performing a landing approach after an icing encounter and with residual ice on the airframe the minimum landing speeds defined above should be observed. This will prevent stick shaker activation in PUSHER ICE MODE.

When performing a landing approach after an icing encounter and with residual ice on the airframe the flap limitations defined above must be observed.

Of note, the tailplane may have residual ice that is not visible to the pilot. The speeds listed as minimum recommended speeds for icing encounters should be adhered to and recognized as MINIMUM recommended speeds following any icing encounter where there is even the slightest suspicion that the airframe may have residual ice. As additional operational guidance and, if possible, the pilot should maintain a minimum airspeed of 150 KIAS, in the clean configuration, throughout the IFR approach procedures, including initial and intermediate segments. It is also recommended to fly the approach segment clean as well as to establish the landing configuration with gear down and flaps 15° (pusher ice mode DSB centered) not later than passing through 1000 ft. AGL.

After you have encountered, or suspect you have encountered, severe icing, you should apply the procedures as given in Section 4, Normal Procedures, Severe Icing Conditions.

In case of a balked landing go around after an icing encounter, the climb speeds defined above should be maintained. This will prevent stick shaker activation in PUSHER ICE MODE. In case of a balked landing go around after an icing encounter, the flap position should not be changed and should be maintained at the approach position.

The landing gear can be retracted but a locked indication may not be achieved due to ice contamination of the up position switch striker.

Use of ICE X (B.F. Goodrich Brand Name) improves the shedding capability of the pneumatic de-ice boots. Its use (see Aircraft Maintenance Manual) is recommended but not mandatory.

WATION PURPOSES ONLY Left ' This Page Intentionally Left Blank

4-25 Severe Icing Conditions

Severe icing may result from environmental conditions outside of those for which the airplane is certificated. Flight in freezing rain, freezing drizzle, or mixed icing conditions (supercooled liquid water and ice crystals) may result in ice build-up on protected surfaces exceeding the capability of the ice protection system, or may result in ice forming aft of the protected surfaces. This ice may not be shed using the ice protection systems, and may seriously degrade the performance and controllability of the airplane.

The following weather conditions may be conductive to severe in-flight icing:

- Visible rain at temperatures below 0 degrees Celsius ambient air temperature
- Droplets that splash or splatter on impact at temperatures below 0 degrees Celsius ambient air temperature

The following procedures are for exiting the severe icing environment and are applicable to all flight phases from takeoff to landing. Monitor the ambient air temperature. While severe icing may form at temperatures as cold as -18 degrees Celsius, increased vigilance is warranted at temperatures around freezing with visible moisture present. If the visual cues specified in Section 2, Limitations, Icing Limitations for identifying severe icing conditions are observed, accomplish the following:

- Report the weather conditions to Air Traffic Control
- Immediately request priority handling from Air Traffic Control to facilitate a route or an altitude change to exit the severe icing conditions in order to avoid extended exposure to flight conditions more severe than those for which the airplane has been certificated.

It should be recalled that flight in severe long conditions may exceed the capabilities of the aircraft ice protection systems. If severe icing has been encountered or suspected, even after having exited icing conditions, the pilot should consider maintaining speeds higher than the minimum recommended speeds to account for the possibility of degraded flying qualities due to excessive residual ice.

FOR GENERAL AN

WATION PURPOSES ONLY Left ' This Page Intentionally Left Blank

4-26 CPCS Low Cabin Mode Operation

A semi-automatic mode called 'Low Cabin' is available, whereby the pilot can use Landing Field Elevation (LFE) as the target cabin altitude. The targeted cabin altitude can be the automatic LFE value from the FMS or the manually entered LFE. Low Cabin mode can be selected on the ENVIRONMENT window of the systems MFD. As soon as the LOW CAB annunciator comes on, the cabin altitude is controlled to maintain the LFE selected value, limited only by the maximum pressure differential of 5.75 psi (depending on cruise altitude). From this cruise altitude upwards, the cabin altitude will increase to maintain max Dp.

The following Table gives the aircraft altitude for a selected LFE from which upwards the maximum pressure differential of 5.75 psid will be reached and maintained.

Selected LFE (ft)	Aircraft altitude with max Dp 5.75 psid
-2000	10000
-1500	10700
-1000	11400
-500	12100
SL	12900
500	13600
1000	14400
1500	15200
2000	16000
2500	16800
3000	17600
3500	18400
4000	19250
4500	20100
5000	20900
5500	21800
6000	22600
6500	23500
7000	24400
7500	25300
8000	26200
8500	27100
9000	28100
9500	29000
10000	30000

WATION PURPOSES ONLY Left r This Page Intentionally Left Blank

4-27 SV Selection and Brightness Control

If installed, SV is automatically activated at start-up.

SV can be turned ON/OFF by selecting or deselecting the "SVS ON" checkbox from the OVRLY menu, which is located just above the HSI on the outboard side of either PFD (Refer to Fig. 4-27-1).

The SV brightness control "SVS BRT" is available if SV is selected ON. With "SVS BRT" the terrain and sky dimming can be controlled by placing the cursor over SVS BRT and using the Cursor Control Device (CCD) or Touch Screen Controller (TSC) rotary knobs / MF Controller scroll wheel to set the brightness.

ICN-12-C-A150427-A-S4080-00393-A-001-01

Figure 4-27-1: PFD OVRLY Menu

Note

When pointing directly towards the sun, or with the sun shining directly onto the PFD and during night operations, it is important to adjust the SV dimming to achieve a good level of contrast and readability on the PFD.

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

4-28 LPV/LP Detailed Operating Procedures

4-28-1 Introduction

Normal operating procedures for LPV/LP Approach are described in the Pilot's Guide for the Advanced Cockpit Environment (ACE[™]) (powered by Honeywell) for the Pilatus PC-12/47E.

4-28-2 Operating Procedures for Approach to LPV Minimum

- Retrieve approach chart for the RNAV approach
- Select RNAV approach on the STAR/Landing FMW page
- Verify LPV/LP minimum is selected in the RNAV minimum field
- Compare FMS Flightplan to approach charts (Approach name, Waypoints, Altitudes, Missed Approach)

Note

If INAV message "FMS-LPV miscompare" or "FMS-LP miscompare" is displayed reloading of the approach is required.

- Set Minimums for the selected approach
- Verify FMS is selected as Primary NAV source
- Verify NAV preview is deselected
- If terminal area is entered, a white LPV or LP status indicator will appear on PFD
- If the FAF is the active waypoint or the present position is within 5 nm from the FAF, the vertical deviation pointer (right hand side of the vertical deviation scale) will be displayed as hollow or a solid pointer (Refer to Section 7 for System Description)
- Arm the approach mode by pressing the APR button on the Flight Guidance Panel as required

Note

The autopilot lateral approach mode (NAV) must be captured before the vertical approach mode (VGP).

Intercept Final Approach Course

Capture LPV/LP approach using the lateral and vertical deviation pointers. The LPV/LP status indicator will flash for 5 seconds and turn green.

Note

LPV/LP can be captured within 2 nm miles from the FAF. Green APP indication will be displayed on the HSI.

- Verify NAV and VGP are the active autopilot modes (if required)
- LPV Approach:

Continue approach to LPV minimum by using lateral and vertical deviation pointers

LP Approach:

Continue approach to LP minimum by using lateral deviation pointer and baro altitude to comply with published approach procedure (vertical deviation pointer is advisory only)

- Monitor the LPV/LP status indicator
- Disengage autopilot below 200ft

4-28-3 Flight Director/Autopilot Coupled Operation

FS ONLY The LPV/LP approach mode can be armed via the APR button on the Flight Guidance Panel as soon as the vertical deviation pointer "LPV" or "LP" is displayed on the PFD. The autopilot approach modes are displayed as NAV (lateral) and VGP (vertical).

SECTION 5

Performance (EASA Approved) Table of Contents

	Subject		Page
	5-1	Standard Tables	5-1-1
	5-1-1	General	5-1-1
	5-1-2	Standard Tables	5-1-3
	5-2	NOT USED	5-2-0
	5-3-1	NOT USED Performance Data Performance Data - Stall Speeds Performance Data - Climb Performance Performance Data - Cruise Performance Performance Data - Cruise Performance	5-3-1-1
	5-3-1	Performance Data - Stall Speeds	5-3-1-1
	5-3-2	Performance Data - Takeoff Performance	5-3-2-1
	5-3-3	Performance Data - Climb Performance	5-3-3-1
	5-3-4	Performance Data - Cruise Performance	5-3-4-1
	5-3-5	Performance Data - Specific Air Range	5-3-5-1
	5-3-6	Performance Data - Holding Time and Fuel	5-3-6-1
	5-3-7	Performance Data - Descend Performance	5-3-7-1
	5-3-8	Performance Data - Power-off Glide Performance	5-3-8-1
	5-3-9	Performance Data - Balked Landing Performance	5-3-9-1
	5-3-10	Performance Data Landing Performance	5-3-10-1
	5-4-1	Flight in Icing Conditions	5-4-1-1
	5-4-1	Flight in Icing Conditions - General	5-4-1-1
	5-4-2	Flight in Icing Conditions - Flaps	5-4-2-1
	5-4-3	Flight in Icing Conditions - Stall Speeds	5-4-3-1
	5-4-4	Flight in Icing Conditions - Engine Torque	5-4-4-1
	5-4-5	Flight in Icing Conditions - Takeoff Performance	5-4-5-1
	5-4-6	Flight in Icing Conditions - Accelerate-Stop Performance	5-4-6-1
7	5-4-7	Flight in Icing Conditions - Maximum Rate of Climb	5-4-7-1
	5-4-8	Flight in Icing Conditions - Holding Endurance	5-4-8-1
	5-4-9	Flight in Icing Conditions - Balked Rate of Climb	5-4-9-1
	5-4-10	Flight in Icing Conditions - Landing Performance	5-4-10-1
	5-5-1	Flight Planning Example	5-5-1-1
	5-5-1	Flight Planning Example	5-5-1-1

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

5-1 Standard Tables

5-1-1 General

This section contains all of the required and complementary performance data for airplane operation. Aircraft performance associated with optional equipment and systems which require supplements is provided in Section 9, Supplements.

The performance information presented in this section is derived from actual flight test data corrected to standard day conditions and analytically expanded for the different parameters such as weight, altitude, and temperature, etc. This information does not account for many factors that the pilot must evaluate before each takeoff such as pilot proficiency, aircraft condition, runway surface and slope other than that specified, or the effect of winds aloft. When necessary, a performance chart (table) will specify the aircraft configuration and the procedure to achieve the published performance.

Note

The takeoff, accelerate-stop and landing distance performance chart data is based on a **DRY TARMAC RUNWAY** surface. Runways that are wet, or contaminated with slush or snow will adversely affect the runway coefficient of friction and subsequently increase the takeoff, accelerate-stop and landing distance.

A Flight Planning Example is provided to assist the pilot in the preflight performance calculations as required by the operating regulations. Each performance chart (table) has an example plotted to indicate the proper sequence in which to use the chart and determine accurate performance data.

All performance data is limited to between the -55 °C (-67 °F) and +50 °C (122 °F) outside air temperature limits. Some tables presented in this section show data for temperatures below -55 °C (-67 °F) which is purely for ease of interpolation between data points. These temperature areas in the tables are shaded.

Performance data regarding takeoff, landing and accelerate-stop distances is presented up to 14,000 ft. This does not however, imply an operational limitation of the aircraft. Field performance data at higher altitudes can be supplied under special request.

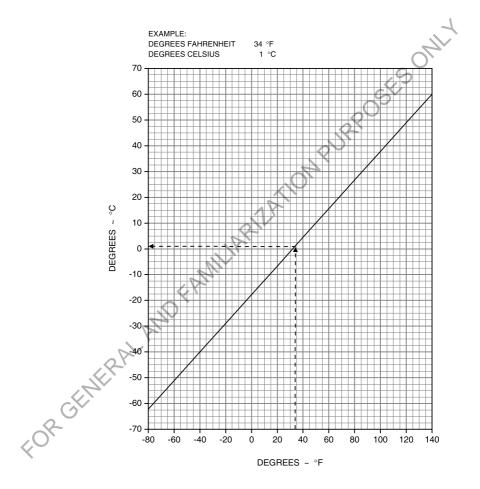
The stall speeds shown in the performance charts are achieved at an entry rate of 1 knot/ second. Maximum altitude loss observed during the stall was 300 feet. During an accelerated stall, a rapid pitch-down in excess of 30° may result with an altitude loss of up to 500 feet.

When landing with flaps set to less than 40°, the total landing distances will be increased by the following factors:

. (Flap Setting	Factor
$\langle \rangle$	0°	1.83
	15°	1.31
	30°	1.22

The ADAHRS removes most of the error due to static pressure source measurements. A small residual error exists; this error is typically no more than 1 knot on airspeed or 30 ft on altimeter readings for retracted flaps at all airspeeds and for extended flaps below 100 KIAS.

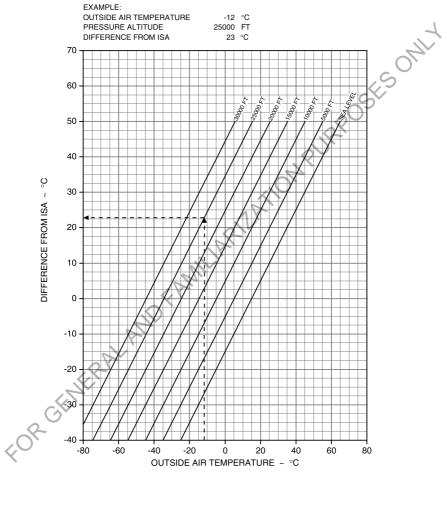
The ADAHRS SAT indication in the air may be treated as OAT for reading the performance graphs and/or table entries. SAT indication on the ground may not be accurate.


The formulas for the conversion of standard format to metric equivalent and vice versa are given in Section 1, Conversion Information.

FOR GENERAL AND FAMILARIA TION PURPOSES ONLY

Pilot's Operating Handbook Issue date: Mar 06, 2020

5-1-2 Standard Tables


FAHRENHEIT TO CELSIUS CONVERSION

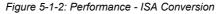

ICN-12-C-A150501-A-S4080-00235-A-001-01

Figure 5-1-1: Performance - Fahrenheit to Celsius Conversion

ISA TEMPERATURE CONVERSION

ICN-12-C-A150501-A-S4080-00236-A-001-01

Pilot's Operating Handbook Issue date: Mar 06, 2020

US GALLONS TO LITERS CONVERSION

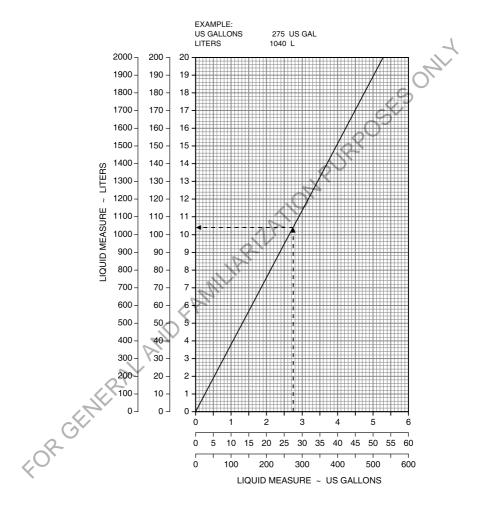
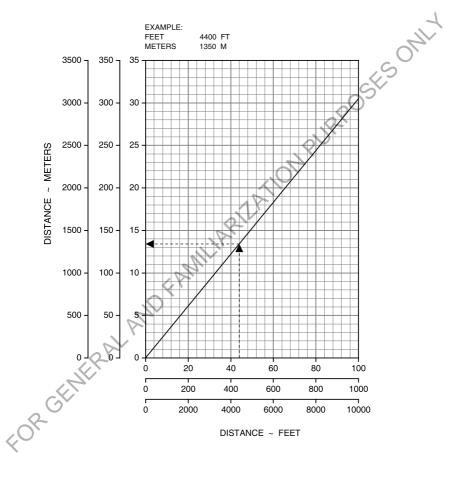
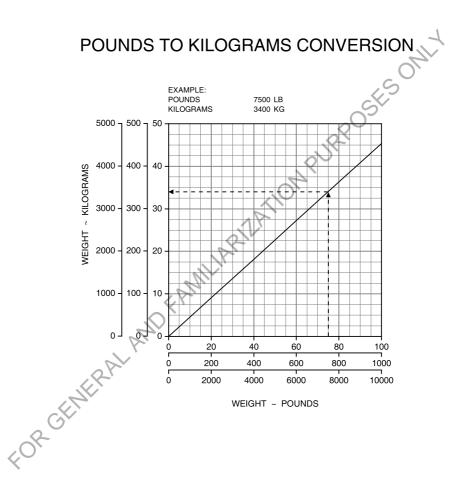
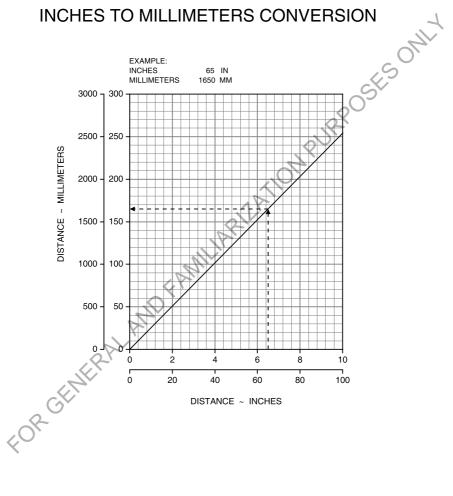



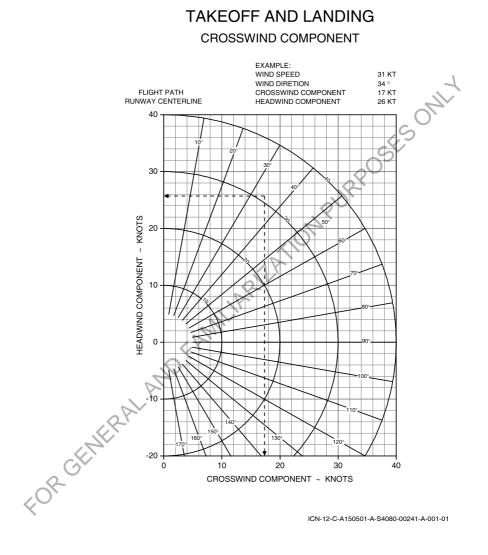
Figure 5-1-3: Performance - U.S. Gallons to Liters Conversion

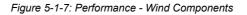

FEET TO METERS CONVERSION

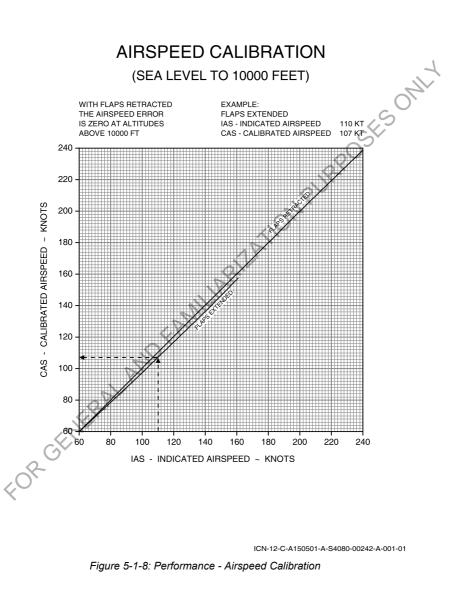
ICN-12-C-A150501-A-S4080-00238-A-001-01


Figure 5-1-4: Performance - Feet to Meters Converion

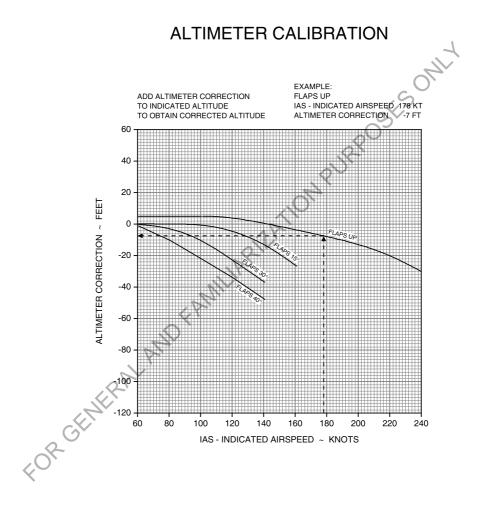
Pilot's Operating Handbook Issue date: Mar 06, 2020


ICN-12-C-A150501-A-S4080-00239-A-001-01

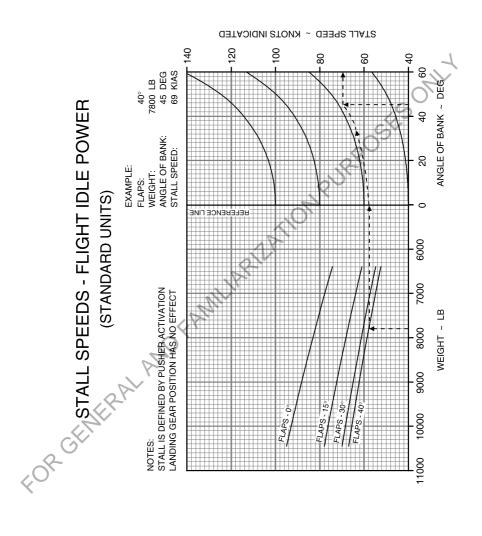

Figure 5-1-5: Performance - Pounds to Kilograms Conversion



ICN-12-C-A150501-A-S4080-00240-A-001-01

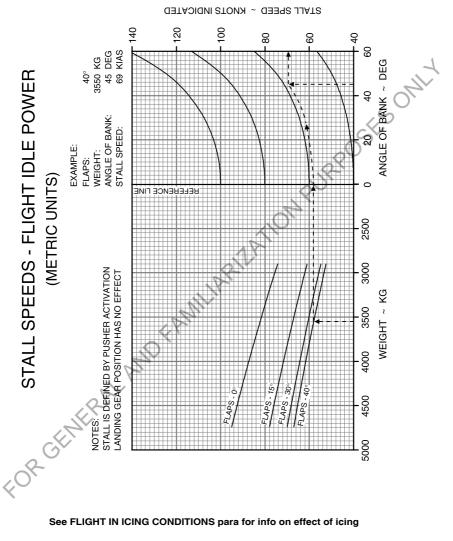

Figure 5-1-6: Performance - Inches to Millimeters Conversion

Pilot's Operating Handbook Issue date: Mar 06, 2020



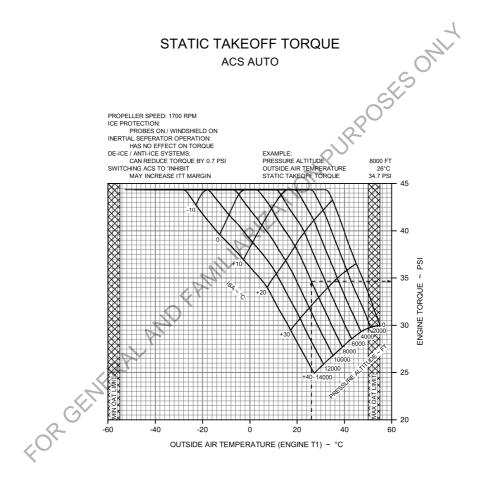
ICN-12-C-A150501-A-S4080-00243-A-001-01

Figure 5-1-9: Performance - Altimeter Correction

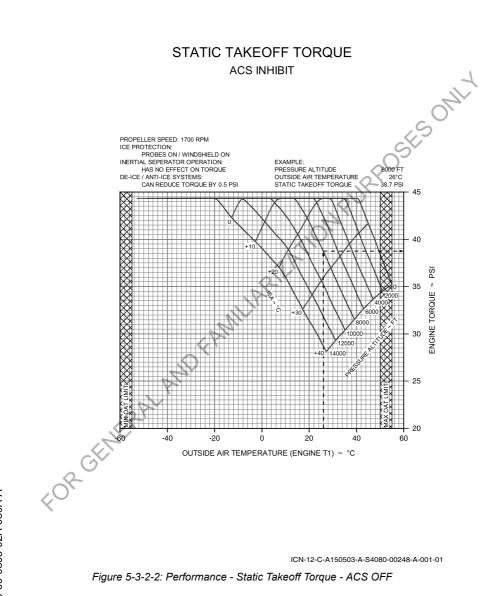

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

5-3-1 Performance Data - Stall Speeds

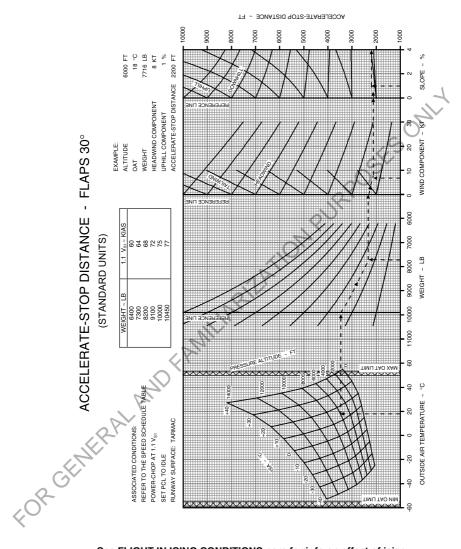
ICN-12-C-A150503-A-S4080-00245-A-001-01


Figure 5-3-1-1: Performance - Stall Speeds KIAS - Flight Idle Power (standard units)

ICN-12-C-A150503-A-S4080-00246-A-001-01


Figure 5-3-1-2: Performance - Stall Speeds KIAS - Flight Idle Power (metric units)

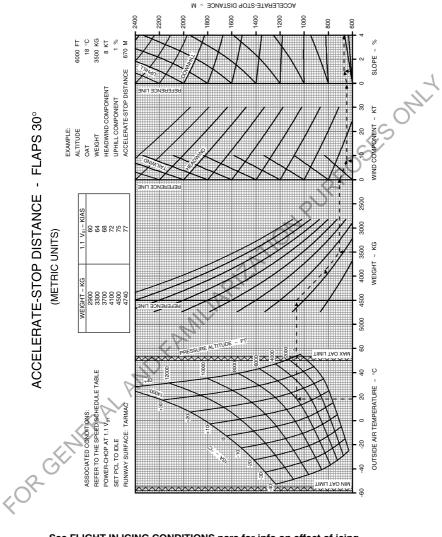
5-3-2 Performance Data - Takeoff Performance



ICN-12-C-A150503-A-S4080-00247-A-001-01

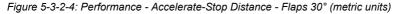
Figure 5-3-2-1: Performance - Static Takeoff Torque

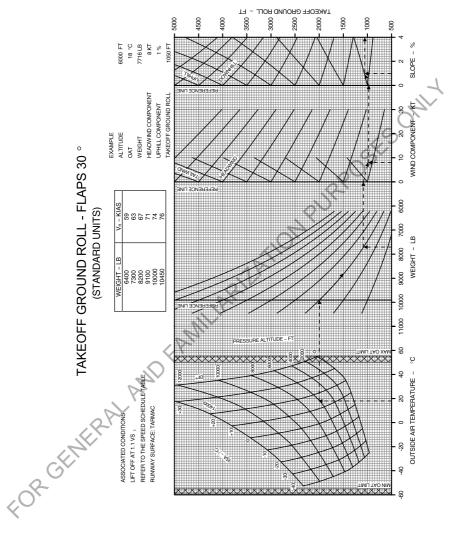
Pilot's Operating Handbook Issue date: Mar 06, 2020



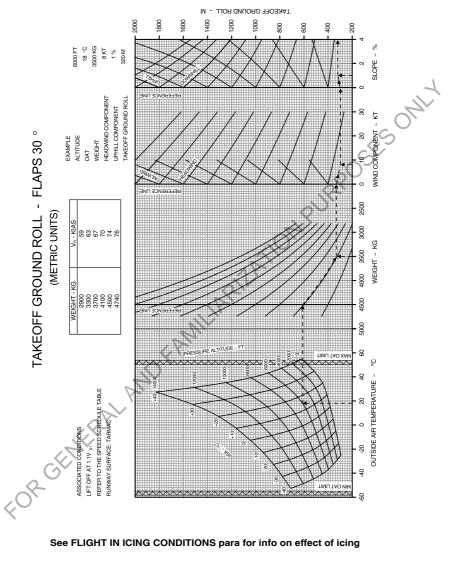
See FLIGHT IN ICING CONDITIONS para for info on effect of icing

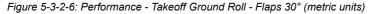
ICN-12-C-A150503-A-S4080-00249-A-001-01


Figure 5-3-2-3: Performance - Accelerate-Stop Distance - Flaps 30° (standard units)


Section 5 - Performance (EASA Approved) Performance Data - Takeoff Performance

ICN-12-C-A150503-A-S4080-00250-A-001-01




See FLIGHT IN ICING CONDITIONS para for info on effect of icing

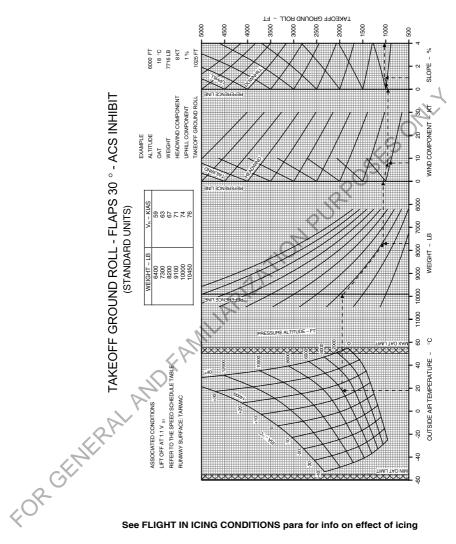
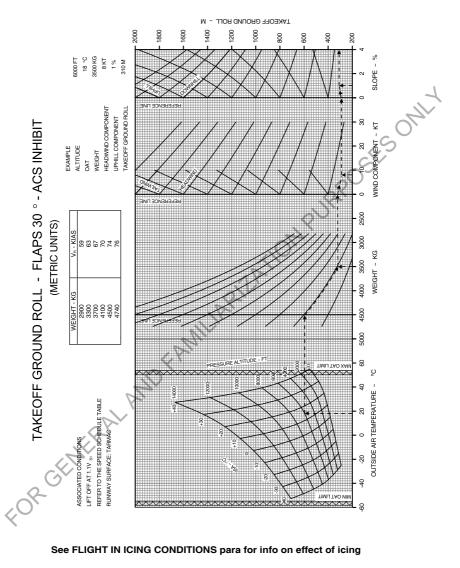
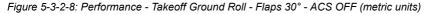

ICN-12-C-A150503-A-S4080-00253-A-001-01

Figure 5-3-2-5: Performance - Takeoff Ground Roll - Flaps 30° (standard units)


ICN-12-C-A150503-A-S4080-00254-A-001-01



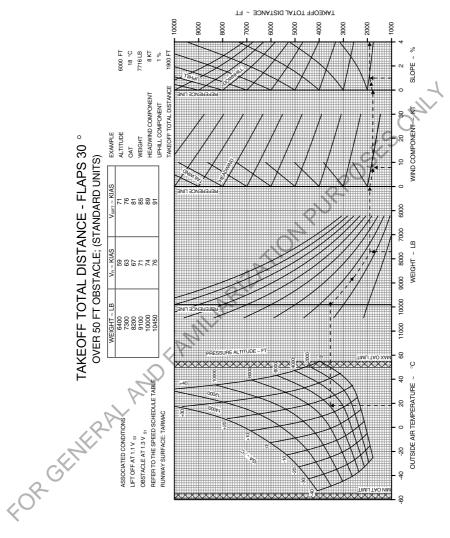
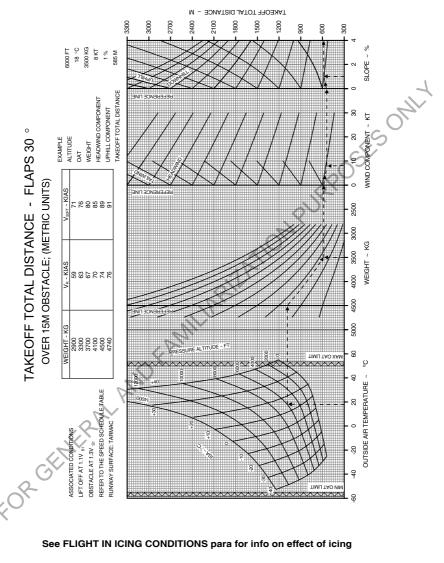
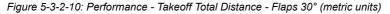
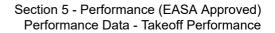

ICN-12-C-A150503-A-S4080-00255-A-001-01

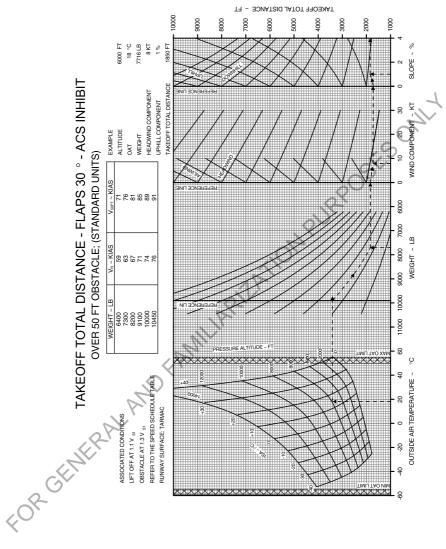
Figure 5-3-2-7: Performance - Takeoff Ground Roll - Flaps 30° - ACS OFF (standard units)

ICN-12-C-A150503-A-S4080-00256-A-001-01

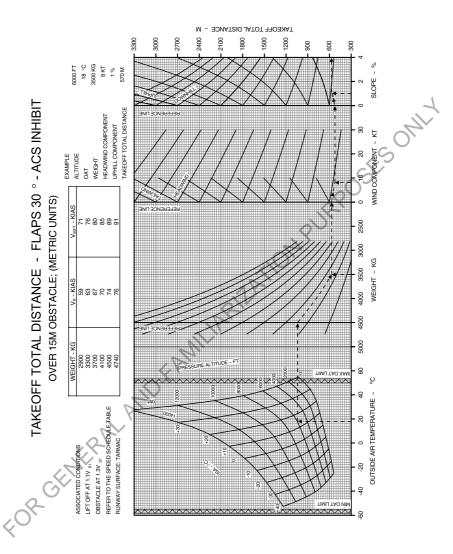



See FLIGHT IN ICING CONDITIONS para for info on effect of icing


ICN-12-C-A150503-A-S4080-00257-A-001-01

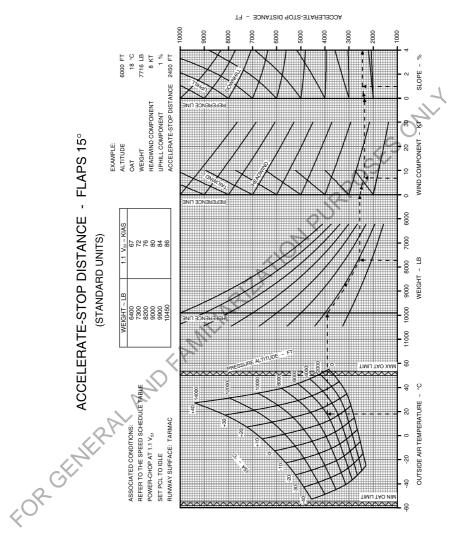

Figure 5-3-2-9: Performance - Takeoff Total Distance - Flaps 30° (standard units)

ICN-12-C-A150503-A-S4080-00258-A-001-01



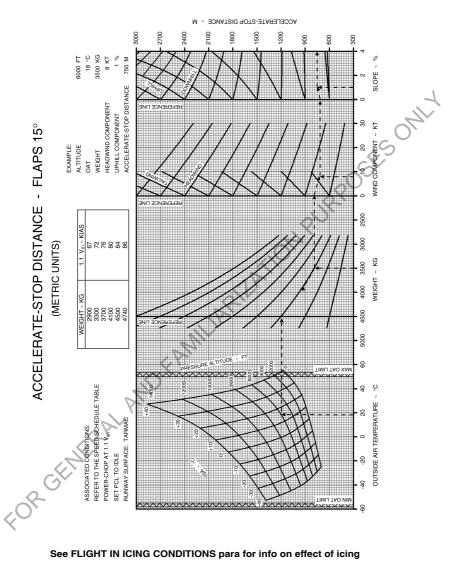
See FLIGHT IN ICING CONDITIONS para for info on effect of icing

ICN-12-C-A150503-A-S4080-00259-A-001-01


Figure 5-3-2-11: Performance - Takeoff Total Distance - Flaps 30° - ACS OFF (standard units)

See FLIGHT IN ICING CONDITIONS para for info on effect of icing

ICN-12-C-A150503-A-S4080-00260-A-001-01


Figure 5-3-2-12: Performance - Takeoff Total Distance - Flaps 30° - ACS OFF (metric units)

See FLIGHT IN ICING CONDITIONS para for info on effect of icing

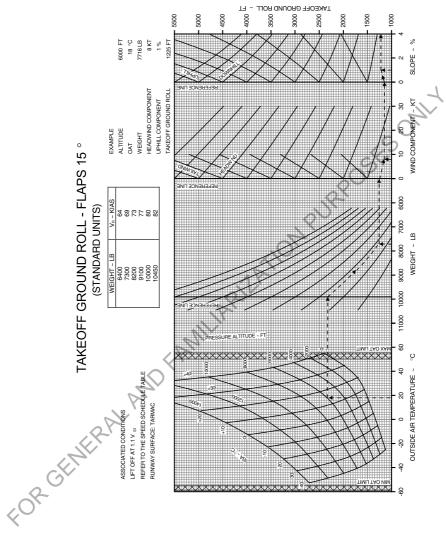
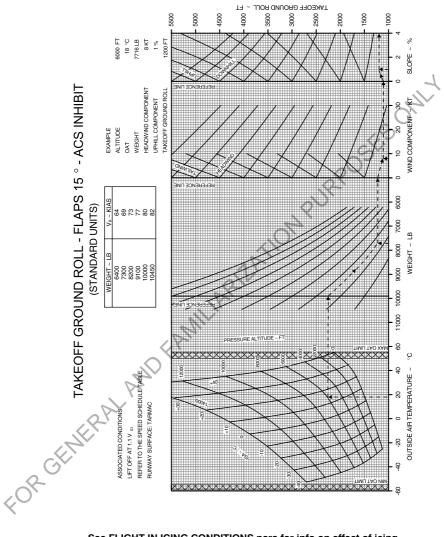

ICN-12-C-A150503-A-S4080-00261-A-001-01

Figure 5-3-2-13: Performance - Accelerate-Stop Distance - Flaps 15° (standard units)

ICN-12-C-A150503-A-S4080-00262-A-001-01

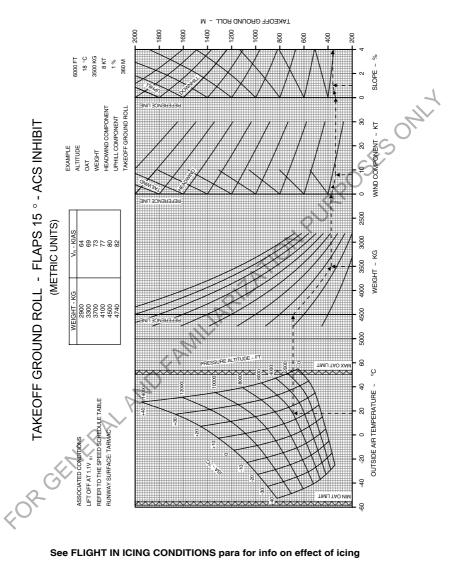
See FLIGHT IN ICING CONDITIONS para for info on effect of icing

ICN-12-C-A150503-A-S4080-00265-A-001-01


Figure 5-3-2-15: Performance - Takeoff Ground Roll - Flaps 15° (standard units)

See FLIGHT IN ICING CONDITIONS para for info on effect of icing

ICN-12-C-A150503-A-S4080-00266-A-001-01


Figure 5-3-2-16: Performance - Takeoff Ground Roll - Flaps 15° (metric units)

See FLIGHT IN ICING CONDITIONS para for info on effect of icing

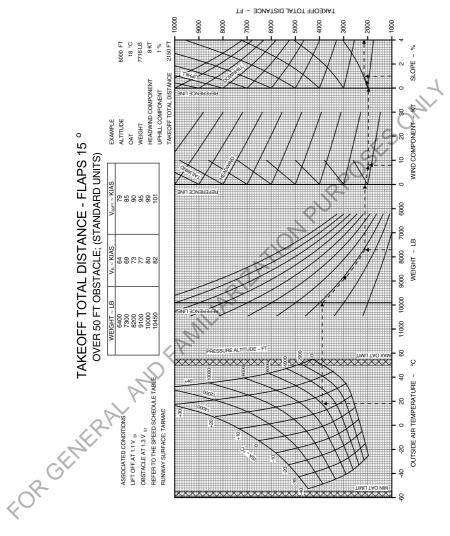
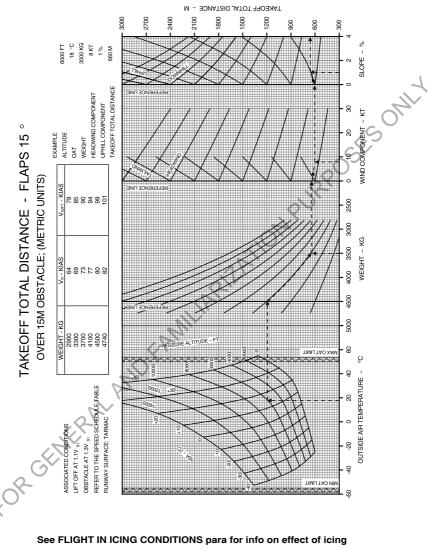
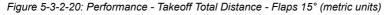

ICN-12-C-A150503-A-S4080-00267-A-001-01

Figure 5-3-2-17: Performance - Takeoff Ground Roll - Flaps 15° - ACS OFF (standard units)

ICN-12-C-A150503-A-S4080-00268-A-001-01




See FLIGHT IN ICING CONDITIONS para for info on effect of icing

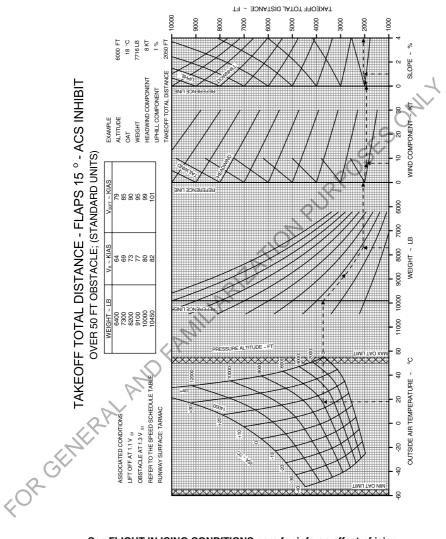
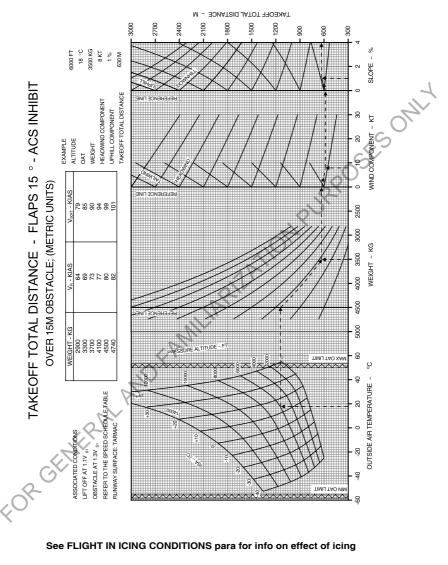
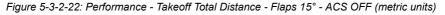

ICN-12-C-A150503-A-S4080-00269-A-001-01

Figure 5-3-2-19: Performance - Takeoff Total Distance - Flaps 15° (standard units)

ICN-12-C-A150503-A-S4080-00270-A-001-01




See FLIGHT IN ICING CONDITIONS para for info on effect of icing

ICN-12-C-A150503-A-S4080-00271-A-001-01

Figure 5-3-2-21: Performance - Takeoff Total Distance - Flaps 15° - ACS OFF (standard units)

ICN-12-C-A150503-A-S4080-00272-A-001-01

5-3-3 Performance Data - Climb Performance

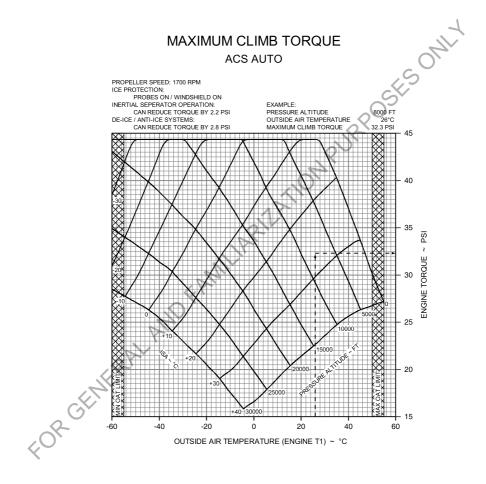
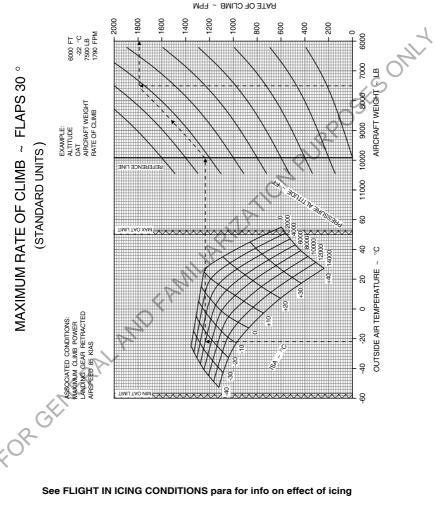
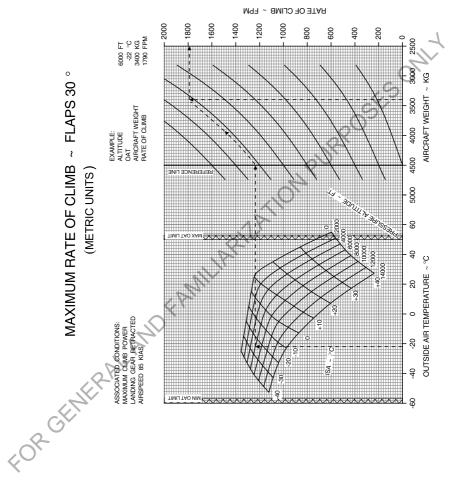
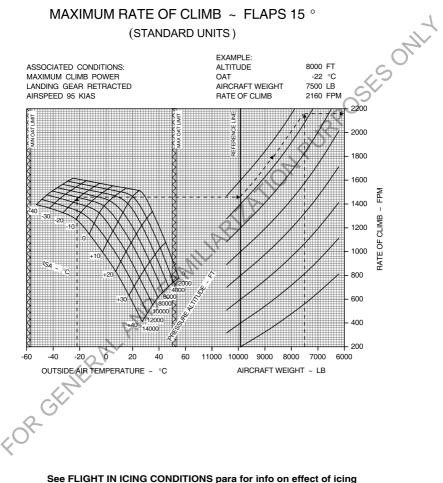
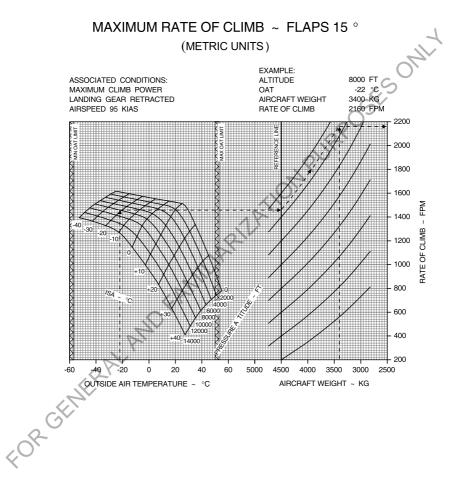




Figure 5-3-3-1: Performance - Maximum Climb Torque

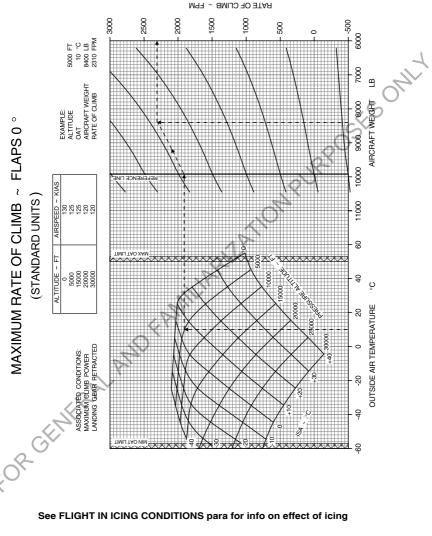


See FLIGHT IN ICING CONDITIONS para for info on effect of icing

ICN-12-C-A150503-A-S4080-00275-A-001-01


Figure 5-3-3-3: Performance - Maximum Rate Of Climb - Flaps 30° (metric units)

ICN-12-C-A150503-A-S4080-00276-A-001-01


Figure 5-3-3-4: Performance - Maximum Rate Of Climb - Flaps 15° (standard units)

See FLIGHT IN ICING CONDITIONS para for info on effect of icing

ICN-12-C-A150503-A-S4080-00277-A-001-01

Figure 5-3-3-5: Performance - Maximum Rate Of Climb - Flaps 15° (metric units)

ICN-12-C-A150503-A-S4080-00278-A-001-01

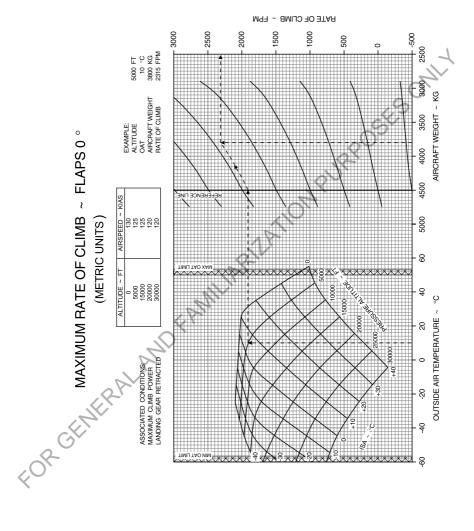
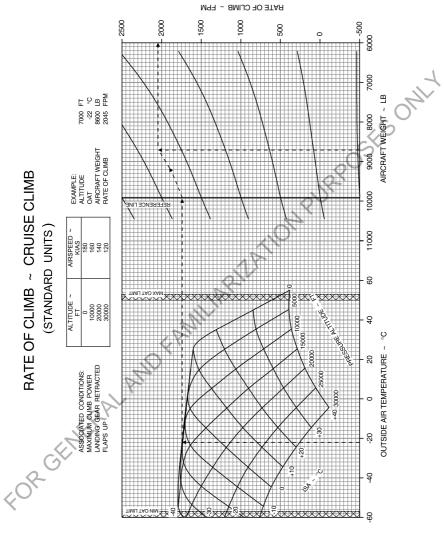



Figure 5-3-3-7: Performance - Maximum Rate Of Climb - Flaps 0° (metric units)

ICN-12-C-A150503-A-S4080-00280-A-001-01

Figure 5-3-3-8: Performance - Rate Of Climb - Cruise Climb (standard units)

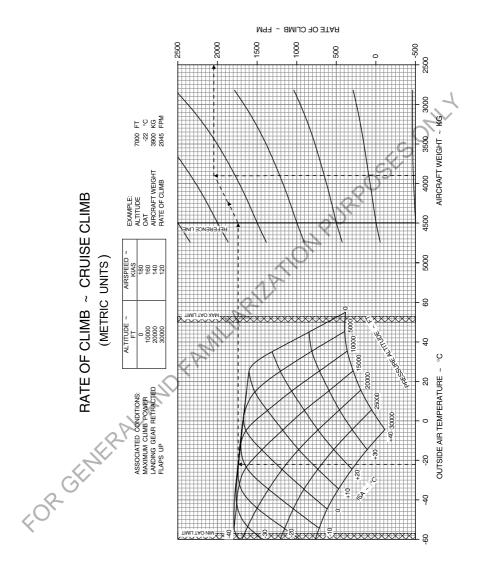
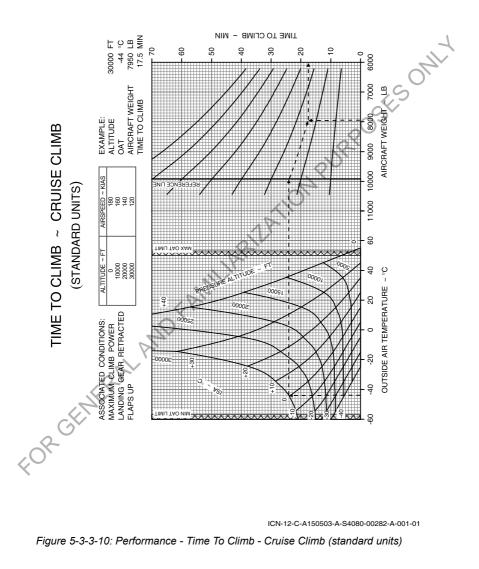



Figure 5-3-3-9: Performance - Rate Of Climb - Cruise Climb (metric units)

Pilot's Operating Handbook Issue date: Mar 06, 2020

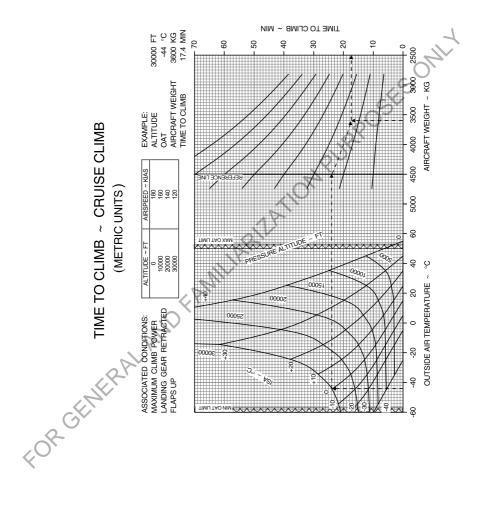


Figure 5-3-3-11: Performance - Time To Climb - Cruise Climb (metric units)

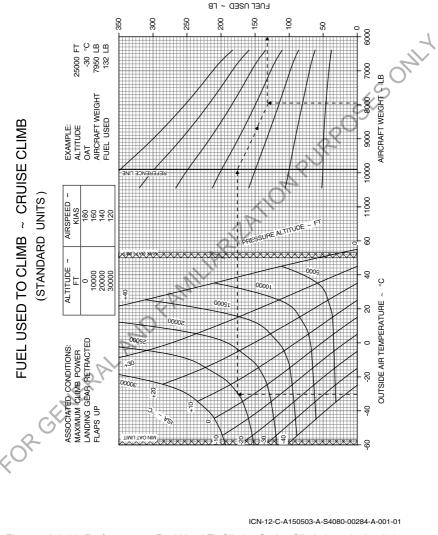


Figure 5-3-3-12: Performance - Fuel Used To Climb - Cruise Climb (standard units)

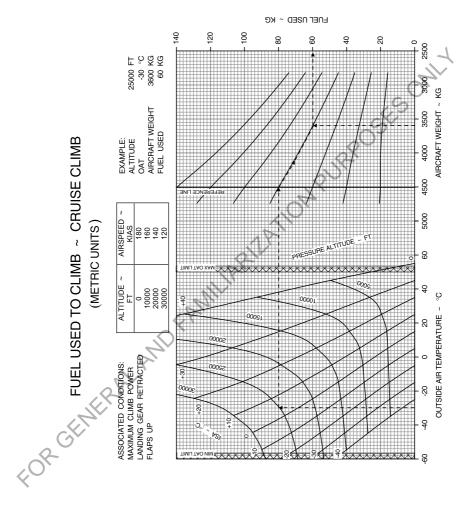


Figure 5-3-3-13: Performance - Fuel Used To Climb - Cruise Climb (metric units)

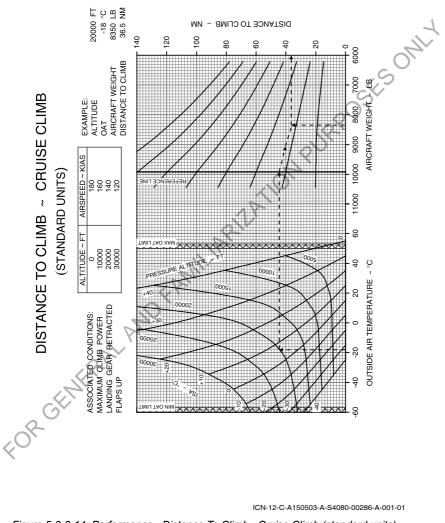
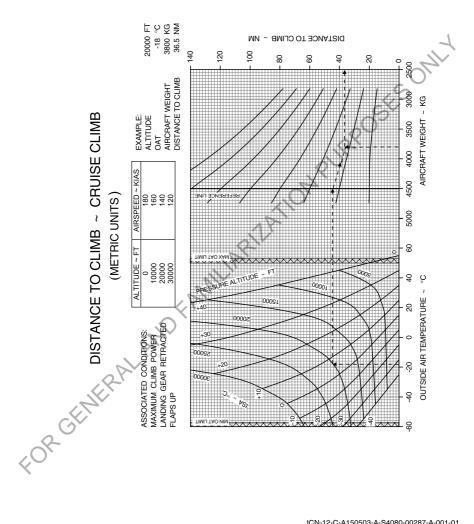



Figure 5-3-3-14: Performance - Distance To Climb - Cruise Climb (standard units)

ICN-12-C-A150503-A-S4080-00287-A-001-01

Figure 5-3-3-15: Performance - Distance To Climb - Cruise Climb (metric units)

WATION PURPOSES ONLY Left r This Page Intentionally Left Blank

Performance Data - Cruise Performance 5-3-4

MAXIMUM CRUISE POWER

													/	\mathcal{S}	
				NOTE: T						NER 3000 lb (3629 kg)	S	S	
						@ 7000 lb (3175 kg)		@ 8000 lb (3629 kg)		@ 9000 lb (4082 kg)		@ 10000 lb (4536 kg)		@ 10400 lb (4717 kg)	
ISA	Altitude	SAT	Torque		flow	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TA
(°C)	(ft)	(°C)	(psi)	(lb/h)		(kt)	(kt)	(kt)	(kt)	(kt)	(kt)	(kt)	(kt)	(kt)	(kt
-40	0	-25	36.9	608	276	241	223	241 241	223	241	223	241	223 229	241	22
	2000	-29 -33	36.9 36.9	589 572	267 259	241 241	229 236	241	229 236	241	229 236	241 241	229	241 241	229
	6000	-37	36.9	555	252	241	243	241	243	241	242	241	230	239	240
	8000	-41	40.6	577	262	240	248	239	247	239	247	237	245	237	245
	10000	-45	40.6	564	256	238	253	237	252	236	251	235	250	234	249
	12000	-49	40.6	556	252	235	258	234	257	234	256	232	254	232	254
	14000	-53	40.6	550	249	233	262	232	261	231	261	230	259	229	258
	16000	-57	40.6	543	246	230	267	230	266	229	265	227	264	227	263
	18000	-61	40.6	536	243	228	272	227	271	226	270	224	268	224	26
	20000	-65	36.9	487	221	224	276	224	276	223	275	222	273	221	273
	22000	-69	36.9	481	218	215	273	215	273	215	273	215	273	215	273
	24000	-73	34.2	446	202	206	270	206	270	206	270	206	270	206	27
	26000 28000	-77 -81	31.6 29.3	414 383	188	197 189	268 265	197 189	268 265	197 189	268 265	197 189	268 265	197 189	26
	30000	-84	29.3	357	162	181	265	181	265	181	265	181	263	181	263
-30	0	-15	36.9	614	278	241	227	241	227	241	227	241	227	241	22
	2000	-19	36.9	595 🐑	270	241	234	241	234	241	234	241	234	241	234
	4000	-23	36.9	577	262	241	241	241	241	241	240	240	239	239	239
	6000	-27	40.6	598	271	240	246	239	245	238	245	237	243	237	243
	8000	-31	40.6	583	264	238	251	237	250	236	249	235	248	234	24
	10000	-35	40.6	569	258	236	256	235	255	234	254	233	253	232	25
	12000	-39	40.6	561	254	234	261	233	261	232	260	231	258	230	25
	14000	-43	40.6	555	252	232	267	231	266	230	265	228	263	228	26
	16000	-47	40.6 40.6	548 541	248 245	229 227	272	228 226	271 276	227 225	270 275	226 223	268 273	225 222	26
	20000	-51	40.6	534	243	224	282	220	282	223	275	223	273	222	27
	22000	-59	37.0	486	220	215	280	215	280	215	280	215	280	215	280
	24000	-63	34.9	458	208	206	277	206	277	206	277	206	277	206	27
	26000	-67	32.3	426	193	197	275	197	275	197	275	197	275	197	27
	28000	-71	30.0	394	179	189	272	189	272	189	272	189	272	189	273
	30000	-74	27.8	367	166	181	269	181	269	181	269	181	269	181	26

ICN-12-C-A150503-A-S4080-00288-A-001-01

Figure 5-3-4-1: Performance - Maximum Cruise Power (Sheet 1 of 4)

MAXIMUM CRUISE POWER

ISA Altitude SAT Torque Fue I tow IAS TAS IAS	
2000 -9 36.9 601 273 241 238 241 238 241 238 241 238 240 237 239 237 4000 -13 40.6 620 281 240 244 239 244 239 243 238 242 237 241 6000 -17 40.6 604 274 238 249 237 248 235 247 235 246 8000 -21 40.6 589 267 236 254 235 251 233 251 233 251 233 251 233 251 233 251 233 251 233 256 230 256 230 256 230 256 230 256 230 256 230 256 230 256 230 256 230 256 230 256 230 256 230 256 230 256 <th>]</th>]
4000 -13 40.6 620 281 240 244 239 244 239 243 238 242 237 241 6000 -17 40.6 604 274 238 249 237 248 236 247 235 246 8000 -21 40.6 659 267 236 254 235 254 235 253 233 251 233 251 10000 -25 40.6 576 261 234 260 233 254 235 254 235 253 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 232 256 231 256 23	
8000 -21 40.6 589 267 236 254 235 254 235 253 233 251 233 251 10000 -25 40.6 575 261 234 260 233 259 232 258 233 256 230 266 227 267 226 266 12000 -33 40.6 560 254 230 271 228 266 227 267 226 266	
10000 -25 40.6 575 261 234 260 233 259 232 256 231 256 230 256 12000 -29 40.6 567 257 232 265 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 256 231 258 231 256 231 258 251 258 251 258 251 258 261 258 261 258 261 258 261 258 261 258 265 27 257 256 226 256 27 257 256 226 256 27 267 256 <td>1</td>	1
12000 -29 40.6 567 257 232 265 231 264 230 263 229 261 228 261 14000 -33 40.6 560 254 230 271 229 270 228 268 227 267 226 266	-
	1
	1
16000 -37 40.6 553 251 228 276 227 275 226 274 224 272 224 271 18000 -41 40.6 545 247 225 282 225 281 223 279 222 278 221 277	-
20000 -45 40.6 539 244 223 288 222 287 221 285 219 283 218 282	1
22000 -49 36.9 490 222 215 286 215 286 245 286 215 286 24000 -53 35.6 471 214 206 284	4
24000 -53 35.6 471 214 206 264 206 264 206 264 206 264 206 264 206 264 206 264 206 264 206 264 206 264 206 264	
28000 -61 30.6 406 184 189 278 189 278 189 278 189 278 189 278 189 278 189 278	
30000 -64 28.4 377 171 181 276<	-
2000 1 40.6 644 292 241 243 240 242 239 241 238 240 238 240	
4000 -3 40.6 626 284 239 247 238 247 237 246 236 245 236 244	
6000 -7 40.6 610 277 237 252 236 252 235 251 234 250 233 249 8000 -11 40.6 594 270 235 258 234 257 233 256 232 255 231 254	1
10000 -15 40.6 581 263 232 263 232 262 231 261 229 260 229 259	
12000 -19 40.6 572 260 230 269 230 268 229 267 227 265 227 264 14000 -23 40.6 566 257 228 274 227 273 226 272 225 270 224 270	-
16000 -27 40.6 558 253 226 280 225 279 224 278 222 276 222 275	
18000 -31 40.6 550 220 224 286 223 285 221 283 220 281 219 280 20000 -35 40.6 544 247 221 292 220 291 219 289 217 287 217 286	
20000 -35 40.6 544 247 221 292 220 291 219 289 217 287 217 286 22000 -39 39.2 521 236 215 292 214 292 213 290 211 288 210 287	1
24000 -43 36.4 485 220 206 290 206 290 205 289 203 287 203 286	1
26000 -47 33.8 451 205 197 287 197 287 197 287 195 284 194 283 28000 -51 31.3 419 190 189 285 189 285 189 285 189 285 186 281 185 279	-
28000 -51 313 419 190 189 285 189 285 189 285 189 285 180 282 177 277 176 275 30000 -54 291 389 176 181 282 181 282 180 282 177 277 176 275	1

12-C-A15-60-0503-04A-030A-A

ICN-12-C-A150503-A-S4080-00289-A-001-01

Figure 5-3-4-1: Performance - Maximum Cruise Power (Sheet 2 of 4)

Pilot's Operating Handbook Issue date: Mar 06, 2020

Report No: 02406 Page 5-3-4-2

MAXIMUM CRUISE POWER NOTE: TORQUE AND FUEL FLOW BASED ON 8000 lb (3629 kg)

							00 lb '5 kg)		100 lb 9 kg)		100 lb 2 kg)		000 lb (6 kg)		400 II
ISA (°C)	Altitude (ft)	SAT (°C)	Torque (psi)	Fue (lb/h)	l flow (kg/h)	IAS (kt)	TAS (kt)	IAS (kt)	TAS (kt)	IAS (kt)	TAS (kt)	IAS (kt)	TAS (kt)	IAS (kt)	TA (k
0	0	15	40.6	670	304	241	240	240	240	240	239	239	238	238	23
	2000	11	40.6	651	295	239	246	239	245	238	244	237	243	236	24
	4000	7	40.6	632	286	237	250	236	250	236	249	235	248	234	24
	6000	3	40.6	615	279	235	256	234	255	234	254	232	253	232	25
	8000	-1	40.6	600	272	233	261	232	260	231	259	230	258	229	25
	10000	-5	40.6	585	265	231	266	230	265	229	264	228	263	227	26
	12000	-9	40.6	578	262	229	272	228	271	227	270	225	268	225	26
	14000 16000	-13 -17	40.6 40.6	570 563	259 255	227 224	278 283	226 223	277	224 222	275 281	223 220	273 279	222 220	27
	18000	-17	40.6	552	255	224	289	223	288	219	285	220	2/9	220	27
	20000	-25	38.5	524	238	215	290	214	288	212	286	210	284	210	28
	22000	-29	36.3	493	223	208	290	207	288	205	285	203	283	202	28
	24000	-33	34.3	463	210	201	290	200	288	198	285	196	282	194	28
	26000	-37	32.2	434	197	194	289	192	286	190	284	187	280	186	27
	28000	-41	30.2	407	185	186	288	184	285	182	281	179	277	178	27
	30000	-44	28.2	381	173	179	286	177	283	174	278	170	273	169	27
10	0	25	40.6	677	307	240	243	239	243	238	242	237	241	237	24
	2000	21	40.6	657	298	238	248	237	248	236	247	235	246	235	24
	4000 6000	17	40.6 40.6	638 621	290 282	236 234	253 259	235 233	253 258	234 232	252 257	233 231	251 255	233 230	25
	8000	9	40.6	606	275	234	259	233	263	232	262	229	261	230	26
	10000	5	40.6	591	268	229	269	229	269	228	267	226	266	225	26
	12000	1	40.6	583	265	227	275	226	274	225	273	223	271	223	27
	14000	-3	39.3	562	255	222	277	221	276	220	274	218	272	217	27
	16000	-7	37.8	537	244	217	279	216	278	214	276	212	274	211	27
	18000	-11	36.4	512	232	211	281	210	279	208	277	206	275	206	2
	20000	-15	34.8	486	220	206	283	204	281	202	278	200	276	199	27
1	22000	-19	33.1	459	208	199	283	197	281	195	278	193	275	192	27
	24000	-23	31.2	431	196	192	283	190	280	188	277	185	273	184	27
		-27	29.3	404 378	183 172	185 178	282 281	183 175	279	180 172	275	177 169	270	176 167	26
	26000 28000 30000	-31	27.4												

ICN-12-C-A150503-A-S4080-00290-A-001-01

Figure 5-3-4-1: Performance - Maximum Cruise Power (Sheet 3 of 4)

MAXIMUM CRUISE POWER

Altitude (ft)	SAT	Torque						9 kg)	(408		(453			7 kg)
	(°C)	(psi)	Fue (lb/h)	l flow (kg/h)	IAS (kt)	TAS (kt)	IAS (kt)	TAS (kt)	IAS (kt)	TAS (kt)	IAS (kt)	TAS (kt)	IAS (kt)	TÁS (kt)
0	35	40.6	684	310	239	246	238	245	237	245	236	244	236	243
														248
														253 256
														258
10000	15	37.5	565	256	221	265	220	264	219	262	217	260	217	259
12000	11	36.2	542	246	216	267	215	265	213	263	212	261	211	260
														262
														262 263
														263
22000	-9	29.2	420	191	188	273	186	270	184	267	181	263	179	261
24000	-13	27.6	395	179	181	273	179	270	176	265	173	261	172	259
														256
									101					252 246
00000	45	34.9	636	288	225	236	224	235	223	234	221	232	220	231
2000	41	35.0	614	279	223	241	222	240	221	238	219	236	218	236
4000	37	34.6	591	268	220	245	219	244	217	242	216	240	215	239
														241 243
														243
12000	21	30.7	492	223	202	254	200	252	198	250	197	247	195	246
14000	17	29.6	470	213	197	255	195	253	193	251	191	248	190	246
	13													247
														247 246
20000	5 1	26.3	380	183	175	259	179	256	1/6	252	1/3	248	1/1	246
24000	-3	23.6	357	162	169	259	165	254	162	249	158	244	157	242
26000	-7	22.3	335	152	162	258	159	253	155	247	151	241	149	238
28000	-11	21.0												233
30000 1	-14	19.7	294	133	148	254	144	248	140	241	134	230	130	225
	12000 14000 16000 20000 22000 28000 28000 28000 0 0 2000 4000 6000 8000 10000 12000 14000 14000 14000 14000 14000 14000 20000 22000 24000 26000	2000 31 4000 27 6000 23 8000 19 10000 15 12000 11 14000 7 16000 3 18000 -1 20000 -5 22000 -9 24000 -17 30000 -24 0 45 2000 41 4000 37 6000 38 8000 29 10000 25 2000 41 4000 37 8000 29 10000 25 2000 1 14000 17 2000 1 18000 9 20000 5 2000 1 24000 -7	2000 31 40.6 4000 27 40.6 6000 23 40.1 8000 19 38.8 10000 15 37.5 12000 11 36.2 14000 7 34.9 16000 3 33.3 18000 -1 32.1 20000 -5 30.7 22000 -9 29.2 24000 -13 27.6 26000 -71 26.0 28000 -24 22.8 0 45 34.9 2000 41 35.0 4000 33.38 8000 29 32.8 100.7 12000 21 30.7 14000 17 28.0 18000 9 27.4 20000 1 28.5 18000 5 26.3 20000 1 25.1 24000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2000 31 40.6 66.4 301 237 251 4000 27 40.6 64.5 293 234 256 6000 23 40.1 662 282 281 280 8000 19 38.8 593 269 226 282 281 280 10000 15 37.5 556 256 221 265 12000 11 36.2 542 246 211 266 16000 3 33.3 494 224 205 270 18000 -1 32.1 470 213 200 272 20000 -5 30.7 445 202 194 273 24000 -13 276 395 179 181 273 26000 -17 26.0 371 168 175 272 28000 -21 24.3 347 157 167 271 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>2000 31 40.6 664 301 237 251 238 250 4000 27 40.6 645 293 234 256 234 256 6000 23 40.1 622 282 231 260 231 260 8000 19 38.8 593 269 226 262 225 261 10000 15 37.5 565 256 216 267 215 286 12000 11 36.2 542 246 216 267 210 267 16000 3 33.3 494 224 205 270 204 268 18000 -1 3.27.6 395 179 181 273 182 270 24000 -13 2.76 395 179 181 273 182 270 24000 -13 2.76 347 167 171 184<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>2000 31 40.6 664 301 237 251 236 250 235 250 4000 27 40.6 645 293 234 256 233 255 233 255 6000 23 40.1 622 282 231 260 231 260 230 259 8000 19 38.8 593 269 226 262 225 261 224 260 10000 15 3.7.5 565 256 221 265 213 200 241 228 12000 11 36.2 542 246 216 267 210 267 208 265 16000 3 33.3 494 224 205 270 244 288 202 285 16000 -1 32.1 470 121 205 270 146 267 2008 265 20000</td><td>2000 31 40.6 664 301 237 281 236 250 235 250 234 4000 27 40.6 645 293 234 256 234 255 232 252 232 228 8000 19 38.8 593 266 224 226 222 221 260 234 266 234 266 223 260 224 260 224 260 223 260 224 260 224 260 224 260 221 265 213 260 224 260 224 266 213 260 224 265 210 267 210 267 204 268 202 265 206 200 14000 3 333 494 224 205 270 204 268 202 265 206 206 207 184 270 184 273 186 270</td><td>2000 31 40.6 664 301 237 251 236 250 235 230 234 246 4000 27 40.6 645 293 234 256 233 255 232 283 6000 23 40.1 622 282 281 260 231 260 230 255 232 283 8000 19 38.8 593 269 226 262 225 261 224 260 223 283 10000 15 35.5 556 256 221 265 213 263 212 261 14000 7 34.9 521 236 213 260 263 200 263 200 263 200 263 200 283 160 271 128 261 100 267 194 284 2000 -1 3.0.7 445 202 194</td><td>2000 31 40.6 664 301 237 251 236 250 233 255 233 248 233 4000 27 40.6 645 293 234 255 233 255 232 248 257 233 255 232 256 231 260 231 260 233 255 232 256 232 256 232 256 228 257 227 280 281 228 256 228 257 228 256 221 255 232 264 218 262 277 280 217 280 211 11000 13 33 3494 224 205 270 204 268 202 265 200 263 199 10000 13 33.3 494 224 205 270 204 268 102 266 100 267 194 263 199</td></td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2000 31 40.6 664 301 237 251 238 250 4000 27 40.6 645 293 234 256 234 256 6000 23 40.1 622 282 231 260 231 260 8000 19 38.8 593 269 226 262 225 261 10000 15 37.5 565 256 216 267 215 286 12000 11 36.2 542 246 216 267 210 267 16000 3 33.3 494 224 205 270 204 268 18000 -1 3.27.6 395 179 181 273 182 270 24000 -13 2.76 395 179 181 273 182 270 24000 -13 2.76 347 167 171 184 <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>2000 31 40.6 664 301 237 251 236 250 235 250 4000 27 40.6 645 293 234 256 233 255 233 255 6000 23 40.1 622 282 231 260 231 260 230 259 8000 19 38.8 593 269 226 262 225 261 224 260 10000 15 3.7.5 565 256 221 265 213 200 241 228 12000 11 36.2 542 246 216 267 210 267 208 265 16000 3 33.3 494 224 205 270 244 288 202 285 16000 -1 32.1 470 121 205 270 146 267 2008 265 20000</td> <td>2000 31 40.6 664 301 237 281 236 250 235 250 234 4000 27 40.6 645 293 234 256 234 255 232 252 232 228 8000 19 38.8 593 266 224 226 222 221 260 234 266 234 266 223 260 224 260 224 260 223 260 224 260 224 260 224 260 221 265 213 260 224 260 224 266 213 260 224 265 210 267 210 267 204 268 202 265 206 200 14000 3 333 494 224 205 270 204 268 202 265 206 206 207 184 270 184 273 186 270</td> <td>2000 31 40.6 664 301 237 251 236 250 235 230 234 246 4000 27 40.6 645 293 234 256 233 255 232 283 6000 23 40.1 622 282 281 260 231 260 230 255 232 283 8000 19 38.8 593 269 226 262 225 261 224 260 223 283 10000 15 35.5 556 256 221 265 213 263 212 261 14000 7 34.9 521 236 213 260 263 200 263 200 263 200 263 200 283 160 271 128 261 100 267 194 284 2000 -1 3.0.7 445 202 194</td> <td>2000 31 40.6 664 301 237 251 236 250 233 255 233 248 233 4000 27 40.6 645 293 234 255 233 255 232 248 257 233 255 232 256 231 260 231 260 233 255 232 256 232 256 232 256 228 257 227 280 281 228 256 228 257 228 256 221 255 232 264 218 262 277 280 217 280 211 11000 13 33 3494 224 205 270 204 268 202 265 200 263 199 10000 13 33.3 494 224 205 270 204 268 102 266 100 267 194 263 199</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2000 31 40.6 664 301 237 251 236 250 235 250 4000 27 40.6 645 293 234 256 233 255 233 255 6000 23 40.1 622 282 231 260 231 260 230 259 8000 19 38.8 593 269 226 262 225 261 224 260 10000 15 3.7.5 565 256 221 265 213 200 241 228 12000 11 36.2 542 246 216 267 210 267 208 265 16000 3 33.3 494 224 205 270 244 288 202 285 16000 -1 32.1 470 121 205 270 146 267 2008 265 20000	2000 31 40.6 664 301 237 281 236 250 235 250 234 4000 27 40.6 645 293 234 256 234 255 232 252 232 228 8000 19 38.8 593 266 224 226 222 221 260 234 266 234 266 223 260 224 260 224 260 223 260 224 260 224 260 224 260 221 265 213 260 224 260 224 266 213 260 224 265 210 267 210 267 204 268 202 265 206 200 14000 3 333 494 224 205 270 204 268 202 265 206 206 207 184 270 184 273 186 270	2000 31 40.6 664 301 237 251 236 250 235 230 234 246 4000 27 40.6 645 293 234 256 233 255 232 283 6000 23 40.1 622 282 281 260 231 260 230 255 232 283 8000 19 38.8 593 269 226 262 225 261 224 260 223 283 10000 15 35.5 556 256 221 265 213 263 212 261 14000 7 34.9 521 236 213 260 263 200 263 200 263 200 263 200 283 160 271 128 261 100 267 194 284 2000 -1 3.0.7 445 202 194	2000 31 40.6 664 301 237 251 236 250 233 255 233 248 233 4000 27 40.6 645 293 234 255 233 255 232 248 257 233 255 232 256 231 260 231 260 233 255 232 256 232 256 232 256 228 257 227 280 281 228 256 228 257 228 256 221 255 232 264 218 262 277 280 217 280 211 11000 13 33 3494 224 205 270 204 268 202 265 200 263 199 10000 13 33.3 494 224 205 270 204 268 102 266 100 267 194 263 199

12-C-A15-60-0503-04A-030A-A

Figure 5-3-4-1: Performance - Maximum Cruise Power (Sheet 4 of 4)

Pilot's Operating Handbook Issue date: Mar 06, 2020

Report No: 02406 Page 5-3-4-4

		TAS (kt)	168	175	178	184	187	190	197	200	203	206	210	212	5	177	180	183	189	192	196	202	205	208	211	213 215	1
		(kt)		180	++	122	170	168	_		-	155	-		_	R 12		173	-	-	+	129			-	146	-
	e 🕤			193 1	+	+		155	_		-	132 1	-		-	187	-	173 1	-	-	+	14/			-	126 1	-
	@ 10400 lb (4717 kg)	Fuel flow (Ib/h) (kg/h)	446 2	428 1 411 1		+		343 1	-		-	290 1	_		-	433 1 416 1	+ -		+	-	+	323			-+	272 1	
	Ŭ			+	++	+			+		+	+	+		+	+			+	+	+	+	-		+		1
		Torque (psi)	20.0	19.9	\vdash	19.7		19.5				19.2	_		20.0	_	19.8	19.7		19.5	19.5	19.3				19.1	
		TAS (kt)	169	1/2	+ +	<u>9</u>	187	189	195		-	203	_	209	-	178		183	189	192	<u>5</u> 5	200			_	210	
	e _	(kt)		181	177	172	170	167	162	159	156	153	146	142	182	180	175	173	168	165	163	157	154		- (144	
	@ 10000 lb (4536 kg)	Fuel flow (Ib/h) (kg/h)	202	194 186	178	164	158	154	143	137	132	128	120	117	205	188	180	173	160	155	150	139	134			119	
	₿.£	Fuel (Ib/h)	446	428	392	361	349	339	32/ 314	303	292	282	266	259	451	433	397	380	353	342	330	306	295	285	276	268 262	
		Forque (psi)	20.0	19.9	19.6 10.F	19.3	19.2	19.1	18.8	18.7	18.5	18.4	18.1	18.0	20.0	19.7	19.6	19.5	19.2	19.1	18.9	18.7	18.5	18.4	18.3	18.1 18.0	
		TAS T (kt)	172	1/5	181	187		193	199	202	205	208	213	216	174	180		186	1	195	-	205	208		_	216 219	
ш		(kt) (-	182		175	72 '	169	_		_	153 15	_		-	181	- 1	176	-	-	+	158			-+	144	
NIS	9 0			194 186 1	+	163	158 1	153 1	-		-	128 1	-		_	188	-	172 1	-	-	-+	139			-+	122 1	-
CR	@ 9000 lb (4082 kg)	Fuel flow (Ib/h) (kg/h)	446 2	428 1 409 1	+ +	360 1		338 1	_		-	282 1	-	<u> </u>	-	414	-	380 1	-	-	+	306 1			-+	268 1 261 1	-
LONG RANGE CRUISE		Torque (I) (I)		19.9 4	++	19.3		19.1	+			18.4	\rightarrow	9	+	19.7		19.5		-	+	18.7			+	18.1	
RA			\square	_	\vdash	_		+				1	+-		_	_				_	+				_	_	
NG		S TAS (kt)	+	9/1 0		187		191			-	3 203	_		-	181	-	3 186	-	-	-	3 201		_	-	1 212	
ΓC	<u>ہ</u> و	h) (kt)		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			A72	169	_		-	153	_		-	9 19 19	-	176	-	-	-	158			-+	8 144 9 141	
	@ 8000 lb (3629 kg)	Fuel flow (Ib/h) (kg/h)	3 202	193	1.10	161		149			_	121	_		+	187	+ -	170	-	-	-	133			-	113	-
	90	_ =	100	426	6	+		329	+		+	266	+		+	431		375	+	+	+	293 293			-+	249 241	-
		Torque (psi)	20.0	19.5	19.2	18.7	18.4	18.1	17.6	17.3	17.1	16.8 16 E	16.3	16.0	20.0	19.5	19.2	18.9	18.4	18.1	17.9	17.3	17.1	16.8	16.5	16.3 16.0	
	6	TAS (kt)	175	1//	181	186	188	190	194	195	197	198	201	201	177	182	184	186	190	192	194	198	200	201	202	203	
C C		(kt)	189	185	180	174	171	167	161	157	153	149	141	137	188	182	179	176	169	166	162	155	152	148	144	140	
12	@ 7000 lb [*] (3175 kg)	flow kg/h)	202	193	174	158	151	145	132	125	119	114	104	66	204	185	176	168	153	147	140	127	121	115	110	105	
N.	(0 16 16	Fuel flow (Ib/h) (kg/h)	446	425	384	888 848	334	320	300 291	277	263	251	228	218	451	429	389	370	338	324	310	280	266	254	242	231	
FORGENERA		Torque (psi)		19.6		18.0	17.6	17.2	16.4	16.0	15.6	15.2	14.4		20.0	-	+	18.4	17.6	17.2	16.8	16.0	15.6		-	14.4	
2		SAT T (°C)	-25	-23	-37	45 4	-49	ې ې	-61	-65	69 F	-73	-81	-84	15	-23	-27	-31	-39	-43	4:	- 5	-59	-63	-67	-74	1
< <u>0</u> `		ISA Altitude S (°C) (ft) (4000	++	10000		14000	+		-	24000	_	0	+	4000		8000		-	-	20000			-	28000 30000	
		9 () 8	· 4	4	l"l"	٦Ē	1÷	÷ľ	- 2	2		20	5		<u>ار</u> م	14	ľ		- -	-	ŕľ	- ~	3	2	N	30	4
		≌ €	14												7]

ICN-12-C-A150503-A-S4080-00292-A-001-01

Figure 5-3-4-2: Performance - Long Range Cruise (Sheet 1 of 4)

		Torq (ns	20.	19.	19.	18.	18.	18.	17.	17.	16.	16.	16.	15.	15.	14.	14.	14.	20.	19.	19.	18.	ų 1
		SAT (°C)	-2	6-	-13	-17	-21	-25	-29	-33	-37	-41	-45	-49	-53	-57	-61	-64	5	-	-3	-7	-11
		Altitude (ft)	0	2000	4000	6000	8000	10000	12000	14000	16000	18000	20000	22000	24000	26000	28000	30000	0	2000	4000	6000	8000
		ISA (°C)	-20																-10				
																					I	CN	1-
ur	те 5	-3-	4-	2:	F	Pe	rf	or	m	a	n	ce	; -	L	0	ng	g I	R	ar	ıg	e	С	r

I-12-C-A150503-A-S4080-00293-A-001-01

Cruise (Sheet 2 of 4) Figu

Г

	ÊĚ	Ē	5		<u></u>	Ψ	~ ~	2 0	-	200	_		5			2	÷	+	<u> </u>	_	-	_	12		1 1	-	-		
e -	(kt)		-	176	174	+	167	-	-		15 12	_	-		\rightarrow	-	-	717	_	-	_	160	_	_	145	-	138		
@ 10400 b 10400 b	Fuel flow	205	197	189	182	168	163	154	148	143	125	130	127		207	661	192	1 <u>1</u>	170	165	<u>9</u>	155	145	140	32	128	126		
93	Fuel (Ib/h)	456	438	421	404 388	372	361 251	339	327	316	200 200	288	281	275	461	443	425	408	377	366	355	343	320	309	290	284	277		
	Torque (psi)	20.0	19.9	19.9	19.8 19.7	19.7	19.6 10.F	19.5	19.4	19.3	19.3	19.1	19.1	19.0	20.0	19.9	19.9	19.8	19.7	19.6	19.5	19.5	19.3	19.3	19.1	19.1	19.0	1	
	TAS To	┢			_	\square	+	_	+		_	-		214	\vdash	+	_	+	_		+	+	-		+	-		1	
	IAS T/	-	-		174 182 171 185		166 191 164 104	-	-		140 207		-	138 2		_	-	1/2 184	_	-	-	159 199 156 201	-		143 211	-	136 2	0	
90 90 91					182 11		162 16	-	-		-		+		\rightarrow	+	_	184	-	-	-	153 15	+		128 12	+	121 13	SESONI	
@ 10000 lb 7.455 bol	Fuel flow	456 207			· · ·	1	358 16 246 16	_	-		1		-			-	-	-	_		+	338 1t 375 1t	-		_	+		\sim	
°					+	+	+	+	-		+		+	0 264	+	-	+	+	+		+	+	+		3 282	1.3	0 267)	
	Torque (psi)	-			19.6		19.2				18.5	-		18.0		_	_	19.0			_	18.9		L 14	18.3	1	18.0		
	TAS (kt)	_	179	182	185	191	194	200	204	207	213		+	221	178	20	184	207	_	196	202	203	4	212	_	+	223		
S S	(F)	185		180	177	172	169	163	-		150			139		_	_	170	_		2	161			£	-	-		
E CRUIS	Fuel flow	207	198	190	182	167	162	151	146	140	135	126	123	120	209	200		124		164	159	153	142	137	128	124	121		
C U U	Fuel (Ib/h)	456	437	419	401 385	369	357 246	334	321	309	282	279	271	264	461	442	424	400	373	361	350	338	313	301	282	274	267		
	Torque (psi)	20.0	19.9	19.7	19.6 19.5	19.3	19.2	18.9	18.8	18.7	0.0	18.3	18.1	18.0	20.0	9.9L	19.7	19.0	19.3	19.2	19.1	10.9	18.7	18.5	18.3	18.1	18.0		
3 R/	TAS T	-			186		194	_			902 208	_		215	1	1	_	100	+		+	102	_		212		217		
ŇŎ	IAS T	-	-		177 1	+	169 166	-			150	1		139 2	\rightarrow	+	-	1/0	+	-	-	161	-		144	-	-		
					180		159	-			871		-	110 1	\rightarrow	-	-	1 221	_		-	149 1	-		120	+	111 1		
	Fuel flow (Ib/h) ((ka/h)	456 2		-	397 1 379 1		350 1		309 1		27.0 1		-			_	-	402	_	-	-	328 1	_		264 1	+	246 1		
	- =				+		1	N -			+		+		+	+	+	+	+		+	+	+		+	+			
	Torque (psi)	-			19.2		18.4	_			16.91	-		16.0	\vdash	_		19.2			_	11.9	_		16.5				
	TAS (kt)	-	-	-	186		193 10F	-	-	-	202		-		-	_	_	102	_	-	-	199	-		202	+	209		
ہ م	(kt)	187		-	178	-	168 165	-	-		146	_	-	134	-	_	_	1/0	_		-	160	_		<u>1</u>	+	132		
@10001P	Fuel flow	207			178	-	155	_			1122		-	101		_	_	130	_	_	-	124	_		112	-	102		
0		455	434	413	393 374	356	342	313	298	283	263	244	233	223	460	439	418	330	360	346	332	305	287	272	247	236	225		
	Torque (psi)	20.0	19.6	19.2	18.8	18.0	17.6	16.8	16.4	16.0	15.0	14.8	14.4	14.0	20.0	19.6	19.2	10.0	18.0	17.6	17.2	16.8	16.0	15.6	14.8	14.4	14.0		
FOR	_	-		\square	-21	\square	-29	_	H		64 G	-	-		H	+	+	- -	+	\square	+	7.			1 4	-			
20°	ISA Altitude SAT (°C) (ft) (°C)				8000	+ +	12000	-			00072		-	30000		+	+	nnna			-	16000	-		26000	+	30000		
X	Altit			4	88	10(12	10(18(200	22	260	280	30(2	4	9	٩¢	12(¥		202	22	26(28(30(
	IS/	-7 -7													-10													l	

 Table
 <thTable</th>
 Table
 <thT

Γ	TAS (kt)	177	183	186	189	195	198	201	207	210	213	215	210	179	182	185	188	194	197	200	203	200	211	214	218	220	
	(kt)	177	173	171	168 166	163	161	158	152	149	146	143	136	176	174	171	169	164	162	159	156	120	147	4	137	133	
@ 10400 lt (4117 kg)	Fuel flow b/h) (kg/h)	209	193	186	178	166	162	157	146	141	137	133	129	211	203	195	188	173	168	<u>8</u>	158	148	143	89	5 5	128	
(0) (47	Fuel flow (Ib/h) (kg/h)	465	44/	413	396	369	359	347	323	312	302	293	280	470	451	434	417	385	373	363	351	326	315	305	286	283	
	Forque (psi)	20.0	19.9	19.8	19.7	19.6	19.5	19.5	19.3	19.3	19.2	19.1	19.1	20.0	19.9	19.9	19.8	19.7	19.6	19.5	19.5	19.3	19.3	19.2	19.1	19.0	1 - May
	TAS ((kt)	178	183	186	189	195	198	200	206	208	210	212	216	180	182	185	188	194	196	199	202	202	209	212	215	217	~~~~
	(kt)		1/1	+ +	168 166	+-	160		151	+			13/	-	174		170	+	+	+	155	+-	+ +	_	139	-	D.
@ 10000 lb (4336 kg)				+ +	179	+	161	155	_	-		_	125	213		196	188	_		162	157	_		_	181	123	
() () () () () () () () () () () () () (Fuel flow (Ib/h) (kg/h)	465	440 428	+ +	394	+	354	342	_	-	-	285	+	_			415	-		-+	346	_	6	-	2882		
	Torque (psi) (19.7	+ +	19.5 10.3	+		18.9	+	+		+	18.0	+			19.6	+		+	18.9		1	+	-	18.0	
	TAS 1 (kt)	180	186	189	192	199	202	205	210	213	216	220	222	182	185	188	191	197	200	203	206	212	215	218	122	226	
щ	(kt)		178	+ +	172 169	+		159		+		-	135	_		176		167	-	-+	158	_		-	_	133	
CRUIS @ 9000 lb (4082 kg)	(h/g>	211	_	+ +	178	+	160	155	-	+		-	125	_		-	188	+		-+	_	145	+ +	-	_	123	
Ш (480 С С С	Fuel flow (Ib/h) (kg/h)	464	440	+ +	394	+	354	341	-	+		-	0/7	- No. 1	-	<i>v</i> _	415	_	+	-+	_	319	+ +	+	787	-	
LONG RANGE CRUISE	Torque (psi)	20.0	19.7	19.6	19.5 10.3	19.2	19.1	18.9	18.7	18.5	18.4	18.3	18.1	20.0	19.9	19.7	19.6	19.3	19.2	19.1	18.9	18.7	18.5	18.4	18.3	18.0	
е к В	(kt)	182	188	190	193 196	198	201	203	208	210	212	214	210	184	187	190	192	198	200	502	205	209	212	214	210 210	220	
NO	kt) AS		178		172	+	163	N N	153	-		-	135	-		176	173	_		+	158	+		+	137	+	
(3629 kg)			-	+ +	176			150	-	+		-	11/	-	204	195	186	_	164	22	_	139	+ +	-	122	+	
() () () () () () () () () () () () () (Fuel flow (Ib/h) (kg/h)	464	444		388		345	331	302	290		+	748	_		-	410	+	-	-+	335	+-	+ +	+	2/0	+	
	orque (psi) (100	19.5	b	18.9 18.7	18.4	18.1	17.9	17.3	17.1	16.8	16.5	16.0	20.0	19.7	19.5	19.2	18.7	18.4	18.1	17.9	17.3	17.1	16.8	16.5	16.0	
7	TAS (tt)		189	191	193 195	197	199	201	204	206	207	209	210	186	188	191	193	197	200	201	203	206	208	503	C10	213	
	(kt)		178	+ +	172 169	+		158	_	+		-	130	-		-	174	+		-+	_	148	-	+	_	129	
(3175 kg)			191	+ +	173 165	+	152	145	-	+		-	108	_			_	167		-	_	133		_		104	
(11) (11) (11)	Fuel flow (Ib/h) (kg/h)	464	422	+ +	382	-	335	321	-	-		-	238	1				368		+	324	_	-	+	_	230	
CH'	Forque (psi)		19.2	18.8	18.4 18.0	17.6	17.2	16.8	16.0	15.6	15.2	14.8	14.4	20.0	19.6	19.2	18.8	18.0	17.6	17.2	16.8	16.0	15.6	15.2	14.8	14.0	
	SAT 7 (°C)	15	- ~	m	÷ Υ	၇ ကု	-13	-17	-25	-29	-33	-37	-41	55	21	17	₽	n u	-	ηI	- 5	- 4-	-19	5 - 73	-31	-34	
FOR	Altitude : (ft)		4000	6000	8000	12000	14000	16000	-	+	24000	26000	30000	-	2000	4000	6000	10000	12000	14000	16000	+		+	_	30000	
	ISA /	•				1			1	1			-	ę						_1			1			1	

ICN-12-C-A150503-A-S4080-00294-A-001-01

Figure 5-3-4-2: Performance - Long Range Cruise (Sheet 3 of 4)

030A-A	
-0503-04A-	
15-60-05	
12-C-A	

Pilot's Operating Handbook
Issue date: Mar 06, 2020

F	_	<u>, , , , , , , , , , , , , , , , , , , </u>	1-			<u>.</u>			1		-	<u>.</u>	<u>.</u>	6		<u>a.</u>]						<u>.</u>		-			6	3	
	- F	TAS (kt)	_		186		_	201	-	- 1		-	215	+		+	185	_		_		_	208	211	_	_	_	-	
٩		¥ a	175		170	165	·	151	-	151		-	142	-		\rightarrow	171	1.	-	-	201	<u> </u>	150	146	-	_		-	
@ 10400 lb	(4717 kg)	Fuel flow (Ib/h) (kg/h)	214		197	182	176	1/0	160	154	-	-+	136	132	129	216	208	+-	-	178	1/3	+-	-	151	-	+-		2	
G	- 1	Fue (Ib/h)	475	456	439	405	390	3//	355	342	330	319	80 G	292	286	480	461	426	410	394	382	359	346	334	212	303	296	-24	
		Torque (psi)	20.0	19.9	19.9 19.8	19.7	19.7	19.6 10.5	19.5	19.4	19.3	19.3	19.2	19.1	19.0	20.0	19.9 10.0	19.8	19.7	19.7	19.0	19.5	19.4	19.3	10.0	19.1	19.1	Ċ	7
F		(kt)	181	184	187	193	195	198 201	203	206	208	211	213	216	217	183	186	102	194	197	661	205	207	210	217	216	217		\mathcal{A}
		(kt)	176	173	171	165	163	160	154	151	147	144	140	133	129	174	172 160	167	164	161	120	152	149	145	_	-)`
역 000	(4536 kg)	low kg/h)	215	207	198	183	175	169	159	152	147	14	136	128	125	218	209	192	185	17	1/1	160	154	148	2 2	34	130		
6 0	(45	Fuel flow (Ib/h) (kg/h)	475		437 420	402	386	3/3	350	336	324	312	301	283	275	480	460	474	407	390	3/8	353	340	327 345	_	295	286	S	
		Torque (psi) (19.7 19.6	H		19.2	+			+	18.4	+		H	19.9 10.7	+		+	19.2	+	H	18.7	+		- N.		
-		TAS To (kt)	_		_	H	_	202	_			+	+	+		-	_	╇	+	_	_	+-	Н	215	16			4	
	- ł		-		_	+ +	-	+	-		_	-+	-	+	-	_		+	+	-	151 204	- 4	151 212	_	-	+-	+	-	
SI a			5 181	-	8 175 0 172	183 169	_		-	2 153		-	136 142 132 139	+		\rightarrow	209 177	171	-				-	8 148	_	-	129 13	-	
	(4082 kg)	Fuel flow (Ib/h) (kg/h)	5 215		7 198 0 190	+ +	-	+	-			-+		+		\vdash	_				4	+	-	7 148	_	+	+	-	
LONG RANGE CRUISE	- 1				7 437 6 420	H	-	2 3/3	-			+	300	+			9 460 7 447	₽		+	4 3//	+	8 339	7 327	+	+	+	-	
RAN	_	Torque (psi)	_		19.7			19.2	_	18.8			18.4	4		1	19.9			19.3	19.2		18.8	18.7		_		ż	
- SA		(kt)	186	189	192	197	199	202	-	209	_	-	216	10	222	188	191	196	199	201	202	1.	211	213	+	220	222	1	
		(¥			175	169	166	163	156	153	140 149		142	+	131	179	177	12	168	164	0 1 2	1	151	148	_	1		į	
0008	(3629 kg)	Fuel flow (Ib/h) (kg/h)	215		197	180	172	166	100			-	129	119	115	217	208 100	_		174	101	155	149	142	8 6	125	120	2	
e	- 1		474	454	434	397	379	365 253	339	324	310	296	284	263	253	479	458	420	401	383	202	342	327	313	287	276	266	22	
		Forque (psi)	20.0	19.7	19.5	18.9	18.7	18.4	17.9	17.6	17.3	17.1	16.5	16.3	16.0	20.0	19.7 10.5	19.0	18.9	18.7	10.4	17.9	17.6	17.3	16.8	16.5	16.3	2	
F	_	TAS (kt)	188	191	193 195	197	199	102	205	206	208	210	211	214	214	190	192 195	107	199	201	205	206	208	210	213	214	215	-	
					176		-	150	-	+ +		-+	135	+	127 2	\rightarrow	176	1.	-	-+	101	-	149 2	145	-	+		-	
a 8		ov The	215	ř	195		-	162	-			+	122	+	· .		207 108	+	-	_	104	-	-	136	_	+	112	-	
10 10	317	Fuel flow IAS (Ib/h) (kg/h) (kt)	474 2		431 1 411 1	391		35/	-			-	268	+	233 1		457 2	_	-	-	105	+	315 1	300	+	+	+	_	
	<u>۱</u>	Torque (II) (II)			19.2 4	+	-	17.0	+	+ +		+	15.2	╋		+	19.6 4	+	-	+	0 0 0	+	-	16.0	+	+	+	-	
FOR	_	SAT Tor (°C) (p	-		27 19	H	15 18		. 6	-1			-13 15	+-			41 37 19	+		+		+	9 16	1 2		+	-11 12		
VOK						$\left \right $	-	38	-	$\left \right $		-		+		+	-	+		-	+	+		+	+	+		-	
$\langle $		(ft)			4000 6000	8000	10000	12000	16000	18000	20000	22000	24000	2800	30000		2000	P00	8000	10000	14000	16000	18000	20000	00072	26000	28000		
		ISA (°C)	50 50													30												1	

ICN-12-C-A150503-A-S4080-00295-A-001-01

Figure 5-3-4-2: Performance - Long Range Cruise (Sheet 4 of 4)

	.P.P	Ŀ, Ś., Ś., Ś., Ś., Ś., Ś., Ś., Ś., Ś., Ś.	1		_		MAXIMUM ENDURANCE CRUISE NOTE: INDICATED AIRSPEED IS 115 KTS CONSTANT	ED AIR	SPEED	IS 115 K	TS CO						
					@ 7000 lb (3175 ka)		0.	@ 8000 lb (3629 ka)			@ 9000 lb (4082 ka)	<u>م</u>	0	@ 10000 lb (4536 ka)	e -	@ -	@ 10400 lb (4717 kg)
SI SA	Altitude	SAT (°C)	TAS (kt)	Torque (nsi)		Fuel flow	Torque (nsi)	Evel flow	flow (ka/h)	Torque (nsi)		Fuel flow	Torque (nsi)		Fuel flow	Torque	Evel flow
58		-25	107	9.4	324	147	6.6	329	149	10.4	336	152	10.9	342	155	11.1	345
	2000	-29	110	9.3	307	139	9.7	313	142	10.3	319	145	10.9	327	148	11.1	330
	4000	-33	113	9.2	292	132	9.6	297	135	10.2	305	138	10.9	313	142	11.1	316
	8000	5 4	120	9.0 9.0	265	120	9.6 9.6	272	129	10.2 10.2	292	127	10.9	300	130	111	302 290
	10000	-45	124	9.0	254	115	9.6	260	118	10.2	268	121	10.9	275	125	11.2	278
	12000	-49	127	9.0	245	111	9.6	251	114	10.2	259	117	11.0	267	121	11.3	270
	16000	-57	135	9.0	228	103	2.6	235	106	10.5	243	110	11.3	252	114	11.7	255
	18000	-61	140	9.1	219	99	9.8	227	103	10.7	235	107	11.5	244	111	11.9	247
	20000	-65	144	9.2	212	96	10.0	219	99 • 06	10.9	228	103	11.8	237	107	12.1	241
	24000	-09 -73	154	9.6	198	60	10.4	205	93 93	11.4	215	8	12.4	225	102	12.8	229
	26000	-77	159	9.8	192	87	10.6	200	91.9	11.6	210	95	12.7	221	100	13.1	225
	28000	-81	164	10.0	187	85	10.9	196	89	12.0	206	94	13.1	217	86	13.5	221
e,	30000	-84 -15	109	10.2 9.4	327	83 148	2.11.2	332	8/ 151	12:4	204 339	92	13.5 10.9	346	96 157	14.0	350
	2000	-19	112	9.3	310	141	9.7	316	143	10.3	323	147	10.9	331	150	11.2	334
	4000	-23	116	9.0	295	134	9.6 9.0	301	137	10.3	309	140	10.9	317	144	11:2	320
	8000	-31	123	9.0 9.0	269	122	9.6 9.6	275	125	10.3	283	128	10.9	291	132	11.2	293
	10000	-35	126	9.0	257	117	9.6	263	119	10.2	271	123	10.9	279	126	11.2	282
	12000	-39	130	0.0	248	112	9.6	255	115	10.3	262	119	11.1	271	123	11.4	275
	16000	47	138	9.1	232	105	8.6	239	108	10.6	248	112	11.5	257	117	11.8	261
	18000	-51	143	9.2	223	101	9.9	231	105	10.8	240	109	412	249	113	12.1	253
	20000	-55	147	9.4	216	98	10.1	223	101	11.0	232	105	12.0	242	110	12.4	246
	22000	-59	152	9.9 0 4	208	45 C	10.3	216	98	11.3	977	103	12.3	<u>}</u>	10/	12./	240
	26000	-67	163	0.0	196	89	10.8	205	93 93	11.9	216	8	13.0	226	103	13.4	231
	28000	-71	168	10.2	192	87	11.1	201	91	12.3	212	96	13.4	223	101	13.9	228
	30000	-74	174	10.4	187	85	11.4	197	89	12.6	209	95	13.8	221	100	14.3	225

ICN-12-C-A150503-A-S4080-00296-A-001-01

Figure 5-3-4-3: Performance - Maximum Endurance Cruise (Sheet 1 of 4)

MAXIMUM ENDURANCE CRUISE NOTE: INDICATED AIRSPEED IS 115 KTS CONSTANT

41 ę

(4717 kg) @ 10400 lb (H/dl) 89 10

ICN-12-C-A150503-A-S4080-00297-A-001-01

Figure 5-3-4-3: Performance - Maximum Endurance Cruise (Sheet 2 of 4)

14 0

> 246 242

040

ę

285

148 40 129 126

8

FSONIT (isa 106 @ 10000 lb (4536 kg) E Ue (H/H) ģ (ka/h) @ 9000 lb (4082 kg) (lh/dl) (ka/h) @ 8000 lb (3629 kg) Fuel fi (H/dl) 12 82 80 60 96 86 35 R @ 7000 lb (3175 kg) el Fuel fic (4/4) (jou **TAS** (Ft) SA FORGEN ISA | Altitude ŧ 4000 2 -9

	R.P.P	er Y	2			MAX Note:	MAXIMUM ENDURANCE CRUISE NOTE: INDICATED AIRSPEED IS 115 KTS CONSTANT	I ENC	SPEED	ANCE IS 115 K		MAXIMUM ENDURANCE CRUISE NOTE: INDICATED AIRSPEED IS 115 KTS CONSTANT					
					@ 7000 lb (3175 ka)	a ~		@ 8000 lb (3629 ka)	<u>م</u>		@ 9000 lb (4082 kg)	a (1	a) C	@ 10000 lb (4536 ka)	a .	8.5	@ 10400 lb (4717 kg)
NSA (20)	Altitude	SAT (°C)	TAS	Torque	Fuel flow	flow (balb)	Torque (nei)		Fuel flow	Torque		Fuel flow	Torque		Fuel flow	Torque	Fuel flow
<u></u> ,	0	15	115	(Per) 9.2	333	151	(ied) 9.8	340	154	10.4	348	158	_		162	(Jan)	360
	2000	11	119	9.2	318	144	9.7	325	147	10.4	333	151	11.0	342	155	11.3	345
	4000	~ 0	122	6	303	138	9.7	310	141	10.4	319	145	11.0	327	148	11.2	330
	8000	η Γ	130	- 5 0	277	126	9.7	284	129	10.3	302 702	<u>8</u> 8	11.2	302	137	11.5	308
	10000	-2	134	9.1	265	120	9.7	272	124	10.5	282	128	11.4	292	132	11.7	296
	12000	φ (138	9.2	257	117	9.9	266	120	10.7	275	125	11.6	285	129	11.9	289
	14000	-13	143	50	250	113 -	10.0	258	117	10.9	268 264	122	11.8	2/9	126	12.2	283 276
	18000	-21	152	9.6	234	106	10.4	243	110	11.4	254	115	12.4	264	120	12.8	269
	20000	-25	157	9.8	227	103	10.6	235	107	11.7	246	112	12.7	257	117	13.2	261
	22000	-29	163 168	10.9	220	100 a7	10.9	229	104	12.0	241 245	109	13.1 13.5	252	114	13.6	256
	26000	-37	174	10.6	209	95	11.6	219	66	12.8	231	105	14.0	243	110	14.5	548
	28000	-41	180	10.9	205	93	11.9	215	98	13.2	228	103	14.5	241	109	15.0	246
ę	30000	4 4	187	11.2	201 226	91 1E2	12.3	212	96 156	13.7	225	102	15.1	239	108	15.6	245 264
	2000	21	121	9.2	321	145	9.8 8.6	328	149	10,4	336	153	11.0	345	156	11.3	588
	4000	17	124	9.2	306	139	9.7	313	142	10.4	322	146	11.0	330	150	11.3	334
	6000 8000	a 13	128	9.1	292	133	9.7	300	136	10.4	308	140	11.1	318	130	11.4 A16	322
	10000	e Se	136	9.1	268	122	9.8	277	125	10.6	287	130	11.5	297	135	11.8	30
	12000	+	141	9.3	261	118	10.0	269	122	10.8	279	127	11.7	290	131	12.1	294
	14000	ņ٢	145	9.4	254	115	10.1	262	119	11.0	273	124	12:0	284	129	12.4	588
	18000	-11	155	9.7	238	108	10.6	247	112	11.6	528	117	12.6	270	122	13.0	274
	20000	-15	160	9.9	231	105	10.8	240	109	11.9	251	114	13.0	0	119	13.4	267
	22000	-19	166	10.2	224	102	11.1	234	106	12.2	245	11	13.4	м	117	13.9	262
	24000	-23	1/2	10.5	218	99	11.4	872	104	12.6	240	109	13.8	253	115	14.3	258
	28000	įδ	184	11.2	210	95	12.3	221	100	13.6	234	106	14.9	247	112	15.4	253
	30000	-34	191	11.6	207	94	12.7	218	66	14.1	232	105	15.5	246	112	16.1	252

ICN-12-C-A150503-A-S4080-00298-A-001-01

Figure 5-3-4-3: Performance - Maximum Endurance Cruise (Sheet 3 of 4)

Pilot's Operating Handbook Issue date: Mar 06, 2020

	low	(kg/h)	167	159	153	148	143	139	136	133	130	127	124	122	120	119	118	118	168	161	156	150	146	141	138	136	120	127	125	123	122	121	122	
@ 10400 lb (4717 kg)	Fuel flow	(lp/h) (kg/h)	367	351	338	327	316	306	299	294	287	280	273	268	264	261	260	260	371	356	343	332	321	311	305	299	200	280	275	271	269	268	268	
0 z	Forque	(isi)	11.3	11.3	11.4	11.6	11.8	12.0	12.3	12.6	12.9	13.3	13.7	14.2	14.7	15.3	15.9	16.5	11.3	11.4	11.5	11.7	11.9	12.2	12.4	12.8	12.5	14.0	14.5	15.1	15.7	16.3	17.0	SONI
	F	(kg/h)	165	158	152	146	141	137	134	131	128	125	122	119	118	116	115	115	167	160	154	148	144	139	136	5	120	125	122	121	119	119	119	15
@ 10000 lb (4536 kg)	Fuel 1	(lb/h) (kg/h)	364	348	334	323	312	302	295	289	282	275	268	263	259	256	254	254	368	352	339	327	317	307	300	595	2002	275	270	266	263	262	262	S
© 2	Torque	(isi)	11.1	11.0	11.1	11.2	11.4	11.6	11.9	12.2	12.5	12.9	13.2	13.7	14.2	14.8	15.3	15.9	11.1	11.1	11.2	11.4	11.6	11.8	12.1	12.4	13.1	13.6	14.0	14.6	15.1	15.7	16.4	
	8	(kg/h)	161	154	147	142	137	132	129	126	123	119	116	114	112	110	109	108	163	156	149	144	139	134	131	128	100	140	215	115	113	112	111	
@ 9000 lb (4082 kg)	Fuel flow	(lb/h) (kg/h)	356	340	325	312	301	291	284	278	271	263	256	251	246	243	240	239	359	343	329	317	306	296	289	283	280	262	257	253	249	247	246	
(i) 2	Torque	(psi)	10.4	10.4	10.4	10.4	10.6	10.8	11.0	11.2	11.5	11.8	12.1	12.5	13.0	13.4	14.0	14.5	10.4	10.4	10.4	30.5	10.7	10.9	Ę	4.11	120	12.4	12.8	13.3	13.8	14.3	14.9	
	flow	(kg/h)	157	150	143	137	132	127	124	121	118	114	111	108	106	104	103	102	159	152	145	139	134	129	126	123	116	113	111	109	107	106	105	
@ 8000 lb (3629 kg)	Fuel flow	(lb/h) (kg/h)	347	331	316	303	291	281	273	266	259	252	245	239	234	230	227	224	350	334	320	306	295	285	278	2/1	257	250	244	240	236	233	231	
00	Torque	(isd)	9.8	9.7	9.7	9.7	9.8	9.9	10.1	10.2	10.5	10.7	11.0	11:4	A1.7	12.1	12.6	13.1	9.8	9.8	9.7	9.7	9.9	10.0	10.2	10.4	10.0	113	11.6	12.0	12.5	12.9	13.4	
• •	flow	(lb/h) (kg/h)	154	147	140	134	128	123	120	117	13	110	407	104	101	66	98	96	156	148	142	135	130	125	122	119	113	100	106	104	102	100	66	
@ 7000 lb (3175 kg)		(lb/h)	340	324	309	295	283	272	265	258	250	242	235	229	224	219	215	213	343	327	312	299	287	276	269	262	247	240	234	229	224	221	218	
•	Torque	(isi)	9.2	9.2	9.1	ດ໌	9.2	9.2	9.4	9.5	9.7	6.6	10.1	10.4	10.7	11.1	11.5	11.9	9.2	9.2	9.2	9.2	9.2	9.3	9.5	9.6	10.0	10.3	10.6	11.0	11.4	11.8	12.2	
	TAS	🦪 (kt)	119	123	127	130	135	139	143	148	153	158	163	169	175	181	188	195	121	125	129	133	137	141	146	151	161	166	172	178	185	192	199	
6	×.	(°C)	35	31	27	53	6	15	÷	2	m	÷	-2	6-	-13	-17	-21	-24	45	41	37	33	29	25	21	;	2 0	, u	-	ę	-7	-11	-14	
	Altitude	(#)	0	2000	4000	6000	8000	10000	12000	14000	16000	18000	20000	22000	24000	26000	28000	30000	0	2000	4000	6000	8000	10000	12000	14000		20000	22000	24000	26000	28000	30000	
	-	(°C)	20																8															

г

т -

ICN-12-C-A150503-A-S4080-00299-A-001-01

Figure 5-3-4-3: Performance - Maximum Endurance Cruise (Sheet 4 of 4)

5-3-5 Performance Data - Specific Air Range

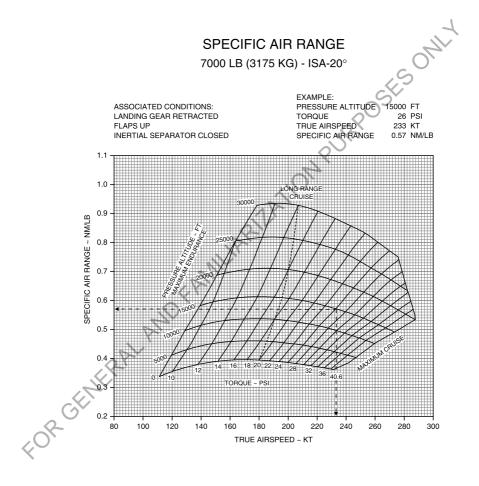


Figure 5-3-5-1: Performance - Specific Air Range (7000 lb) (Sheet 1 of 3)

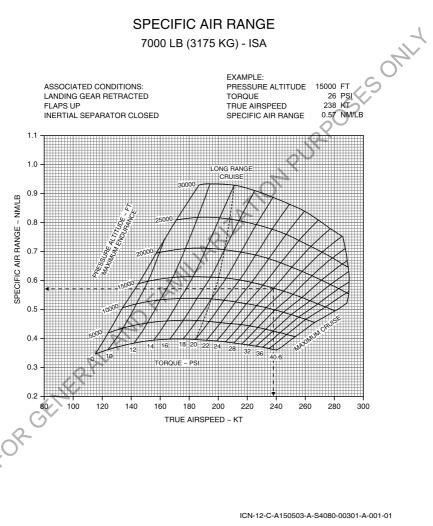
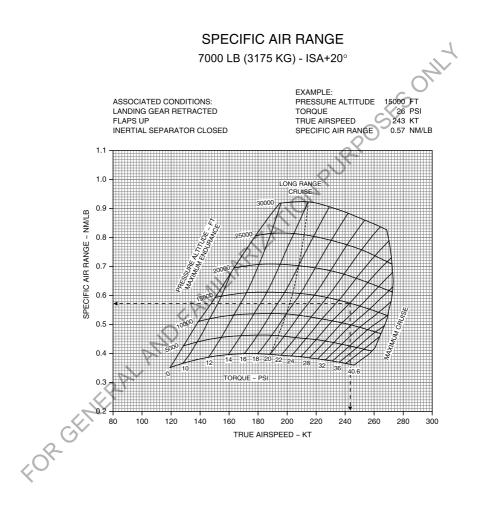



Figure 5-3-5-1: Performance - Specific Air Range (7000 lb) (Sheet 2 of 3)

ICN-12-C-A150503-A-S4080-00302-A-001-01

Figure 5-3-5-1: Performance - Specific Air Range (7000 lb) (Sheet 3 of 3)

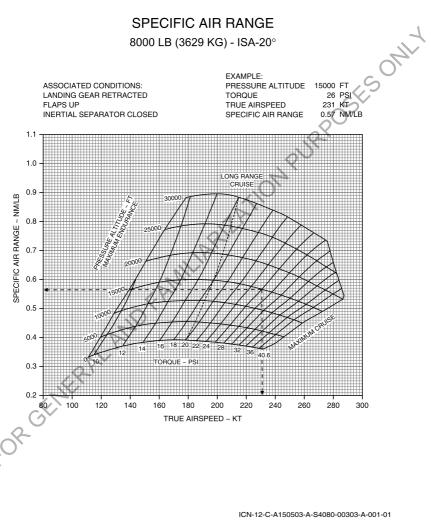
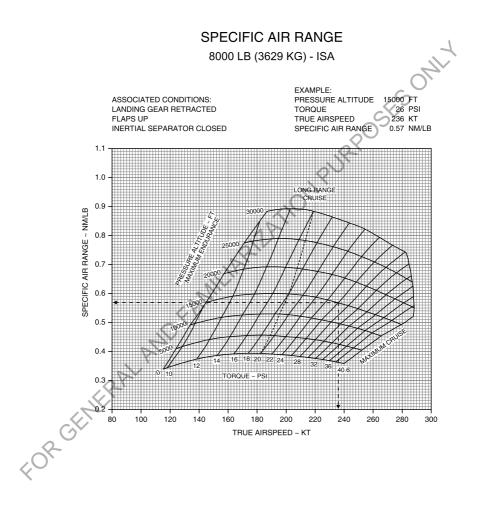



Figure 5-3-5-2: Performance - Specific Air Range (8000 lb) (Sheet 1 of 3)

ICN-12-C-A150503-A-S4080-00304-A-001-01

Figure 5-3-5-2: Performance - Specific Air Range (8000 lb) (Sheet 2 of 3)

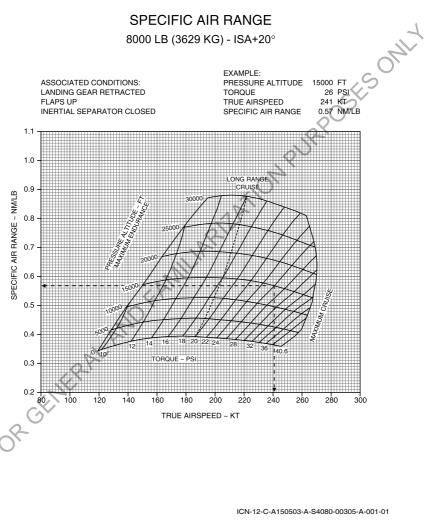
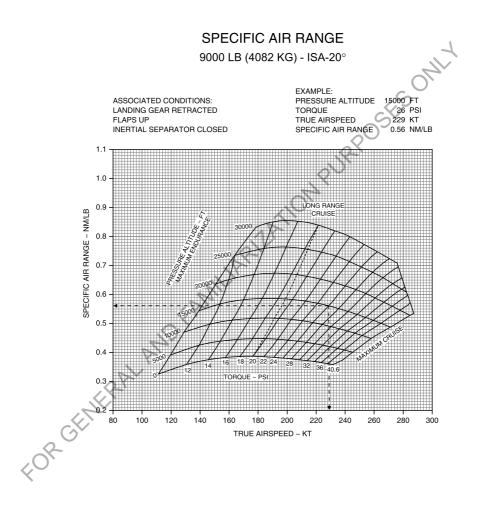



Figure 5-3-5-2: Performance - Specific Air Range (8000 lb) (Sheet 3 of 3)

ICN-12-C-A150503-A-S4080-00306-A-001-01

Figure 5-3-5-3: Performance - Specific Air Range (9000 lb) (Sheet 1 of 3)

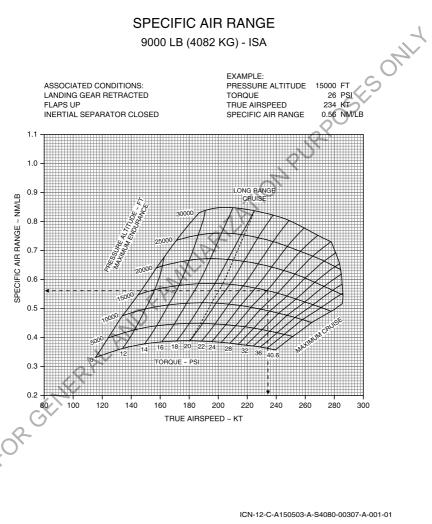
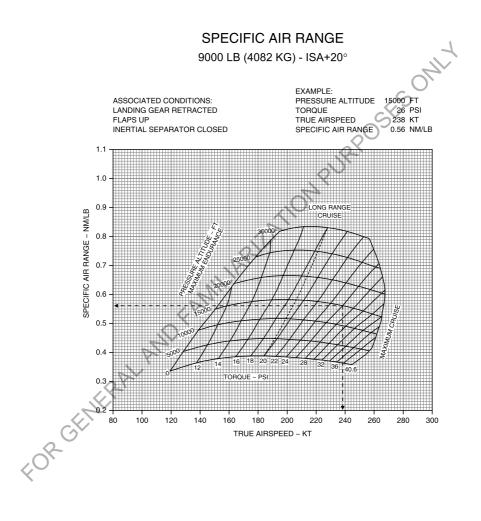



Figure 5-3-5-3: Performance - Specific Air Range (9000 lb) (Sheet 2 of 3)

ICN-12-C-A150503-A-S4080-00308-A-001-01

Figure 5-3-5-3: Performance - Specific Air Range (9000 lb) (Sheet 3 of 3)

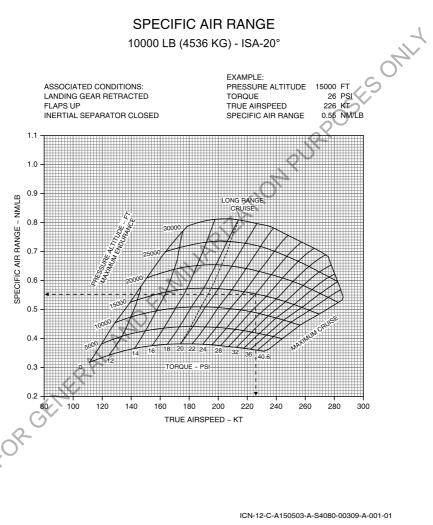
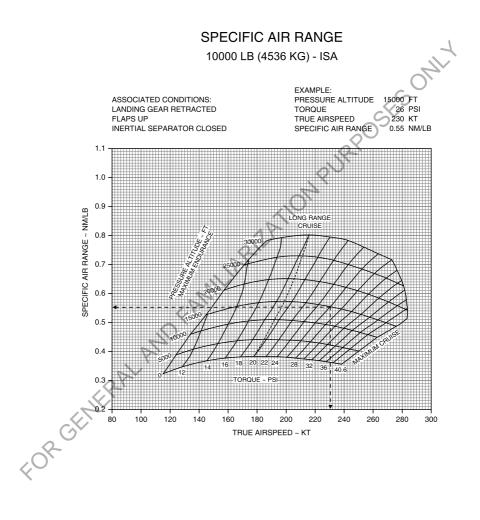



Figure 5-3-5-4: Performance - Specific Air Range (10,000 lb) (Sheet 1 of 3)

ICN-12-C-A150503-A-S4080-00310-A-001-01

Figure 5-3-5-4: Performance - Specific Air Range (10,000 lb) (Sheet 2 of 3)

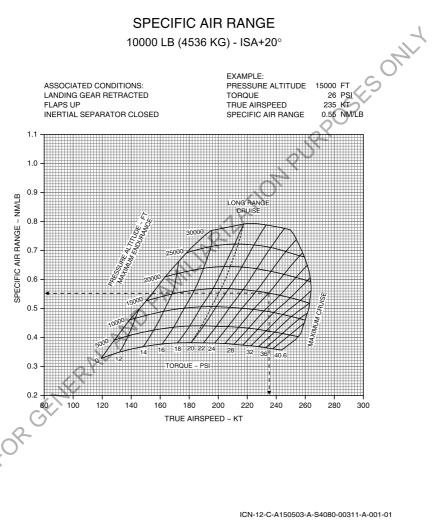


Figure 5-3-5-4: Performance - Specific Air Range (10,000 lb) (Sheet 3 of 3)

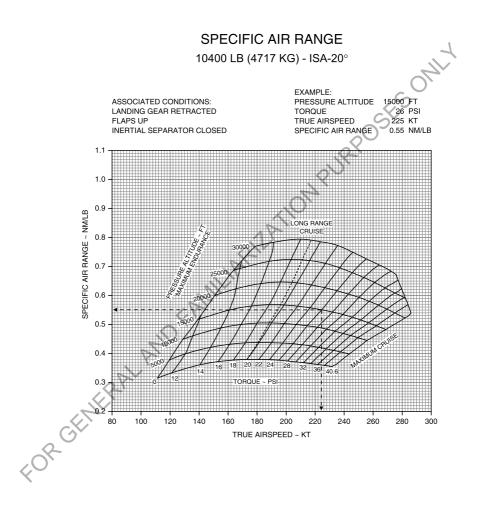


Figure 5-3-5-5: Performance - Specific Air Range (10,400 lb) (Sheet 1 of 3)

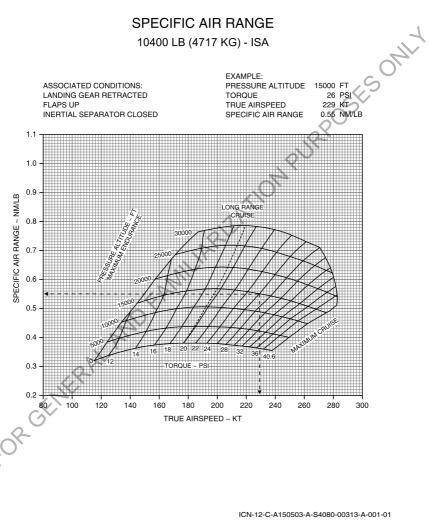


Figure 5-3-5-5: Performance - Specific Air Range (10,400 lb) (Sheet 2 of 3)

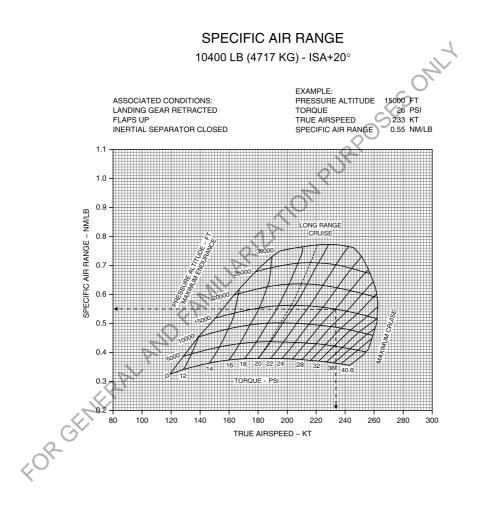


Figure 5-3-5-5: Performance - Specific Air Range (10,400 lb) (Sheet 3 of 3)

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

5-3-6 Performance Data - Holding Time and Fuel

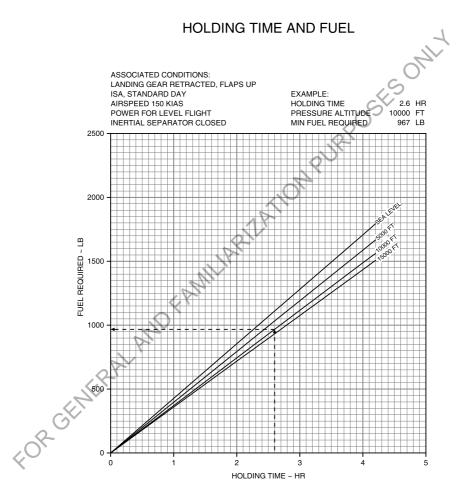
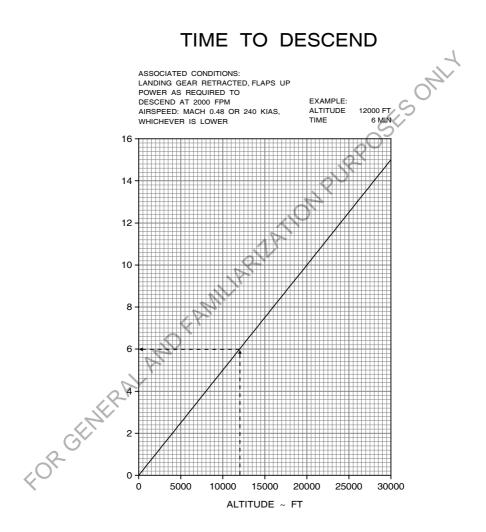
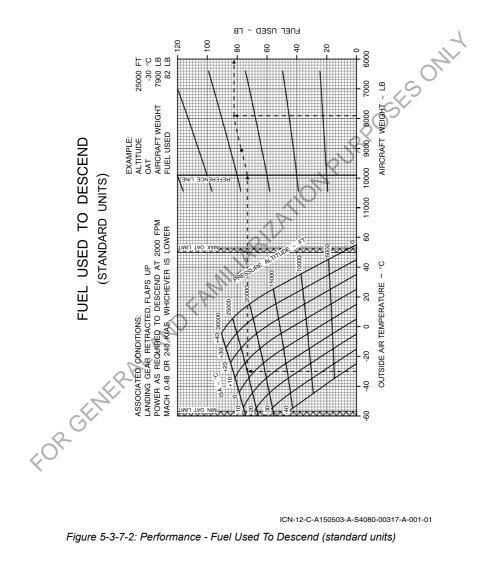



Figure 5-3-6-1: Performance - Holding Time and Fuel


WATION PURPOSES ONLY Left ' This Page Intentionally Left Blank

5-3-7 Performance Data - Descend Performance

ICN-12-C-A150503-A-S4080-00316-A-001-01

Figure 5-3-7-1: Performance - Time to Descend

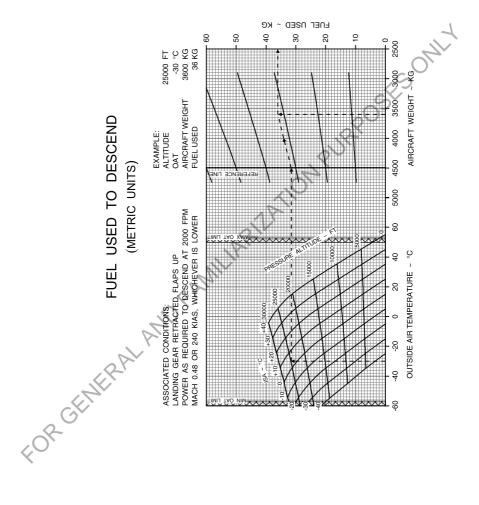


Figure 5-3-7-3: Performance - Fuel Used To Descend (metric units)

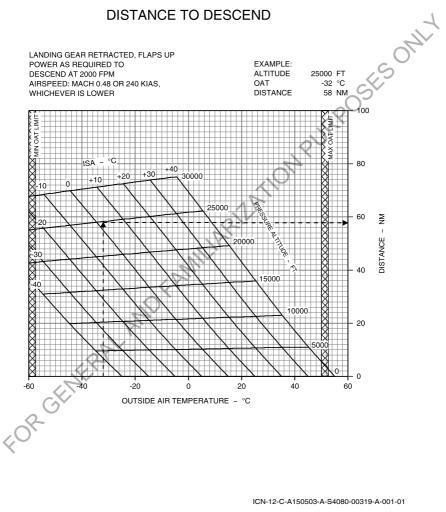


Figure 5-3-7-4: Performance - Distance to Descend

5-3-8 Performance Data - Power-off Glide Performance

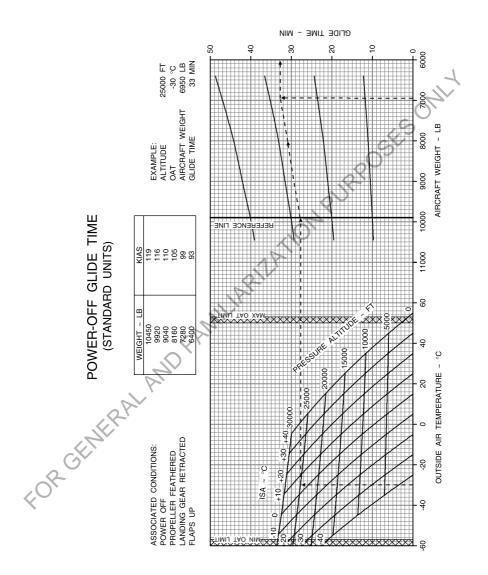


Figure 5-3-8-1: Performance - Power-off Glide Time (standard units)

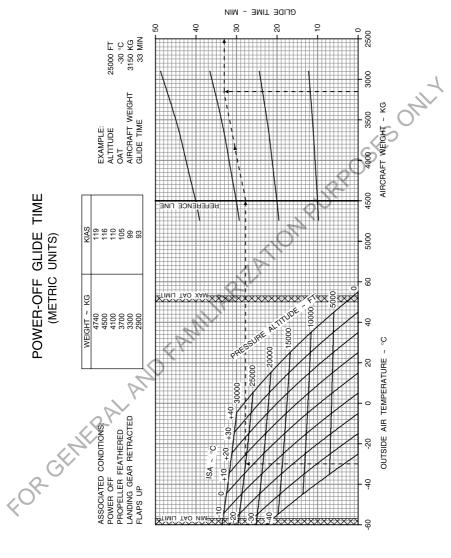
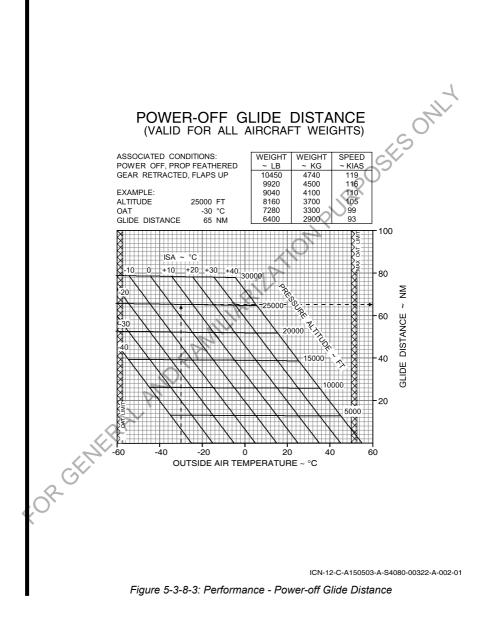
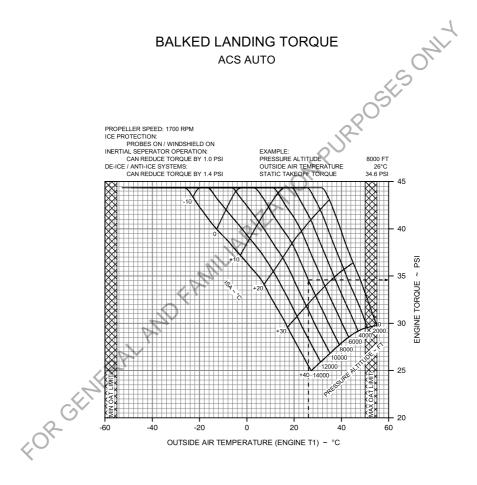
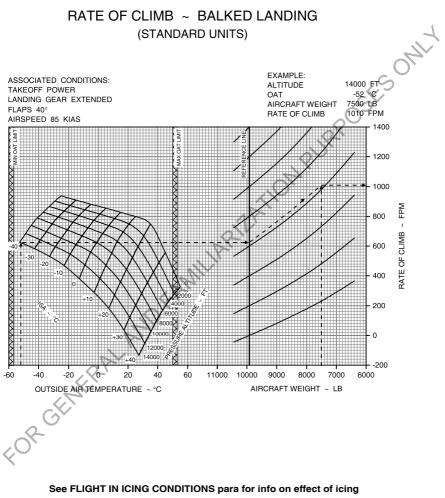
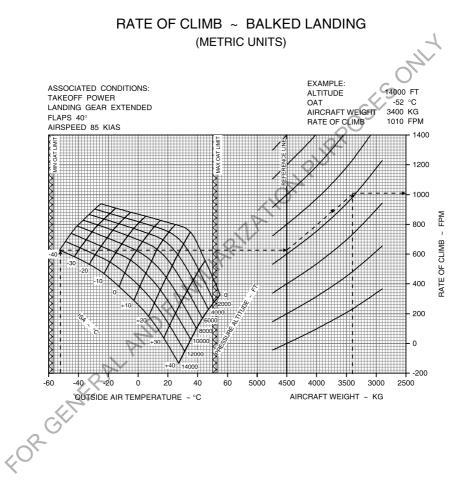




Figure 5-3-8-2: Performance - Power-off Glide Time (metric units)


WATION PURPOSES ONLY Left ' This Page Intentionally Left Blank

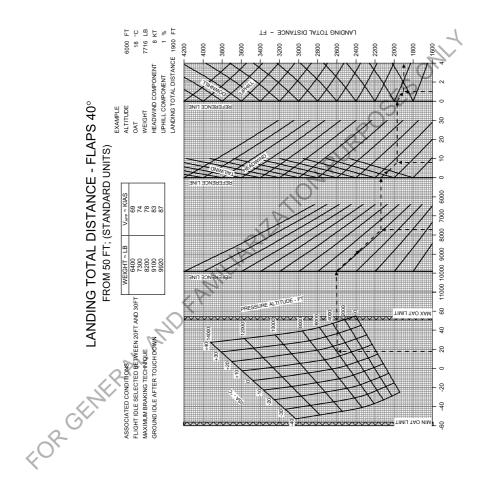
5-3-9 Performance Data - Balked Landing Performance

ICN-12-C-A150503-A-S4080-00323-A-001-01


Figure 5-3-9-1: Performance - Balked Landing Torque

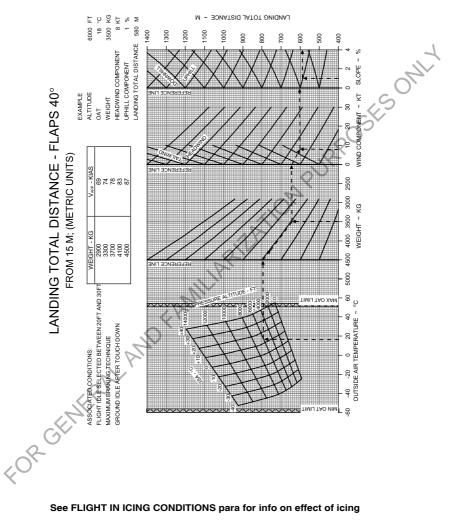
ICN-12-C-A150503-A-S4080-00324-A-001-01

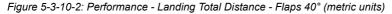
Figure 5-3-9-2: Performance - Rate Of Climb - Balked Landing (standard units)



ICN-12-C-A150503-A-S4080-00325-A-001-01

Figure 5-3-9-3: Performance - Rate Of Climb - Balked Landing (metric units)


WATION PURPOSES ONLY Left ' This Page Intentionally Left Blank



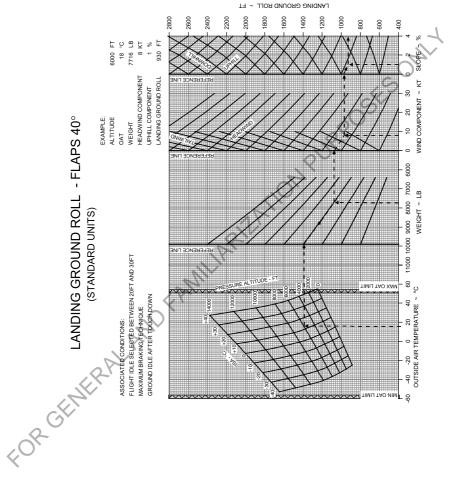
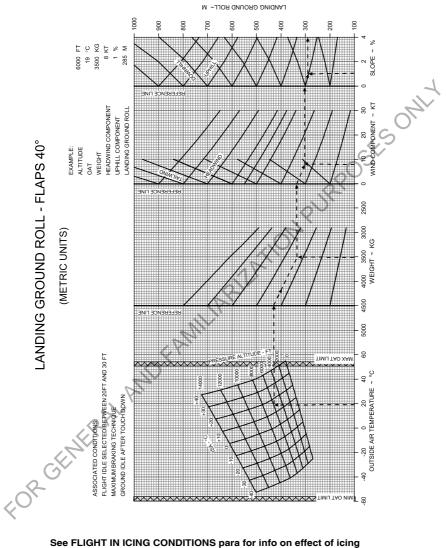
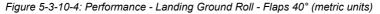
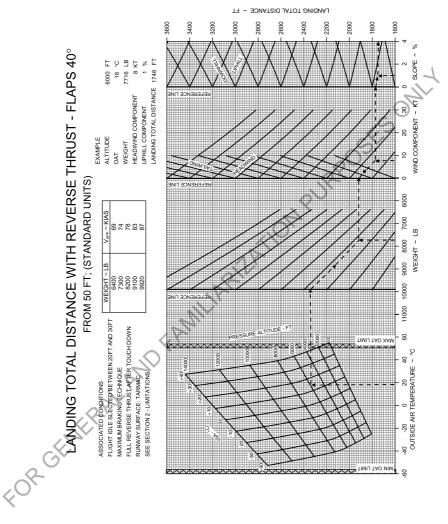

ICN-12-C-A150503-A-S4080-00326-A-001-01

Figure 5-3-10-1: Performance - Landing Total Distance - Flaps 40° (standard units)

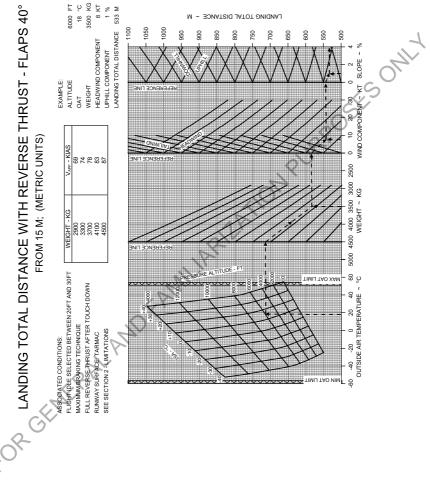
ICN-12-C-A150503-A-S4080-00327-A-001-01




ICN-12-C-A150503-A-S4080-00328-A-001-01


Figure 5-3-10-3: Performance - Landing Ground Roll - Flaps 40° (standard units)

Section 5 - Performance (EASA Approved) Performance Data - Landing Performance


ICN-12-C-A150503-A-S4080-00329-A-001-01

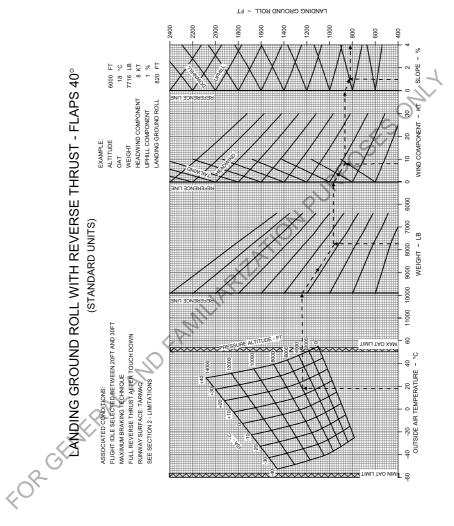

ICN-12-C-A150503-A-S4080-00330-A-001-01

Figure 5-3-10-5: Performance - Landing Total Distance with the use of Reverse Thrust - Flaps 40° (standard units)

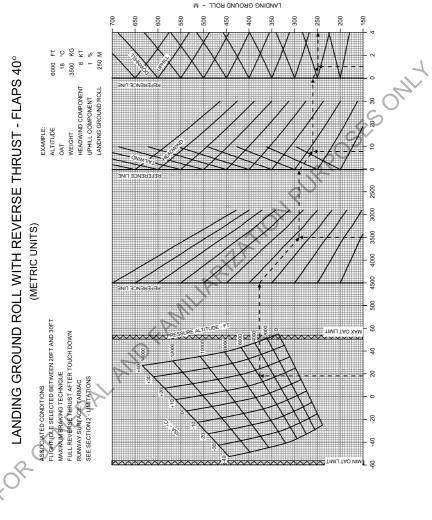

ICN-12-C-A150503-A-S4080-00331-A-001-01

Figure 5-3-10-6: Performance - Landing Total Distance with the use of Reverse Thrust - Flaps 40° (metric units)

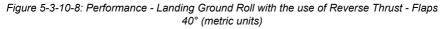

ICN-12-C-A150503-A-S4080-00332-A-001-01

Figure 5-3-10-7: Performance - Landing Ground Roll with the use of Reverse Thrust - Flaps 40° (standard units)

ICN-12-C-A150503-A-S4080-00333-A-001-01

5-4-1 Flight in Icing Conditions - General

The following section presents performance information related to the operation in or into known icing conditions. This information was derived analytically from actual wind tunnel tests with natural ice. The following cases are considered:

- 45 minutes holding in moderate icing conditions with fully operational pneumatic de-ice boots and substantial ice accretion on unprotected surfaces
- 20 minutes holding in moderate icing conditions with ice accretion on the total airframe due to inoperative pneumatic de-ice boots.

e : .separ. .des). .des Besides these aerodynamic degradations, performance losses to the aircraft's propulsion system have been considered (increased bleed air extraction, inertial separator open, less ram

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

5-4-2 Flight in Icing Conditions - Flaps

When operating in or into known icing conditions, the use of Flaps 30° or 40° is prohibited.

When operating in or into known icing conditions with fully operational pneumatic de-ice boots, the flap position is limited to a maximum of 15°.

utic tor centered and the second seco When operating in or into known icing conditions with failed operational pneumatic de-ice

2-C-A15-60-0504-02A-030A-A

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

5-4-3 Flight in Icing Conditions - Stall Speeds

When operating in STICK PUSHER ICE MODE the stick pusher computer automatically reduces the shaker and pusher settings as measured by the angle of attack vanes, by 8°. With operational pneumatic de-ice boots, this results in an increase of the stall speed at the maximum takeoff weight of 12 kts with flaps set to 0° and 9 kts with flaps set to 15°.

The wings level stall speeds at the maximum takeoff weight of 10450 lb (4740 kg) and with flight idle power are summarized in Table 5-4-3-1.

		\sim
FLAPS	STALL SPEED (PUSHER ACTIVATION) AT MTOW - KIAS	O`
0°		95
	Icing conditions (STICK PUSHER ICE MODE)	107
	Pneumatic de-ice boots failure (unprotected)	110
15°	Non icing	78
	Icing conditions (STICK PUSHER ICE MODE)	87
ORGENT	Non icing Icing conditions (STICK PUSHER ICE MODE)	

	7
Table 5-4-3-1: Stall Speeds in accordance with ICE Mode Set	

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

5-4-4 Flight in Icing Conditions - Engine Torque

When the engine inlet inertial separator is open and during flight, the maximum torque available can be reduced by up to 2.2 psi in non-icing conditions, and up to 2.8 psi in icing conditions. FOR GENERAL AND FAMILARIA TION PURPOSES ONLY

12-C-A15-60-0504-04A-030A-A

Pilot's Operating Handbook Issue date: Mar 06, 2020

UATION PURPOSES ONLY Left F This Page Intentionally Left Blank

5-4-5 Flight in Icing Conditions - Takeoff Performance

The flaps must be set to 15° for takeoff. The use of flaps 30° for takeoff is prohibited.

When de-icing / anti-icing fluids are applied to the aircraft before departure, and/or when the stick pusher is in ICE mode: The takeoff reference speeds must be adjusted to the values indicated by the corresponding correction table.

Takeoff Total Distance

The total takeoff distance is calculated by first computing the total takeoff distance in non-icing conditions from Fig. 5-3-2-19 (standard units), Fig. 5-3-2-20 (metric units), Fig. 5-3-2-21 (ACS OFF, standard units) and Fig. 5-3-2-22 (ACS OFF, metric units) and then correcting that distance for takeoff in or into known icing conditions by using the corrections in Table 5-4-5-1, Table 5-4-5-2 and Table 5-4-5-3.

Icing correction (%) = A + B + C

Note

Due to the increased reference speed associated with icing conditions, the relative effect of wind on field performance becomes less pronounced. Thus, the wind effect given by the performance graphs (for non-icing conditions) needs to be attenuated (weakened). That is why a headwind component leads to an increase in the required field length, and a tailwind leads to a decrease (as illustrated by Table 54 5-2).

Table A	Takeoff Weight (kg (lb))					
Altitude Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)	4740 (10450)
V _R / V _{50ft} (KIAS)	72 / 88	77 / 94	81 / 100	86 / 105	90 / 110	92 / 113
0 ft	+21	+26	+27	+28	+29	+30
2000 ft	+23	+26	+27	+28	+30	+31
4000 ft	+26	+26	+27	+29	+30	+32
6000 ft	+26	+26	+28	+29	+31	+32
8000 ft	+26	+27	+28	+30	+32	C+33
10000 ft	+25	+27	+28	+30	+32	+33
12000 ft	+26	+27	+29	+30	+32	+33
14000 ft	+27	+29	+30	+31	+33	+33

Table 5-4-5-1: Icing Corrections to Takeoff Total Distance - Altitude Correction (Table A)

Table 5-4-5-2: Icing Corrections to Takeoff Total Distance - Wind Correction (Table B)

Table B	Takeoff Weight (kg (lb))
Wind Correction (%)	2900 - 4740 (6393 - 10450)
10 kts Tailwind	-3
No Wind	0
10 kts Headwind	+1
20 kts Headwind	+3
30 kts Headwind	+5

Table 5-4-5-3: Icing Corrections to Takeoff Total Distance - Slope Correction (Table C)

Table C	Takeoff Weight (kg (lb))					
Slope Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)	4740 (10450)
4% down	+2	+2	+1	-1	-2	-2
2% down	+2	+2	-1	-1	-1	-1
No Slope	0	0	0	0	0	0
2% up	9 +4	+2	+2	+3	+4	+4
4% up	+7	+5	+5	+7	+9	+10

Takeoff Ground Roll

Analogically, the takeoff ground roll is derived correcting the distances obtained from Fig. 5-3-2-15 (standard units), Fig. 5-3-2-16 (metric units), Fig. 5-3-2-17 (ACS OFF, standard units) or Fig. 5-3-2-18 (ACS OFF, metric units) by using the corrections in Table 5-4-5-4, Table 5-4-5-5 and Table 5-4-5-6. FOR GENERAL AND FAMILARIA TION PURPOSES ONLY

Icing correction (%) = A + B + C

12-C-A15-60-0504-05A-030A-A

Table A	Takeoff Weight (kg (lb))					
Altitude Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)	4740 (10450)
V _R / V _{50ft} (KIAS)	72 / 88	77 / 94	81 / 100	86 / 105	90 / 110	92 / 113
0 ft	+28	+28	+29	+29	+30	+30
2000 ft	+28	+28	+29	+29	+30	+30
4000 ft	+28	+28	+29	+29	+30	+30
6000 ft	+28	+28	+29	+29	+30	+30
8000 ft	+28	+28	+29	+29	+30	C+30
10000 ft	+28	+28	+29	+29	+30	+30
12000 ft	+28	+28	+29	+29	+30	+30
14000 ft	+28	+29	+30	+30	+31	+32

Table 5-4-5-4: Icing Corrections to Takeoff Ground Roll - Altitude Correction (Table A)

Table 5-4-5-5: Icing Corrections to Takeoff Ground Roll - Wind Correction (Table B)

Table B	Takeoff Weight (kg (lb))
Wind Correction (%)	2900 - 4740 (6393 - 10450)
10 kt Tailwind	-4
No Wind	0
10 kt Headwind	+2
20 kt Headwind	+5
30 kt Headwind	+8

Table 5-4-5-6: Icing Corrections to Takeoff Ground Roll - Slope Correction (Table C)

Table C	Takeoff Weight (kg (lb))					
Slope Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)	4740 (10450)
4% down	0	0	-1	-1	-1	-1
2% down	0	0	0	0	0	-1
No Slope	0	0	0	0	0	0
2% up	9 +1	+1	+1	+2	+2	+3
4% up	+1	+2	+3	+4	+6	+6

Example:

- _ Pressure Altitude = 6000 ft
- Outside Air Temperature = -10 °C _
- Weight = 3500 kg
- Headwind Component = 8 kt _

- -m sont

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

5-4-6 Flight in Icing Conditions - Accelerate-Stop Performance

The flaps must be set to 15° for takeoff. The use of flaps 30° for takeoff is prohibited.

The maximum speed for power chop is assumed to be 10 kt higher than that for non-icing conditions.

is by us is by us is by us is by us The total accelerate-stop distance is calculated by first computing the total accelerate-stop distance in non-icing conditions from Fig. 5-3-2-13 (standard units), Fig. 5-3-2-14 (metric units) and then correcting that distance for takeoff in or into known icing conditions by using the

Table A	Takeoff Weight (kg (lb))					
Altitude Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)	4740 (10450)
Power Chop Speed (KIAS)	76	81	86	90	95	97
0 ft	+25	+26	+27	+28	+28	+29
2000 ft	+25	+26	+27	+28	+29	+29
4000 ft	+26	+27	+28	+28	+29	+29
6000 ft	+26	+27	+28	+29	+29	+30
8000 ft	+26	+27	+28	+29	+30	+30
10000 ft	+27	+28	+28	+29	+30	+30
12000 ft	+27	+28	+29	+29	+30	+30
14000 ft	+28	+29	+30	+30	+31	+32

Table 5-4-6-1: Icing Corrections to Accelerate-Stop Distance - Altitude Correction (Table A)

Table 5-4-6-2: Icing Corrections to Accelerate-Stop Distance - Wind Correction (Table B)

Table B	Takeoff Weight (kg (lb))
Wind Correction (%)	2900 - 4740 (6393 - 10450)
10 kts Tailwind	-3
No Wind	0
10 kts Headwind	+2
20 kts Headwind	+3
30 kts Headwind	+5

Table 5-4-6-3: Icing Corrections to Accelerate-Stop Distance - Slope Correction (Table C)

Table C	Takeoff Weight (kg (lb))					
Slope Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)	4740 (10450)
4% down	+2	+2	+2	+2	+2	+2
2% down	() +1	+1	+1	+1	+1	+1
No Slope	0	0	0	0	0	0
2% up	0	0	0	+1	+1	+2
4% up	0	+1	+1	+2	+4	+6

5-4-7 Flight in Icing Conditions - Maximum Rate of Climb

The use of Flaps 30° is prohibited in or into known icing conditions. After icing encounters, and with visible ice accretion on the airframe, a climb is performed with the flaps retracted and a climb speed based on the schedule as given in Table 5-4-7-1.

Flaps UP	Non-Icing	lcing	Pneumatic De-Ice Boot Failure
Altitude (ft)	KIAS	KIAS	KIAS
0	130		0
5000	125		5
10000	125		
15000	125	135	5 140
20000	120		
25000	120	R	
30000	120		

Table 5-4-7-1: Climb Speed in Icing Conditions

The total climb performance is calculated by first computing the Rate of Climb in non-icing conditions from Fig. 5-3-3-6 (standard units) or Fig. 5-3-3-7 (metric units) and then correcting the Rate of Climb in or into known icing conditions by using the corrections in Table 5-4-7-2 (with operational pneumatic de-ice boots) or Table 5-4-7-3 (with the pneumatic de-ice boots inoperative).

Table 5-4-7-2: Icing Corrections to Maximum Rate of Climb with Operational Pneumatic De-ice Boots

Rate of Climb Correction (feet per minute)					
Altitude (ft)	Takeoff Weight (kg (lb))				
Allitude (II)	2900 (6393)	3500 (7716)	4500 (9921)	4740 (10450)	
0	-1230	-1030	-790	-750	
5000	-1280	-1060	-800	-760	
10000	-1320	-1090	-830	-780	
15000	-1330	-1100	-840	-790	
20000	-1380	-1140	-850	-800	
25000	-1400	-1150	-870	-820	
30000	-1430	-1180	-880	-840	

Rate of Climb Correction (feet per minute)					
Altitude (ft)	Takeoff Weight (kg (lb))				
Annuae (II)	2900 (6393)	3500 (7716)	4500 (9921)	4740 (10450)	
0	-1510	-1270	-970	-920	
5000	-1590	-1330	-1010	-950	
10000	-1650	-1380	-1050	-990	
15000	-1700	-1410	-1080	-1010	
20000	-1810	-1500	-1130	-1060	
25000	-1870	-1540	-1170	-1100	
30000	-1940	-1600	-1210	-1150	
Example:					
 Pressure Alt 	Pressure Altitude = 5000 ft				
- Outside Air	Outside Air Temperature = -10 °C				
- Aircraft Weig	Aircraft Weight = 3800 kg				
- Rate of Clim	Rate of Climb (non-icing) = 2400 fpm (from Fig. 5-3-3-7)				

Table 5-4-7-3: Icing Corrections to Maximum Rate of Climb with Pneumatic De-ice Boots Inoperative

- Pressure Altitude = 5000 ft
- Outside Air Temperature = -10 °C
- Aircraft Weight = 3800 kg
- Rate of Climb (non-icing) = 2400 fpm (from Fig. 5-3-3-7)
- Icing Correction = -982 fpm (interpolated from Table 5-4-7-2) _
- -400 ft. FOR GENTERAL AND FAMILIAR Max. Rate of Climb in Icing Conditions = 2400 fpm - 982 fpm = 1418 fpm.

5-4-8 Flight in Icing Conditions - Holding Endurance

During holding flight in icing conditions, a higher engine torque is required to maintain level flight. Table 5-4-8-1 and Table 5-4-8-2 give the increases in fuel flow with respect to non-icing conditions. Refer to Fig. 5-3-6-1.

Table 5-4-8-1: Icing Conditions to Holding Fuel Flow with Operational Pneumatic De-ice Boots

Fuel Flow Correction (%)			
	Aircraft Weight (kg (lb))		
Altitude (ft)	2900 - 4740 (6393 - 10450)		
0	+29		
5000	+33		
10000	+370		
15000	+45		

Table 5-4-8-2: Icing Conditions to Holding Fuel Flow with Pneumatic De-ice Boots Inoperative

Fuel Flow Correction (%)				
	Aircraft Weight (kg (lb))			
Altitude (ft)	2900 - 4740			
	(6393 - 10450)			
0	+36			
5000	+41			
10000	+48			
15000	+57			

FORGENERALANDFAM

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

5-4-9 Flight in Icing Conditions - Balked Rate of Climb

The use of Flaps 30° or Flaps 40° is prohibited in or into known icing conditions.

After icing encounters and with visible ice accretion on the airframe, a balked landing climb is performed with Flaps 15° and a climb speed of 105 KIAS. The total climb performance is calculated by first computing the Rate of Climb in non-icing conditions from Fig. 5-3-9-2 (standard units) or Fig. 5-3-9-3 (metric units) and then correcting the Rate of Climb in or into known icing conditions by using the corrections in Table 5-4-9-1.

Table 5-4-9-1: Icing Corrections to Balked Landing Climb with O	perational Pneumatic De-ice
Boots	- Chr

	Rate of Climb Correction (feet per minute)					
	Landing Weight (kg (lb))					
Altitude (ft)	2900	3500	4500			
	(6393)	(7716)	(9921)			
0	-140	-100	-80			
2000	-140	-100	-80			
4000	-150	-100	-80			
6000	-150	-100	-80			
8000	-150	-110	-90			
10000	-160	-110	-90			
12000	-150	-110	-80			
14000	-150	-110	-80			

After failure of the airframe pneumatic boots in icing conditions, a balked landing climb is performed with Flaps 0° and a climb speed of 130 KIAS. The total climb performance is calculated by first computing the Rate of Climb in non-icing conditions from Fig. 5-3-9-2 (standard units) or Fig. 5-3-9-3 (metric units) and then correcting the Rate of Climb in or into known icing conditions by using the corrections in Table 5-4-9-2.

Table 5-4-9-2: Icing Corrections to Balked Landing Climb with Pneumatic De-ice Boots inoperative

	Rate of Climb Correction (feet per minute)				
		Landing Weight (kg (lb))			
	Altitude (ft)	2900	3500	4500	
	\mathcal{O}^{V}	(6393)	(7716)	(9921)	
	0	-580	-450	-320	
,(2000	-620	-480	-340	
$\langle \rangle$	4000	-670	-520	-360	
	6000	-700	-540	-380	
	8000	-740	-580	-400	
	10000	-780	-610	-420	
	12000	-800	-630	-440	
	14000	-950	-750	-530	

_1

WATION PURPOSES ONLY Left ' This Page Intentionally Left Blank

5-4-10 Flight in Icing Conditions - Landing Performance

The flaps must be set to 15° for landing. The use of Flaps 30° or 40° for landing is prohibited. With pneumatic de-ice boots failed; a flaps-up-landing must be performed. For both flap configurations, the landing reference speed must be adjusted to the values indicated by the corresponding correction table. The landing distance is calculated by first computing the landing distance in non-icing conditions and then correcting that distance for landing in or into known icing conditions by using the correction tables below (see Table 5-4-10-1).

Icing correction (%) = A + B + C

	Reverse Thrust	Pneumatic De-ice Boots	Flap Setting	Landing Performance Information	Non-icing Figure No-	Icing Correction Table
		Operational	Flaps 15°	Landing Total Distance	Fig. 5-3-10-1 Fig. 5-3-10-2	Table 5-4-10-2 (A) Table 5-4-10-3 (B) Table 5-4-10-4 (C)
		operational		Landing Ground Roll	Fig. 5-3-10-3 Fig. 5-3-10-4	Table 5-4-10-5 (A) Table 5-4-10-6 (B) Table 5-4-10-7 (C)
	No			Landing Total Distance	Fig. 5-3-10-1 Fig. 5-3-10-2	Table 5-4-10-8 (A) Table 5-4-10-9 (B) Table 5-4-10-10 (C)
		Inoperative	Flaps 0°	Landing Ground Roll	Fig. 5-3-10-3 Fig. 5-3-10-4	Table 5-4-10-11 (A) Table 5-4-10-12 (B) Table 5-4-10-13 (C)
	le la	Cperational	Flaps 15°	Landing Total Distance	Fig. 5-3-10-5 Fig. 5-3-10-6	Table 5-4-10-14 (A) Table 5-4-10-15 (B) Table 5-4-10-16 (C)
<	P Yes		Landing Ground Roll	Fig. 5-3-10-7 Fig. 5-3-10-8	Table 5-4-10-17 (A) Table 5-4-10-18 (B) Table 5-4-10-19 (C)	
		Inoperative	Flaps 0°	Landing Total Distance	Fig. 5-3-10-5 Fig. 5-3-10-6	Table 5-4-10-20 (A) Table 5-4-10-21 (B) Table 5-4-10-22 (C)

Table 5-4-10-1: Landing in Icing Conditions - Overview

Reverse Thrust	Pneumatic De-ice Boots	Flap Setting	Landing Performance Information	Non-icing Figure No.	Icing Correction Table
			Landing Ground Roll	Fig. 5-3-10-5 Fig. 5-3-10-6	Table 5-4-10-23 (A) Table 5-4-10-24 (B) Table 5-4-10-25 (C)
<u> </u>	1		1	1	SF3 ONL
				RUR	20-
			A	11017	
			1h	*	
			MILARIZA	÷	
		ANDFR	MILARIZA	*	
	CENERA	AMDER	MILARIZA	φ	(B) Table 5-4-10-25 (C)

Table 5-4-10-1: Landing in Icing Conditions - Overview	(continued from previous page)
	(continuou non providuo pugo)

Table A	Landing Weight (kg (lb))						
Altitude Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)		
V _{APP} (KIAS)	84	90	95	100	105		
0 ft	+38	+41	+43	+45	+47		
2000 ft	+39	+42	+44	+46	+48		
4000 ft	+41	+44	+46	+48	+49		
6000 ft	+42	+45	+47	+49	+50		
8000 ft	+44	+46	+48	+50 , C	+52		
10000 ft	+45	+47	+50	+51	+53		
12000 ft	+46	+49	+51	+52	+53		
14000 ft	+48	+50	+52	+52	+52		

Table 5-4-10-2: Icing Corrections to Landing Total Distance - Flaps 15° - No Reverse Thrust -Altitude Correction (Table A)

Table 5-4-10-3: Icing Corrections to Landing Total Distance - Flaps 15° - No Reverse Thrust -Wind Correction (Table B)

Table B	Landing Weight (kg (lb))					
Wind Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)	
10 kt Tailwind	-5	-5	-5	-5	-5	
No Wind	0	0	0	0	0	
10 kt Headwind	+3	+3	+3	+3	+3	
20 kt Headwind	+6	+6	+6	+6	+6	
30 kt Headwind	A 11	+10	+10	+10	+9	

Table 5-4-10-4: Icing Corrections to Landing Total Distance - Flaps 15° - No Reverse Thrust -Slope Correction (Table C)

Table C	Landing Weight (kg (lb))
Slope Correction (%)	2900 - 4500 (6393 - 9921)
4% down	+1
2% down	0
No Slope	0
2% up	0
4% up	0

Table A		Landing Weight (kg (lb))						
Altitude Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)			
V _{APP} (KIAS)	84	90	95	100	105			
0 ft	+64	+59	+56	+57	+58			
2000 ft	+61	+57	+57	+58	+59			
4000 ft	+59	+56	+58	+59	+60			
6000 ft	+56	+57	+58	+59	+60			
8000 ft	+57	+58	+59	+61	462			
10000 ft	+57	+59	+60	+61	+63			
12000 ft	+58	+59	+61	+62	+64			
14000 ft	+59	+61	+62	+64	+65			

Table 5-4-10-5: Icing Corrections to Landing Ground Roll - Flaps 15° - No Reverse Thrust - Altitude Correction (Table A)

Table 5-4-10-6: Icing Corrections to Landing Ground Roll - Flaps 15° - No Reverse Thrust -Wind Correction (Table B)

Table B	Landing Weight (kg (lb))				
Wind Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)
10 kt Tailwind	-7	-7	-6	-5	-5
No Wind	0	0	0	0	0
10 kt Headwind	+6	+5	+4	+4	+4
20 kt Headwind	+14	+11	+9	+9	+8
30 kt Headwind	+23	+19	+16	+15	+14

Table 5-4-10-7: Icing Corrections to Landing Ground Roll - Flaps 15° - No Reverse Thrust -Slope Correction (Table C)

Table C	Landing Weight (kg (lb))
Slope Correction (%)	2900 - 4500 (6393 - 9921)
4% down	-3
2% down	-1
No Slope	0
2% up	+2
4% up	+4

Table A	Landing Weight (kg (lb))					
Altitude Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)	
V _{APP} (KIAS)	104	111	118	124	130	
0 ft	+86	+92	+97	+101	+104	
2000 ft	+89	+94	+99	+103	+106	
4000 ft	+93	+98	+103	+107	+110	
6000 ft	+95	+100	+105	+109	+113	
8000 ft	+99	+104	+109	+113	+118	
10000 ft	+101	+107	+112	+116	+121	
12000 ft	+104	+109	+115	+120	+120	
14000 ft	+108	+114	+120	+119	+117	

 Table 5-4-10-8: Icing Corrections to Landing Total Distance - Flaps 0° - No Reverse Thrust

 Altitude Correction (Table A)

Table 5-4-10-9: Icing Corrections to Landing Total Distance - Flaps 0° - No Reverse Thrust -Wind Correction (Table B)

Table B	Landing Weight (kg (lb))				
Wind Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)
10 kt Tailwind	-12	-11	-11	-11	-11
No Wind	0	0	0	0	0
10 kt Headwind	+7	+6	+6	+6	+6
20 kt Headwind	+15	+14	+14	+13	+13
30 kt Headwind	+25	+24	+23	+22	+21

Table 5-4-10-10: Icing Corrections to Landing Total Distance - Flaps 0° - No Reverse Thrust -Slope Correction (Table C)

	Table C		Landing Weight (kg (lb))						
	Slope Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)			
	4% down	-2	-3	-4	-4	-3			
	2% down	-1	-1	-1	-1	-1			
	No Slope	0	0	0	0	0			
2	2% up	+2	+2	+2	+2	+2			
X	4% up	+3	+3	+3	+3	+3			

Table A		Landing Weight (kg (lb))						
Altitude Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)			
V _{APP} (KIAS)	104	111	118	124	130			
0 ft	+117	+112	+111	+113	+115			
2000 ft	+114	+110	+112	+115	+117			
4000 ft	+111	+112	+115	+1118	+121			
6000 ft	+110	+114	+117	+121	+124			
8000 ft	+113	+117	+121	+125	±129			
10000 ft	+115	+120	+124	+129	+133			
12000 ft	+118	+122	+127	+132	+138			
14000 ft	+122	+127	+134	+137	+137			

Table 5-4-10-11: Icing Corrections to Landing Ground Roll - Flaps 0° - No Reverse Thrust - Altitude Correction (Table A)

Table 5-4-10-12: Icing Corrections to Landing Ground Roll - Flaps 0° - No Reverse Thrust -Wind Correction (Table B)

Table B	Landing Weight (kg (lb))					
Wind Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)	
10 kt Tailwind	-13	-12	-11	-10	-10	
No Wind	0	0	0	0	0	
10 kt Headwind	+12	+10	+9	+8	+8	
20 kt Headwind	+26	+22	+19	+18	+17	
30 kt Headwind	+46	+38	+33	+30	+28	

 Table 5-4-10-13: Icing Corrections to Landing Ground Roll - Flaps 0° - No Reverse Thrust

 Slope Correction (Table C)

Table C		Landing Weight (kg (lb))						
Slope Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)			
4% down	-7	-7	-6	-7	-6			
2% down 🕑	-3	-3	-3	-2	-2			
No Slope	0	0	0	0	0			
2% up	+6	+6	+6	+6	+6			
4% up	+12	+11	+11	+11	+10			

Table A	Landing Weight (kg (lb))						
Altitude Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)		
V _{APP} (KIAS)	84	90	95	100	105		
0 ft	+32	+36	+38	+40	+41		
2000 ft	+34	+37	+39	+40	+42		
4000 ft	+36	+38	+40	+42	+43		
6000 ft	+37	+39	+41	+42	+44		
8000 ft	+39	+41	+42	+44	+43		
10000 ft	+40	+41	+43	+43	+45		
12000 ft	+40	+42	+43	+45	+46		
14000 ft	+42	+42	+45	+46	+47		

 Table 5-4-10-14: Icing Corrections to Landing Total Distance - Flaps 15° - With Reverse Thrust

 - Altitude Correction (Table A)

Table 5-4-10-15: Icing Corrections to Landing Total Distance - Flaps 15° - With Reverse Thrust - Wind Correction (Table B)

Table B	Landing Weight (kg (lb))
Wind Correction (%)	2900 - 4500 (6393 - 9921)
10 kt Tailwind	-5
No Wind	0
10 kt Headwind	+3
20 kt Headwind	+6
30 kt Headwind	+11

Table 5-4-10-16: Icing Corrections to Landing Total Distance - Flaps 15° - With Reverse Thrust - Slope Correction (Table C)

Table C	Landing Weight (kg (lb))
Slope Correction (%)	2900 - 4500 (6393 - 9921)
4% down	0
2% down	0
No Slope	0
2% up	0
4% up	+1

Table A	Landing Weight (kg (lb))					
Altitude Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)	
V _{APP} (KIAS)	84	90	95	100	105	
0 ft	+55	+52	+49	+50	+50	
2000 ft	+53	+50	+50	+50	+50	
4000 ft	+52	+50	+50	+50	+51	
6000 ft	+50	+50	+50	+50	+51	
8000 ft	+50	+50	+51	+51	(+51	
10000 ft	+50	+50	+51	+51	+51	
12000 ft	+50	+51	+51	+51	+52	
14000 ft	+50	+51	+51	+52	+52	

 Table 5-4-10-17: Icing Corrections to Landing Ground Roll - Flaps 15° - With Reverse Thrust

 Altitude Correction (Table A)

Table 5-4-10-18: Icing Corrections to Landing Ground Roll - Flaps 15° - With Reverse Thrust -Wind Correction (Table B)

Table B	Landing Weight (kg (lb))				
Wind Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)
10 kt Tailwind	-7	-7	-7	-6	-6
No Wind	0	0	0	0	0
10 kt Headwind	+5	+5	+4	+4	+4
20 kt Headwind	+12	+10	+9	+8	+8
30 kt Headwind	+21	+18	+15	+14	+13

 Table 5-4-10-19: Icing Corrections to Landing Ground Roll - Flaps 15° - With Reverse Thrust

 Slope Correction (Table C)

Table C	Landing Weight (kg (lb))
Slope Correction (%)	2900 - 4500 (6393 - 9921)
4% down	-2
2% down	-1
No Slope	0
2% up	+2
4% up	+3

Table A	Landing Weight (kg (lb))					
Altitude Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)	
V _{APP} (KIAS)	104	111	118	124	130	
0 ft	+77	+84	+88	+91	+94	
2000 ft	+80	+86	+89	+93	+95	
4000 ft	+84	+89	+92	+95	+98	
6000 ft	+86	+90	+94	+97	+99	
8000 ft	+89	+93	+96	+99	+99	
10000 ft	+91	+95	+98	+98	+103	
12000 ft	+93	+96	+97	+102	+105	
14000 ft	+95	+95	+102	+105	+107	

Table 5-4-10-20: Icing Corrections to Landing Total Distance - Flaps 0° - With Reverse Thrust -Altitude Correction (Table A)

Table 5-4-10-21: Icing Corrections to Landing Total Distance - Flaps 0° - With Reverse Thrust -Wind Correction (Table B)

Table B	Landing Weight (kg (lb))				
Wind Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)
10 kt Tailwind	-13	-13	-14	-14	-9
No Wind	0 6	0	0	0	0
10 kt Headwind	+6	+6	+6	+6	+6
20 kt Headwind	+14	+14	+14	+13	+13
30 kt Headwind	+24	+23	+23	+22	+21

Table 5-4-10-22: Icing Corrections to Landing Total Distance - Flaps 0° - With Reverse Thrust -Slope Correction (Table C)

Table C	Landing Weight (kg (lb))
Slope Correction (%)	2900 - 4500 (6393 - 9921)
4% down	-3
2% down	-1
No Slope	0
2% up	+2
4% up	+3

Table A	Landing Weight (kg (lb))					
Altitude Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)	
V _{APP} (KIAS)	104	111	118	124	130	
0 ft	+103	+99	+96	+97	+98	
2000 ft	+101	+97	+97	+98	+98	
4000 ft	+99	+97	+98	+99	+99	
6000 ft	+97	+98	+99	+99	+100	
8000 ft	+98	+99	+100	+101	±102	
10000 ft	+98	+100	+101	+102	+104	
12000 ft	+99	+100	+102	+103	+105	
14000 ft	+100	+102	+104	+106	+105	

Table 5-4-10-23: Icing Corrections to Landing Ground Roll - Flaps 0° - With Reverse Thrust -Altitude Correction (Table A)

Table 5-4-10-24: Icing Corrections to Landing Ground Roll - Flaps 0° With Reverse Thrust -Wind Correction (Table B)

Table B	Table B			Landing Weight (kg (lb))			
Wind Correction (%)	2900 (6393)	3300 (7275)	3700 (8157)	4100 (9039)	4500 (9921)		
10 kt Tailwind	-14	-13	-13	-13	-12		
No Wind	0	0	0	0	0		
10 kt Headwind	+11	+9	+8	+8	+7		
20 kt Headwind	+24	+21	+18	+17	+16		
30 kt Headwind	+42	+36	+31	+29	+27		

Table 5-4-10-25: Icing Corrections to Landing Ground Roll - Flaps 0° - With Reverse Thrust -Slope Correction (Table C)

Table C	Landing Weight (kg (lb))
Slope Correction (%)	2900 - 4500 (6393 - 9921)
4% down	-6
2% down	-3
No Slope	0
2% up	+4
4% up	+8

5-5-1 Flight Planning Example

5-5-1-1 General

This section gives an example of flight planning for aircraft with a five bladed propeller. Before performance calculations can begin, it will be necessary to determine the aircraft loading. Refer to Section 6, Weight and Balance to calculate the actual aircraft loading.

Table 5-5-1-1: Aircraft	Configuration
-------------------------	---------------

Aircraft Configuration:		1
Takeoff Weight	8798 lb	
Usable Fuel	1650 lb	

Departure Airport Conditions:		Destination Airport Conditions:		
Field Pressure	4000 ft	Field Pressure	2000 ft	
Altitude		Altitude		
OAT	+17 °C (ISA +10 °C)	OAT N	+16 °C (ISA +5 °C)	
Wind Component	9 kt (headwind)	Wind Component	6 kt (headwind)	
Runway Slope	1% (uphill)	Runway Slope	1.5% (downhill)	
Field Length	3690 ft	Field Length	2550 ft	
Total Trip Distance	765 nm			

Table 5-5-1-2: Airport Conditions

Table 5-5-1-3. Cruise Conditions

Cruise Conditions:	
Pressure Altitude	FL 280
Forecast Temperature	-31 °C (ISA +10 °C)
Forecast Wind Component	10 kt (headwind)
F F 1 2 Takooff	· · · · · · · · · · · · · · · · · · ·

5-5-1-2 Takeoff

Apply the departure airport conditions and the aircraft weight to the appropriate takeoff performance charts and check that the corresponding distances are less than the available field length at the departure airport.

Apply the departure airport conditions to the Takeoff Power Chart to determine maximum torque to be applied before brake release.

5-5-1-3 Climb

Note

The climb performance chart assumes a no wind condition. The pilot must consider the effect of the winds aloft when computing time, fuel, and distance to climb. The fuel to climb includes the fuel consumed during the takeoff run.

Apply the cruise conditions of pressure altitude and temperature (respectively 28000 ft and ISA +10 °C in this case) to the appropriate chart to determine the time, fuel, and distance to climb from sea level to the cruise altitude at the specified takeoff weight (8798 lb in this case). Next, apply the departure airport conditions (respectively 4000 ft and ISA +10 °C in this case) to the same chart to determine those same values to climb from sea level to the departure airport. Subtract the values for the departure airport from those for the cruise altitude. The remaining values are the time, fuel, and distance to climb from the departure airport to the cruise altitude.

Table 5-5-1-4: Time, Fuel and Distance to climb from Departure Airport to Cruise Altitude

Climb	Time	Fuel	Distance
From S.L. to 28000 ft	21 min	190 lb	68 nm
From S.L. to departure airport	2 min	30 lb	6 nm
Departure airport to 28000 ft	19 min	160 lb	62 nm

5-5-1-4 Descent

Note

The descent performance chart assumes a no wind condition. The pilot must consider the effect of the winds aloft when computing time, fuel, and distance to descend.

Apply the cruise conditions of pressure altitude and temperature (respectively 28000 ft and ISA +10 $^{\circ}$ C in this case) to the appropriate chart to determine the time, fuel, and distance to descend from cruise altitude to sea level. The weight at the beginning of the descent is not known exactly at this stage, but it can be estimated in practice as shown below:

Takeoff weight	- Usable fuel	+ Fuel reserve*	+ Allowance for	Weight at beginning of
			descent	descent
8798	- 1650	+ 300	+ 100 =	= 7548 lb
* As required by	operating regul	lations, here a res	erve corresponding	descent = 7548 lb to 45 min hold at 5000 ft

is assumed.

Next, apply the destination airport conditions (respectively 2000 ft and ISA + 5° C in this case) to the same chart to determine those same values to descend from the destination airport to sea level. Subtract the values for the destination airport from those for the cruise altitude. The remaining values are the time, fuel, and distance to descend from the cruise altitude to the destination airport.

Descent	Time 🕟	Fuel	Distance
From 28000 ft to S.L.	14 min	88 lb	66 nm
From destination airport to S.L.	1 min	9 lb	4 nm
From 28000 ft to destination airport	13 min	79 lb	62 nm

Table 5-5-1-5: Time, Fuel and Distance to descent from Cruise Altitude to Destination Airport

5-5-1-5 Cruise

Calculate the cruise distance by subtracting the climb and descent distances from the total trip distance. Select a cruise power setting and refer to the appropriate chart to determine the true airspeed and fuel flow for the forecast cruise conditions. Adjust the true airspeed for the winds aloft headwind component to determine the ground speed. Divide the cruise distance by the ground speed to determine the cruise time. Calculate the cruise fuel required by multiplying the fuel flow by the cruise time.

Cruise distance

Total trip distance	- Climb	distance -	Descent distance	=	Cruise distance
765	- 62	-	62	=	641

Cruise power setting

By assuming an average cruise weight of 8500 lb, Maximum Cruise Power setting for 28000 ft. at ISA +10°C yields 275 KTAS at 378 lb/hr.

Ground speed

Cruise speed	±	Headwind component	=	Ground speed
275	-	•	=	265 KTAS
Cruise time				ON THE
Cruise distance	/	Ground speed	=	Cruise time
641 nm	/	265 kt	=	2.42 hr (2 hr 25 min)
Cruise fuel				RPO
Cruise time	*	Fuel flow	=	Cruise flow
2.42 hr 5-5-1-6 Landi	'ng		=	914 lb

Calculate the estimated landing weight by the subtracting the weight of the fuel for climb, descent, and cruise from the takeoff weight.

Takeoff weight	- Climb fuel	- Descent fuel	- Cruise fuel	= Landing weight
8798	- 160	- 79	- 914	= 7645 lb

Apply the destination airport conditions and the calculated aircraft weight to the appropriate landing performance charts and check that the corresponding distances are less than the available field length at the destination airport.

5-5-1-7 Total flight time

The total flight time is the sum of the time to climb, descent, and cruise.

Climb time 19 min 5-5-1-8 Tota	+ Descent time	+ Cruise time	= Total time
19 min	+ 13 min	+ 2 hr 25 min	= 2 hr 57min
5-5-1-8 Tota	fuel required		

5-5-1-8 Total fuel required

The total fuel required is the sum of the fuel consumed during engine start and ground operation, takeoff and climb, descent, and cruise.

Ground ops	+ TO & Climb	+ Descent	+ Cruise	+ Reserve	= Total fuel required
40	+ 160	+ 79	+ 914	+ 300	= 1489 lb

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

SECTION 6

Weight and Balance (EASA Approved) Table of Contents

	Subject		Page
	6-1	General	6-1-1
	6-2	Preparations for Airplane Weighing	6-2-1
	6-3	Airplane Weighing with Load Plates	6-3-1
	6-3-1	Leveling Weighing Airplane Weighing with Jacks and Load Cells Leveling Weighing	6-3-1
	6-3-2	Weighing	6-3-1
	6-4	Airplane Weighing with Jacks and Load Cells	6-4-1
	6-4-1	Leveling	6-4-1
	6-4-2	Weighing	6-4-2
	6-5	Weight and Balance Determination for Flight	6-5-1
	6-5-1	General	6-5-1
	6-5-2	Completion of the Loading Form	6-5-1
	6-5-3	Combi Conversion	6-5-2
	6-5-4	Equipment List	6-5-11
	6-6	Weight and Balance Records	6-6-1
	6-7	General Loading Recommendations	6-7-1
	6-7-1	General	6-7-1
	6-7-2	Cargo	6-7-1
	6-7-3	Hazardous Materials	6-7-1
	6-7-4	Maximum Allowable Weight Per Single Container (Without Special Equipment)	6-7-3
	6-8	Interior Configurations	6-8-1
	6-8-1	General	6-8-1
	6-8-2	Corporate Commuter Interior Code STD-9S	6-8-3
X	6-8-3	Executive Interior Code EX-6S-2	6-8-8
	6-8-4	Executive Interior Code EX-8S	6-8-13
	6-8-5	Executive Interior Code EX-6S-STD-2S	6-8-18
	6-8-6	Executive Interior Code EX-4S-STD-4S	6-8-23
	6-8-7	No Cabin Interior Configuration	6-8-27

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

6-1 General

This section contains the information required to determine the Basic Empty Weight and Moment of the aircraft, adjust the B.E.W. & M as equipment is added or removed, and calculate aircraft loading for various flight operations. Sample loading forms are provided.

To achieve the performance designed for the aircraft it must be flown with approved weight and center of gravity limits.

It is the responsibility of the pilot in command to make sure that the aircraft does not exceed the maximum weight limits and is loaded within the center of gravity range before takeoff.

Weight in excess of the maximum takeoff weight may be a contributing factor to an accident, especially with other factors of temperature, airfield elevation and runway conditions. The aircraft's climb, cruise and landing performance will also be affected. Loads that the aircraft was not designed for may be put on the structure, particularly during landing.

The pilot should routinely determine the balance of the aircraft since it is possible to be within the maximum weight limit and still exceed the center of gravity limits. Information regarding the Basic Empty Weight can be found on the Weight and Balance Records in this section.

Installed equipment information can be found in the Equipment List at the back of this manual. Using the basic empty weight and moment together with the Loading Form the pilot can determine the weight and moment for the loaded aircraft by computing the total weight and moment and then determine whether they are within the Center of Gravity Envelope.

ine wi ine wi FOR GENERAL AND FAN

WATION PURPOSES ONLY Left r This Page Intentionally Left Blank

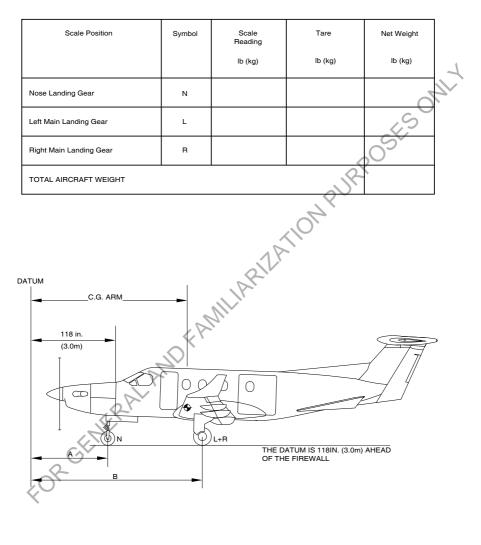
6-2 Preparations for Airplane Weighing

- 1 Make sure that all applicable items listed on the airplane equipment list are installed in their proper locations.
- 2 Clean airplane. Remove dirt, excessive grease, water, and foreign items.
- 3 Completely defuel the fuel tanks. Use the wing fuel drain ports for the completion of the task.
- 4 Fill oil, hydraulic fluid, and all other operating fluids to full capacity.
- 5 Make sure that the flaps are fully retracted and that the flight controls are in the neutral position.
- 6 Place crew seats in the center position and make sure the cabin passenger seats are in the correct positions. Refer to the relevant Interior Configuration Code Seat Location Chart in this Section.
- 7 Close access panels and passenger door.
- 8 Make sure that all tires are inflated to normal operating pressure.
- 9 Place airplane in a closed hangar to prevent scale reading errors due to wind.

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

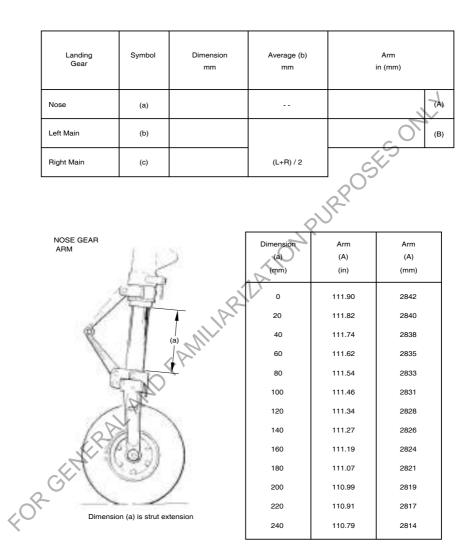
6-3 Airplane Weighing with Load Plates

6-3-1 Leveling


Open the cargo door and place a level across the seat tracks. Adjust the main gear tire pressure (do not exceed the recommended maximum tire pressure) until the airplane is laterally level. Place the level along the top of the inboard seat track and adjust the nose tire pressure until the airplane is longitudinally level. Refer to Section 8, Levelling of this Handbook for more information concerning airplane leveling. Remove the level and carefully close the cargo door.

6-3-2 Weighing

- 1 Record the tare weight for each applicable scale on Fig. 6-3-1 Airplane Weighing Form.
- 2 Refer to the manufacturer's instructions and position the aircraft on the load plates.
- 3 With the airplane level and brakes released, record the weight shown on each scale in the appropriate section on Fig. 6-3-1 Airplane Weighing Form.
- 4 Subtract the tare weight from the applicable scale reading. Record the resulting net weights in the appropriate section on Fig. 6-3-1 Airplane Weighing Form.
- 5 Refer to Fig. 6-3-2 and Fig. 6-3-3, Sheet 2 and 3, Record the strut extensions of the nose gear (a), the left main gear (b) and the right main gear (c) on Fig. 6-3-2 Sheet 2 Airplane Weighing Form. Calculate the average of the main gear strut extensions (b) and (c) and record the average (B) on Fig. 6-3-2 Sheet 2 Airplane Weighing Form.
- 6 Calculate the arm of the nose gear (A) from the extension of the nose gear strut (a) using the table in Fig. 6-3-2 Sheet 2. If the extension of the nose gear strut (a) is in between two values in the table, the arm of the nose gear (A) must be calculated by linear interpolation. Record the arm of the nose gear (A) in the appropriate section on Fig. 6-3-2 Sheet 2 Airplane Weighing Form.
- 7 Calculate the arm of the main gear (B) from the average extension of the main gear struts (b) and (c) using the table in Fig. 6-3-3 Sheet 3. If the average extension of the main gear struts is in between two values in the table, the arm of the main gear (B) must be calculated by linear interpolation. Record the arm of the main gear (B) in the appropriate section on Fig. 6-3-2 Sheet 2 Airplane Weighing Form.
- 8 Calculate the airplane C.G. arm using the formula in Fig. 6-3-3 Sheet 3 and record it in the appropriate section on Fig. 6-4-2, Airplane Basic Empty Weight.


9 Refer to Fig. 6-4-2. Adjust weight and moment for unusable fuel and optional equipment installed after airplane weighing to determine airplane Total Basic Empty Weight and Moment.

- 10 Update Fig. 6-6-1, Weight and Balance Record, as required.
- 11 After weighing return tire pressures to operational values. Refer to Section 8, Fuel Anti-Ice Additive for instructions.

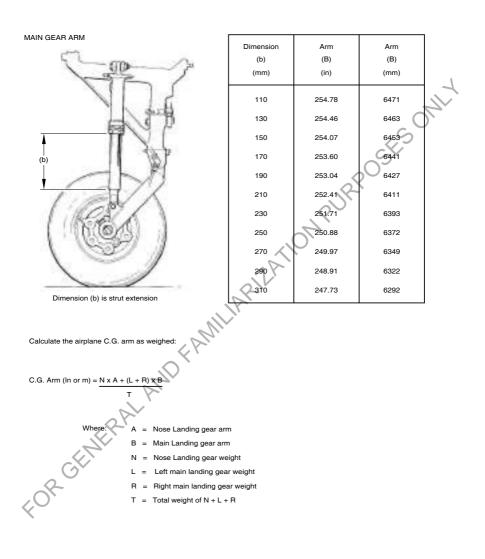

ICN-12-C-A150603-A-S4080-00142-A-001-01

Figure 6-3-1: Airplane Weighing Form

ICN-12-C-A150603-A-S4080-00143-A-001-01

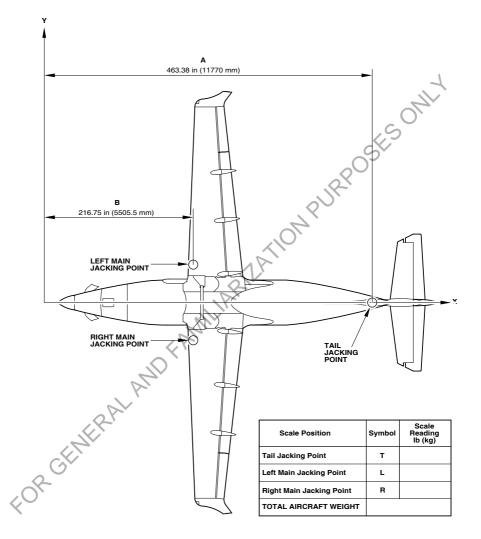
Figure 6-3-2: Airplane Weighing Form

6-4 Airplane Weighing with Jacks and Load Cells

6-4-1 Leveling

Put the jacks in position below the wing and tail jacking points. The fuselage jacking points must not be used. Refer to the manufacturer's instructions for the use of the load cell equipment. Position the load cells and adapters and slowly raise the aircraft clear of the ground.

Open the cargo door and place a level across the seat tracks. Place the level along the top of .ally .ng ar .ng ar .ng ar the inboard seat track and adjust the tail jack until the airplane is longitudinally level. Refer to Section 8, Levelling of this Handbook for more information concerning airplane leveling.


6-4-2 Weighing

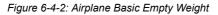
- 1 With the airplane level, record the weight shown on each load cell in the appropriate section on Fig. 6-4-1, Airplane Weighing Form.
- 2 Calculate airplane C.G. Arm and record on Fig. 6-4-2, Airplane Basic Empty Weight. The ent. our ent C. G. Arm calculation formula is:

3

4

5

ICN-12-C-A150604-A-S4080-00145-A-001-01



Model:	Registration No:				Date:		- 1	
Item	1	Weight		C.G. Arm		Moment		1 L
		lb	kg	in	m	lb-in	mkg	
 Airplane Weight, C and moment (As weighed in Fig 						RPO	545	
2. Unusable Fuel		32.9	14.9	225.6	5.73	7422	85.39	
3. Optional equipmen applicable	nt, if				2/			
4. Optional equipmer applicable	nt, if		~	1A				
5. Optional equipmen applicable	nt, if		IPH					
6. TOTAL BASIC EN WEIGHT AND MC (Sum of 1 thru 5)		A AN						

AIRPLANE USEFUL LOAD - NORMAL CATEGORY OPERATION

			= Useful Load		
lb kg	lb kg	lb	kg		
· ·	-	=	=		

ICN-12-C-A150604-A-S4080-00146-A-001-01

<

The Basic Empty Weight, C.G., and Useful Load are for the airplane as licensed at the factory. These figures are only applicable to the specific airplane serial number and registration number shown. Refer to Fig. 6-6-1. Weight and Balance Record when modifications to the airplane have been made.

FOR GENERAL AND FAMILARIA TION PURPOSES ONLY

12-C-A15-30-0604-00A-169A-A

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

6-5 Weight and Balance Determination for Flight

6-5-1 General

This section contains the crew seats, baggage, fuel load moments charts and C of G envelopes in LB-IN and KG-M.

Refer to the Interior Configurations section for the passenger seat moments. Find the correct Moment Chart for the Interior Code No. of the aircraft.

An Example Loading Form and a blank Loading Form for owners/operators use are given in Fig. 6-5-1 and Fig. 6-5-2. Instructions on how to use the charts, complete the loading form and to determine if center of gravity is within approved limits are given below.

6-5-2 Completion of the Loading Form

Enter the current Running Basic Empty Weight and Total Moment from Fig. 6-6-1 in the appropriate space on the Loading Form, Fig. 6-5-2 (be careful to factor the moment by 1000 if appropriate).

Enter the weights of all of the crew, passengers, items stowed in cabinets and baggage to be loaded, in the appropriate space on the Loading Form, Fig. 65-2.

Use the Moment Charts in Table 6-5-2, Table 6-5-3, Table 6-5-4, Table 6-5-5, Table 6-5-6, and Table 6-5-7, to determine the moment for the crew and baggage.

Use the correct Interior Code No. Moment Chart in the Interior Configurations section, to determine the moment for the passengers.

Enter the moment of each item in the appropriate space on the Loading Form, Fig. 6-5-2.

Add the weight and moment of all of the items to the Basic Empty Weight and Moment of the airplane to determine the Zero Fuel Weight and Moment. Divide the moment by the weight to determine the c.g. arm.

Locate this point in the C.G. Envelope, Fig. 6-5-3. If the point falls within the envelope, the loading meets the weight and balance requirements.

Use the Moment Chart in Table 6-5-8 and Table 6-5-9, to determine the moment of the fuel load.

Enter the weight and moment of the fuel in the appropriate space on the Loading Form, Fig. 6-5-2.

Add the fuel weight and moment to the calculated Zero Fuel Weight and Moment to determine the Ramp Weight and Moment. Divide the moment by the weight to determine the c.g. arm.

Locate this point in the C.G. Envelope, Fig. 6-5-3. If the point falls within the envelope, the loading meets the weight and balance requirements.

Subtract the weight and moment of the fuel allowance for engine start and ground operations to determine Takeoff Weight and Moment. Divide the moment by the weight to determine the c.g. arm. Nose and main landing gear retraction or extension and flap retraction or extension weight and balance effects need not to be considered by the pilot for the weight and balance calculation.

Locate this point in the C.G. Envelope, Fig. 6-5-3. If the point falls within the envelope, the loading meets the weight and balance requirements for takeoff.

6-5-3 Combi Conversion

A Combi Conversion can be made from the removal of cabin seats from a Corporate Commuter and the removal of cabin seats and furnishings from an Executive Interior aircraft. The Combi Interior consists of 2 crew seats and payload or a combination of seats and payload. Cargo nets can be installed to attachment points at frames 24 and 27. Refer to Section 2, Limitations, Other Limitations for the Cargo Limitations.

The airplane is weighed at the factory before the time of delivery. When other interior configurations are required, adjust the Basic Empty Weight and Moment and complete the landing form as follows:

- Make a temporary mark on the seat rail at the forward edge of the Corporate Commuter Seat(s) or mark position of the Executive Seat attachment fittings of the seat(s) to be removed with masking tape or similar material to expedite reinstallation. Remove the passenger seats and furnishings as required
- Use the passenger seats and furnishings weight and moment data in the relevant Interior Code section and determine the total weight and moment difference of the interior items removed from the aircraft.

ITEM	WEIGHT LB (KG)	MOMENT LB-IN (KG-M)					
Passenger Seat 5	- 60.09 (- 27.26)	- 19764.40 (- 227,70)					
Passenger Seat 6	- 60.09 (- 27.26)	- 20485.50 (- 236,00)					
Frame 27 Cargo Net	+ 3.60 (+ 1,65)	+ 1049.00 (+ 12,21)					
Total Value	- 116.58 (- 52,87)	- 39200.90 (- 451,49)					

Note

The figures are taken from the "Passenger Seats and Furnishings Weight and Moment Chart".

Enter the Total Value on line 2 of the Loading Form, Fig. 6-5-2.

Calculate the cargo moment as follows:

- 1 Locate one of the luggage net floor attachment points at frame 34.
- 2 Measure distance from the attachment point to the center of the cargo i.e. 35 in (0,889 m).
- 3 The fuselage station dimension at the luggage net attachment point is 361.15 in (9,170 m)
- 4 The arm of the cargo is the fuselage station dimension of the net attachment point minus the distance to the center of the cargo.
- 5 Example:
 - Distance to cargo center = 35 in (0,889 m)
 - Net Fuselage Station = 361.15 in (9,170 m)
 - Cargo Arm = 361.15 in 35 in = 326.15 in (9,170 m 0,889 m = 8,281 m).
- 6 Enter the cargo arm and the weight of the cargo plus tie down straps and cargo arm on the Loading Form.

Complete the remainder of the Loading Form as given above.

When re-installing the passenger seats, return the seats to their original positions and verify the dimensions as shown in the Seat Location Chart for the aircraft configuration. Secure the arresting pin on the Corporate Commuter Seat(s) or install the locking needles on the Executive Seat(s). Remove the temporary seat rail marks.

CREW OCCUPANT MOMENTS (LB-IN) ARM 160.27 IN*									
WEIGHT	MOMENT	WEIGHT	MOMENT	WEIGHT	MOMENT	WEIGHT	MOMENT		
lb	lb-in*	lb	lb-in*	lb	lb-in*	lb 🔿	lb-in*		
50	8014	100	16027	150	24040	200	32054		
60	9616	110	17630	160	25643	210	33657		
70	11219	120	19232	170	27246	220	35259		
80	12822	130	20835	180	28849	230	36862		
90	14424	140	22438	190	30451	240	38465		
* Arm for center position only. Adjust arm 0.69 inch for each hole from center position. Maximum seat travel is +/- 4 holes or +/- 2.76 inches from center position.									

Table 6-5-2: Moment	Chart - Crew	/ Occupant	Moments	(imnerial)	1
	Chart - Crew	Occupant	woments	(iiiiipeilai)	

Table 6-5-3: Moment Chart - Crew Occupant Moments (metric)

CREW OCCUPANT MOMENTS (KG-M) ARM 4.071 m*									
WEIGHT	MOMENT	WEIGHT	MOMENT	WEIGHT	MOMENT	WEIGHT	MOMENT		
kg	Kg-m	Kg	Kg-m	Kg	Kg-m	Kg	Kg-m		
25	101,78	50	203,55	75	305,33	100	407,10		
30	122,13	55 🔪	223,91	80	325,68	105	427,46		
35	142,49	60	244,26	85	346,04	110	447,81		
40	162,84	65	264,62	90	366,39	115	468,17		
45	183,20	70	284,97	95	386,75	120	488,52		
* Arma fo	r contor poo	ition only A	diuct orm 0 (10 motor fo	r agab bala	from contor	nonition		

* Arm for center position only. Adjust arm 0.018 meter for each hole from center position. Maximum seat travel is +/- 4 holes or +/- 0.070 meters from center position.

Table 6-5-4: Moment Chart - Rear Baggage Area Moments - Standard Net at Frame 34 (impe-
rial)

REAR BAGGAGE AREA MOMENTS (LB-IN) STANDARD NET AT FRAME 34 - ARM 371.0 IN										
WEIGHT	MOMENT	WEIGHT	MOMENT	WEIGHT	MOMENT	WEIGHT	MOMENT			
lb	lb-in	lb	lb-in	lb	lb-in	lb	lb-in			
10	3710	110	40810	210	77910	310	115010			
20	7420	120	44520	220	81620	320	118720			
30	11130	130	48230	230	85330	330	122430			
40	14840	140	51940	240	89040	340	126140			
50	18550	150	55650	250	92750	350	129850			
60	22260	160	59360	260	96460	360	133560			
70	25970	170	63070	270	100170	370 🗸	137270			
80	29680	180	66780	280	103880	380	140980			
90	33390	190	70490	290	107590	390	144690			
100	37100	200	74200	300	111300	397	147287			

Table 6-5-5: Moment Chart - Rear Baggage Area Moments - Standard Net at Frame 34 (metric)

	REAR BAGGAGE AREA MOMENTS (KG-M)									
	STANDARD NET AT FRAME 34 - ARM 9.420 M									
WEIGHT	MOMENT	WEIGHT	MOMENT	WEIGHT	MOMENT	WEIGHT	MOMENT			
Kg	Kg-m	Kg	Kg-m	Kg	Kg-m	Kg	Kg-m			
5	47,10	55	518,10	105	989,10	155	1460,10			
10	94,20	60	565,20	110	1036,20	160	1507,20			
15	141,30	65	612,30	115	1083,30	165	1554,30			
20	188,40	70	659,40	120	1130,40	170	1601,40			
25	235,50	75	706,50	125	1177,50	175	1648,50			
30	282,60	80	753,60	130	1224,60	180	1695,60			
35	329,70	85	800,70	135	1271,70					
40	376,80	90	847,80	140	1318,80					
45	423,90	95	894,90	145	1365,90					
50	471,00	100	942,00	150	1413,00					
	- K	/								
	\mathcal{O}^{\vee}									
	GENT									
~O`										
×										

	REAR BAGGAGE AREA MOMENTS (LB-IN) EXTENDABLE NET AT FRAME 32 - ARM 361.0 IN									
WEIGHT	MOMENT	WEIGHT	MOMENT	WEIGHT	MOMENT	WEIGHT	MOMENT			
lb	lb-in	lb	lb-in	lb	lb-in	lb	lb-in			
10	3610	140	50543	270	97476	400	144409			
20	7220	150	54154	280	101087	410	148020			
30	10831	160	57764	290	104697	420	151630			
40	14441	170	61374	300	108307	430	155240			
50	18051	180	64984	310	111917	440	158850			
60	21661	190	68594	320	115528	450	162461			
70	25272	200	72205	330	119138	460	166071			
80	28882	210	75815	340	122748	470	169681			
90	32492	220	79425	350	126358	480	173291			
100	36102	230	83035	360	129969	490	176902			
110	39713	240	86646	370	133579	500	180512			
120	43323	250	90256	380	137189					
130	46933	260	93866	390 —	140799					

Table 6-5-6: Moment Chart - Rear Baggage Area Moments - Extendable Net at Frame 32 (imperial)

Table 6-5-7: Moment Chart - Rear Baggage Area Moments - Extendable Net at Frame 32 (metric)

_											
	REAR BAGGAGE AREA MOMENTS (KG-M) EXTENDABLE NET AT FRAME 32 - ARM 9.17 M										
	WEIGHT	MOMENT	WEIGHT	MOMENT	WEIGHT	MOMENT	WEIGHT	MOMENT			
	Kg	Kg-m	Kg 🍾	Kg-m	Kg	Kg- m	Kg	Kkg-m			
	5	45,85	70	641,90	135	1237,95	200	1834,00			
	10	91,70	75	687,75	140	1283,80	205	1879,85			
	15	137,55	80	733,60	145	1329,65	210	1925,70			
	20	183,40 🦿	85	779,45	150	1375,50	215	1971,55			
	25	229,25	90	825,30	155	1421,35	220	2017,40			
	30	275,10	95	871,15	160	1467,20	225	2063,25			
	35	320,95	100	917,00	165	1513,05					
	40	366,80	105	962,85	170	1558,90					
	45	412,65	110	1008,70	175	1604,75					
	50	458,50	115	1054,55	180	1650,60					
	55	504,35	120	1100,40	185	1696,45					
2C	60	550,20	125	1146,25	190	1742,30					
X -	65	596,05	130	1192,10	195	1788,15					

		FUE	L LOAD MC	OMENTS (L	B-IN)		
WEIGHT	MOMENT	WEIGHT	MOMENT	WEIGHT	MOMENT	WEIGHT	MOMENT
lb	lb-in	lb	lb-in	lb	lb-in	lb	lb-in
100	22572	800	183555	1500	347656	2200	511463
200	45161	900	207111	1600	371079	2300	534839
300	67776	1000	230572	1700	394500	2400	558130
400	90443	1100	253974	1800	417912	2500	581450
500	113351	1200	277441	1900	441347	2600	604724 ~
600	136538	1300	300811	2000	464746	2700	628029
700	159955	1400	324221	2100	488120		0
	Table	e 6-5-9: Mor	ment Chart -	Fuel Load I	Moments (m	etric)	,S

Table 6-5-8: Moment Chart - Fuel Load Moments (imperial)

FUEL LOAD MOMENTS (KG-M)								
WEIGHT	MOMENT	WEIGHT	MOMENT	WEIGHT	MOMENT	WEIGHT	MOMENT	
Kg	Kg-m	Kg	Kg-m	Kg	Kg-m	Kg	Kg-m	
50	286,64	400	2337,14	750	4419,61	1100	6497,53	
100	573,59	450	2635,13	800	4717,33	1150	6793,90	
150	860,84	500	2932,34	850	5014,59	1200	7090,37	
200	1149,27	550	3230,45	900	5312,14	1250	7385,69	
250	1441,88	600	3526,99	950, 🏷	5608,06			
300	1738,40	650	3824,03	1000	5905,10			
350	2037,52	700	4122,29	1050	6201,26			

Note

por center and the port of the Unusable fuel is considered in empty weight. The chart shows only additional fuel.

PC-12/47E EXAMPLE LOADING FORM	INTERIOR CODE: STD-9S			
ITEM	WEIGHT Ib	ARM AFT OF DATUM in	MOMENT Ib-in	
1. Basic Empty Weight	5613	225.16	1263823	
2. Combi Interior Conversion	NA	NA	NA	
3. Pilot	170	160.27	27246	
4. Copilot (Right Seat Passenger)	170	160.27	27246	
5. Passenger 1	170	210.35	35760	
6. Passenger 2	170	207.35	35250	
7. Passenger 3	170	243.35	41370	
8. Passenger 4	170	240.35	40860	
9. Passenger 5	170	276.35	46980	
10. Passenger 6	170	273.35	46470	
11. Passenger 7	170	309.35	52590	
12. Passenger 8	170	306.35	52080	
13. Passenger 9	170	339.35	57690	
14. Optional Wardrobe		191.00		
15. LH Cabinet		212.10		
16. RH Cabinet		211.19		
 a. Rear Baggage (net at frame 32) b. Rear Baggage (net at frame 34) 	215	361.00 371.00	79765	
18. Cargo				
19. Zero Fuel Weight MZFW 9039 lb (Sum of 1 thru 18)	7698	235.68	1814269	
20. Fuel	1650	-	382790	
21. Ramp Weight MRW 10495 lb (Sum of 19 + 20)	9348	235.03	2197059	
22. Less Fuel for Ground Operations	-40	-		
23. Fuel at Takeoff (Sum of 20 + 22)	1610	-	373421	
24. Takeoff Weight MTOW 10450 lb (Sum of 19 + 23)	9308	235.03	2187690	

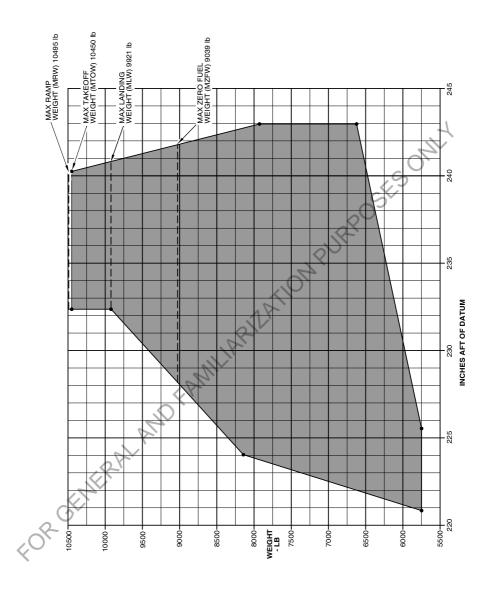

ICN-12-C-A150605-A-S4080-00162-A-001-01

Figure 6-5-1: Example Loading Form - Imperial Units

ITEM	WEIGHT Ib	ARM AFT OF DATUM in (m)	MOMENT Ib-in (kg-m)
1. Basic Empty Weight			
2. Combi Interior Conversion			
3. Pilot		160.27 (4.071)	
4. Copilot (Right Seat Passenger)		160.27 (4.071)	
5. Passenger 1			C
6. Passenger 2			6
7. Passenger 3			S
8. Passenger 4			\mathcal{O}
9. Passenger 5		P.	
10. Passenger 6		2	
11. Passenger 7		2	
12. Passenger 8		<u> </u>	
13. Passenger 9	2		
14. Optional Wardrobe	N/	191.00 (4.851)	
15. LH Cabinet	N	212.10 (5.387)	
16. RH Cabinet	7	211.19 (5.364)	
17. a. Rear Baggage (net at frame 32) b. Rear Baggage (net at frame 34)	-	361.00 (9.170) 371.00 (9.423)	
18. Cargo			
19. Zero Fuel Weight MZFW 9039 lb (4100 kg) (Sum of 1 thru 18)			
20. Fuel		-	
21. Ramp Weight MRW 10495 lb (4760 kg) (Sum of 19 + 20)			
22. Less Fuel for Ground Operations		-	-
23. Fuel at Takeoff (Sum of 20 + 22)			
24. Takeoff Weight MTOW 10450 lb (4740 kg) (Sum of 19 + 23)			

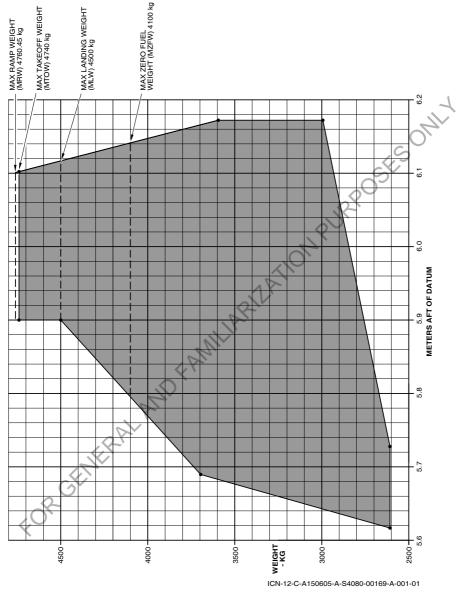

ICN-12-C-A150605-A-S4080-00163-A-001-01

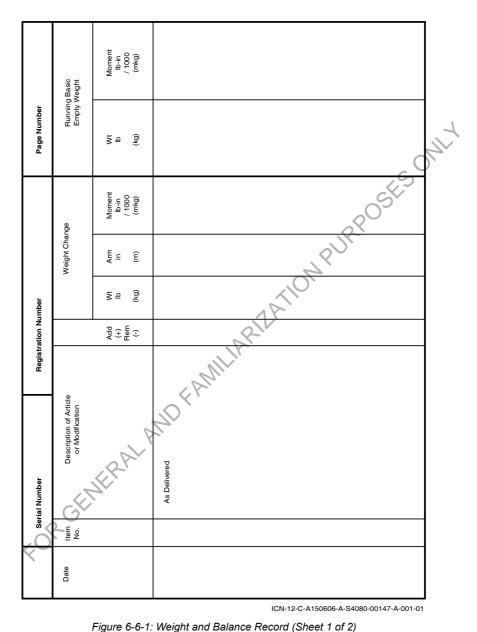
Figure 6-5-2: Loading Form

ICN-12-C-A150605-A-S4080-00168-A-001-01

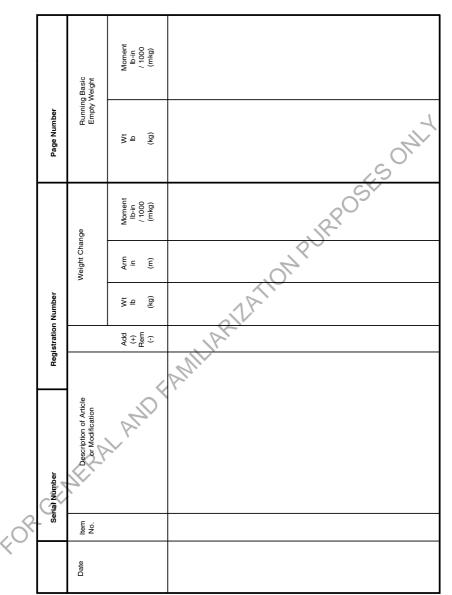
Figure 6-5-3: C. G. Envelope (Sheet 1 of 2)

Section 6 - Weight and Balance (EASA Approved) Combi Conversion

Pilot's Operating Handbook Issue date: Mar 06, 2020


6-5-4 Equipment List

Refer to Pilatus Report No. 02047, Airplane equipment List, attached to the back of this report. The equipment list itemizes the installed equipment included in the Basic Empty Weight indicated in the Airplane Basic Empty Weight figure Fig. 6-4-2 of this Airplane Flight Manual. FOR GENERAL AND FAMILARIA TION PURPOSES ONLY


WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

6-6 Weight and Balance Records

Fig. 6-6-1 Weight and Balance Record is a log of the modifications that occurred after the airplane was licensed at the factory. Any change to the permanently installed equipment or airplane modifications which effect the airplane Basic Empty Weight or Total Moment must be Bala Bala POR GENERAL AND FAMILLARIA TION PURPOSES ONLY entered in Fig. 6-6-1 Weight and Balance Record. The last entry on the Weight and Balance Record will be the current airplane Basic Empty Weight and Total Moment.

Pilot's Operating Handbook Issue date: Mar 06, 2020

ICN-12-C-A150606-A-S4080-00148-A-001-01

Figure 6-6-1: Weight and Balance Record (Sheet 2 of 2)

UATION PURPOSES ONLY Left F This Page Intentionally Left Blank

6-7 General Loading Recommendations

6-7-1 General

The following general loading recommendation is intended as only a guide. Refer to Section 2, Limitations, Other Limitations for Seating and Cargo Limitations. The pilot in command must refer to the appropriate moment charts, loading form, and the C.G. Envelope to determine that the airplane is properly loaded.

Fuel load may be limited by maximum weight.

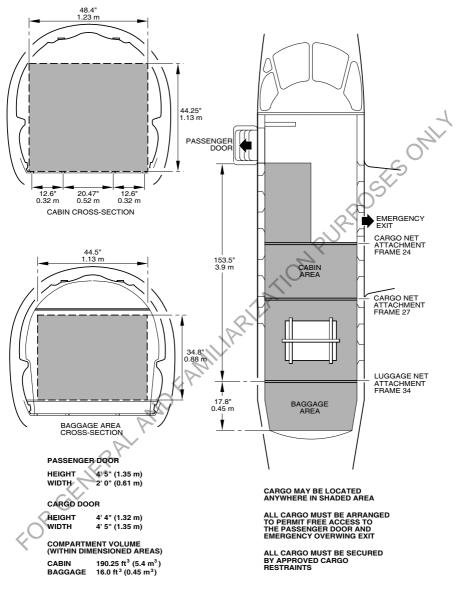
Load fuel equally between the left and right wing fuel tanks.

6-7-2 Cargo

Before loading the airplane, attach the tail support stand to prevent the tail from contacting the ramp surface while ground personnel are in the aft cabin during the loading process.

Observe the maximum floor and seat rail load limits given on the placard on the forward and rear cargo door frame. Fig. 6-7-1 gives the cabin dimensions and loading areas.

Cargo having a total weight less than 66 lbs (30 kg) may be stowed aft of the cargo net. Heavier cargo is to be secured in the cabin area with tie-down straps attached to seat rail anchor points. Refer to Fig. 6-7-2, Fig. 6-7-3, Fig. 6-7-4, Fig. 6-7-5, Fig. 6-7-6, Fig. 6-7-7, Fig. 6-7-9, Fig. 6-7-10, Fig. 6-7-11 and Fig. 6-7-12 for cargo weight calculation, restraining bar installation and tie-down strap installation. Refer to Fig. 6-7-13 for cargo net installation.


Refer to the Illustrated Parts Catalog (IPC) Chapter 25 for the part numbers of the approved cargo restraint nets, tie down straps, load carriers and retaining bars.

6-7-3 Hazardous Materials

Protection against the damaging effects of leakage of hazardous materials has not been provided in the cargo area. Provisions should be made for protection if carriage of these materials is planned.

In addition to the pilot in command, other personnel used for loading and unloading should be properly trained concerning the handling, storage, loading and unloading of hazardous materials if they are to be carried.

Information and regulations pertaining to the air transportation of hazardous materials is outlined in the Code of Federal Regulations (CFR) Title 49 and in the International Civil Aviation Organization (ICAO) Technical Instructions for the Safe Transport of Dangerous Goods by Air.

ICN-12-C-A150607-A-S4080-00149-A-001-01

Figure 6-7-1: Loading Areas

6-7-4 Maximum Allowable Weight Per Single Container (Without Special Equipment)

The maximum allowable weight is based on the package dimensions, vertical c.g. and the number of seat rails used to secure the fore-aft tie-down straps.

The flowcharts below can be used to determine whether the weight of a cargo item is acceptable, which Restraint Bars are to be used, and how the cargo is to be loaded.

The cargo dimensions are defined as shown in Fig. 6-7-2.

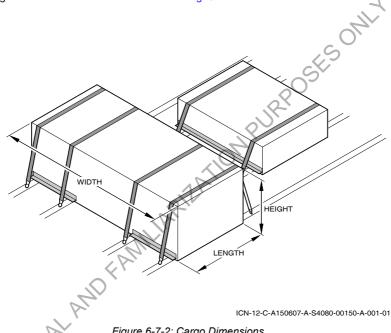


Figure 6-7-2: Cargo Dimensions

The process to decide whether and how cargo can be tied down follows the following 4 steps

- 1 Determine the cargo size and orientation.
- Determine the correct restraint bars. 2
 - Determine the correct cargo tie-down configuration chart and curve.
- 4 Determine allowable cargo weight.

3

These steps are explained in the following flowcharts, followed by an example to demonstrate their use.

Section 6 - Weight and Balance (EASA Approved) Maximum Allowable Weight Per Single Container (Without Special Equipment)

MAXIMUM ALLOWABLE WEIGHT PER SINGLE CONTAINER (WITHOUT SPECIAL EQUIPMENT)

Step One

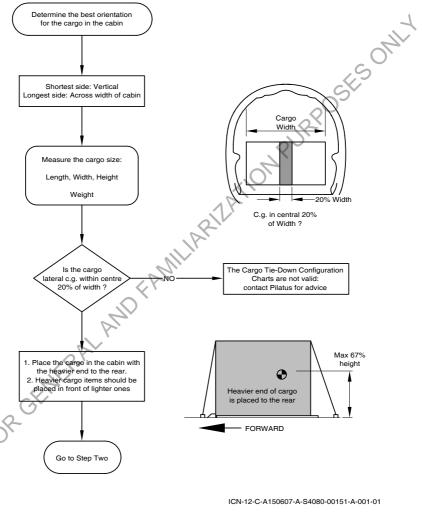
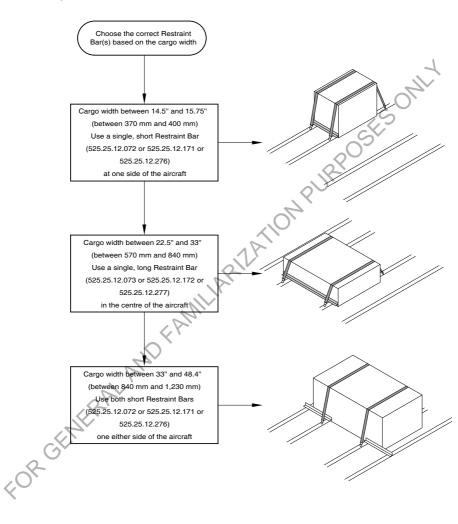
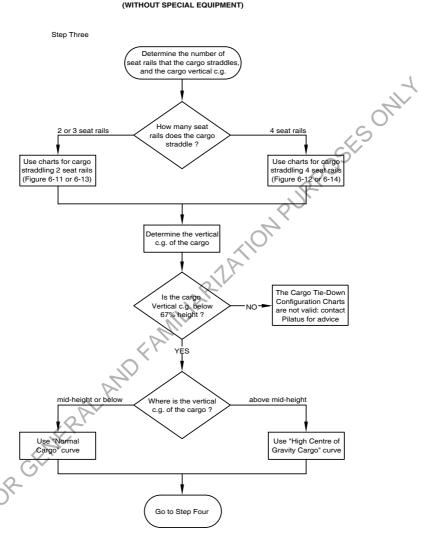
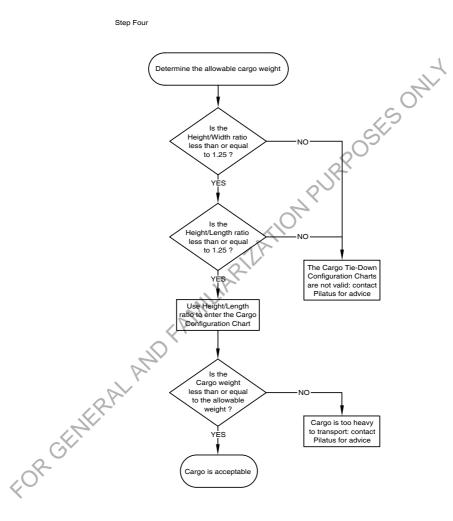



Figure 6-7-3: Step One - Cargo Size and Orientation

Section 6 - Weight and Balance (EASA Approved) Maximum Allowable Weight Per Single Container (Without Special Equipment)


Step Two

ICN-12-C-A150607-A-S4080-00152-A-001-01


Figure 6-7-4: Step Two - Determine the Correct Cargo Restraint Bars

MAXIMUM ALLOWABLE WEIGHT PER SINGLE CONTAINER

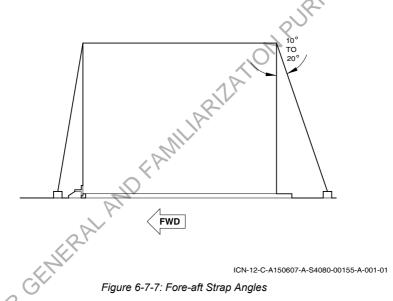
ICN-12-C-A150607-A-S4080-00153-A-001-01

Figure 6-7-5: Step Three - Determine the number of Seat Rails that the Cargo straddles, and the Cargo vertical c.g.

MAXIMUM ALLOWABLE WEIGHT PER SINGLE CONTAINER (WITHOUT SPECIAL EQUIPMENT)

ICN-12-C-A150607-A-S4080-00154-A-001-01

Figure 6-7-6: Step Four - Determine Allowable Cargo Weight


6-7-4.1 Restrain Cargo in Cabin

Fit the Restraint Bars and the Load Carrier Assemblies to the aircraft. If there is more than one cargo item, try to place the heavier items forward of the lighter ones.

Place cargo in cabin: ensure cargo is firmly against Restraint Bar(s).

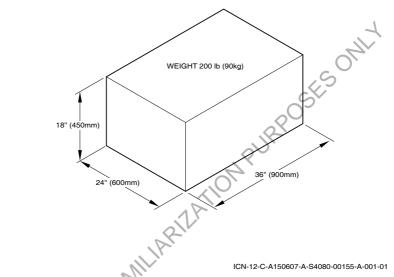
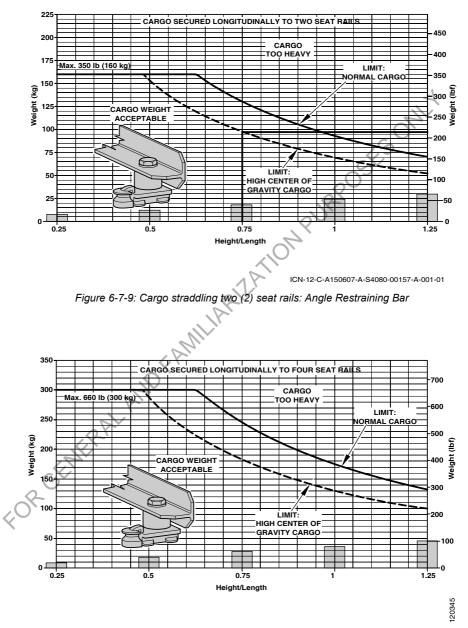
Restrain cargo with straps attached to the seat rails.

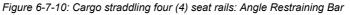
- The straps shall be placed in the fore-aft direction: do not place diagonally
- Place front strap fitting as close as feasible to Restraint Bar. Place rear fitting to give a strap angle of 10° to 20°, as shown in Fig. 6-7-7.
- Additional straps may be placed laterally on cargo straddling the centre two seat rails, if desired.

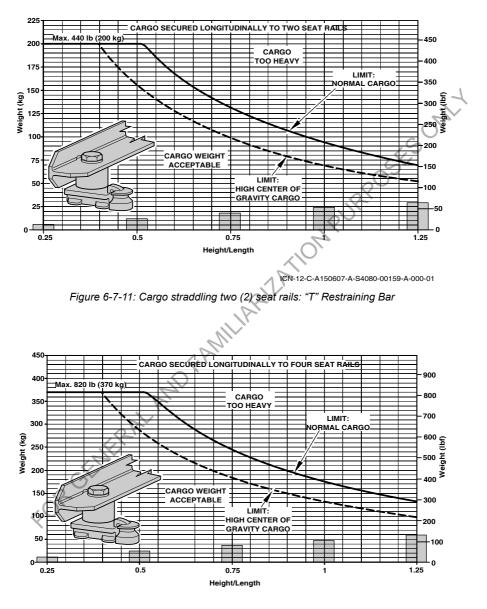
Perform the Weight and Balance check to verify that the Maximum Takeoff Weight (MTOW) and aircraft c.g. position are within the limits given in Section 2, Limitations, Weight Limits and Center of Gravity Limits.

6-7-4.2 Example

The cargo to be transported is shown below. Looking down, the c.g. is roughly in the centre of the box, but its height is unknown.

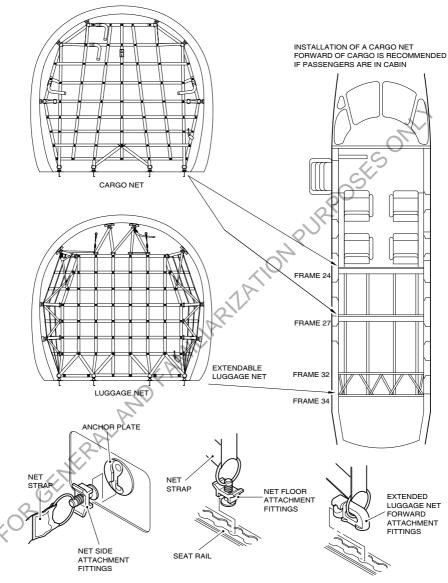




Figure 6-7-8: Maximum Allowable Weight Per Single Container (Without Special Equipment)


JC FOR GENTRALAMD

- 1 Determine the cargo size and orientation
 - 1.1 The best orientation in the cabin is with the shortest side (18") vertical and the longest side (36") across the cabin width. Fig. 6-7-1 shows that this will fit in the cargo area.
 - 1.2 Using the definitions of Fig. 6-7-2, the cargo dimensions are:
 - Height: 18" (450 mm)
 - Length: 24" (600 mm)
 - Width: 36" (900 mm).
 - 1.3 The cargo lateral c.g. is approximately in middle of the box: the charts are valid.
- 2 Determine the correct restraint bars
 - 2.1 The cargo width is 36" (900mm). Both short restraining bars are used.
 - 2.2 Two cargo-restraining straps, fitted to the inner seat rails, are required.
- 3 Determine the correct cargo tie-down configuration chart and curve
 - 3.1 The front stop is attached to 4 seat rails, but cargo tie down straps can only be fitted to the inner seat tracks. This cargo straddles 2 seat rails. The restraining Bars are angle shaped (not "T"-section) and thus Fig. 6-7-9 is used.
 - 3.2 The cargo vertical c.g. position is unknown use the "high centre of gravity" curve.
- 4 Determine allowable cargo weight
 - 4.1 Height/Width = 18"/36" = 0.33. Less than 1.25, therefore OK.
 - 4.2 Height/Length = $18^{"}/24^{"} = 0.75$. Less than 1.25, therefore OK.
 - 4.3 From Fig. 6-7-9, the allowable cargo weight is 214 lb (97kg): cargo weight is acceptable.

Section 6 - Weight and Balance (EASA Approved) Maximum Allowable Weight Per Single Container (Without Special Equipment)



ICN-12-C-A150607-A-S4080-00160-A-001-01

Figure 6-7-12: Cargo straddling four (4) seat rails: "T" Restraining Bar

Section 6 - Weight and Balance (EASA Approved) Maximum Allowable Weight Per Single Container (Without Special Equipment)

ICN-12-C-A150607-A-S4080-00161-A-001-01

Figure 6-7-13: Cargo and Luggage Restraint Installation

JATION PURPOSES ONLY Intenti Local Carling Carling Constraints of the second se This Page Intentionally Left Blank

6-8 Interior Configurations

6-8-1 General

The PC-12 was designed and certified initially with two basic cabin interior configurations, a Corporate Commuter (Code STD-9S) and an Executive interior (Code EX-6S). The Corporate Commuter interior consists of two crew seats and 9 standard passenger seats. Two versions of standard passenger seats are available: with or without a literature pocket installed. The Executive interior consists of two crew seats and 6 executive seats with forward storage cabinets and a toilet.

Variations to the two basic interior configurations are continuously being developed. The various configurations that have been approved are given below. Before using them it is the operators responsibility to check whether they require authorization by their regulatory authority. Some of the configurations require structural and system modifications, check with the Service Bulletin Index for the applicable SB's.

A Code Number is given to each interior configuration. The code is shown on a placard which is installed on the cargo door frame. The placard code gives the type and number of seats that are installed in the aircraft. Before making any changes to the interior configuration, contact Pilatus to make sure that any modification work or SB's are identified for embodiment. The placard must then be changed to show the correct code for the new configuration.

It is possible for aircraft with the executive interior to have more than one placard installed on the cargo door frame. The removal or installation of the rear seats must be done in accordance with an approved configuration. The correct weight and moment charts for the configuration must then be used for weight and balance determination for flight.

The following code numbers have been allocated and the seat locations, if applicable, are given in the following sub-sections:

- CORPORATE COMMUTER Interior Layout CODE STD-9S (nine standard seats)
- EXECUTIVE Interior Layout CODE EX-6S-2 (six executive seats)
- EXECUTIVE Interior Layout CODE EX-8S (eight executive seats)
- EXECUTIVE Interior Layout CODE EX-6S-STD-2S (six executive seats and two standard seats)
- EXECUTIVE Interior Layout CODE EX-4S-STD-4S (four executive seats and four standard seats)
- No Cabin Interior Configuration.

All distances on the passenger seat locating charts given in this section are based on the first seat track locating hole (refer to Fig. 6-8-1).

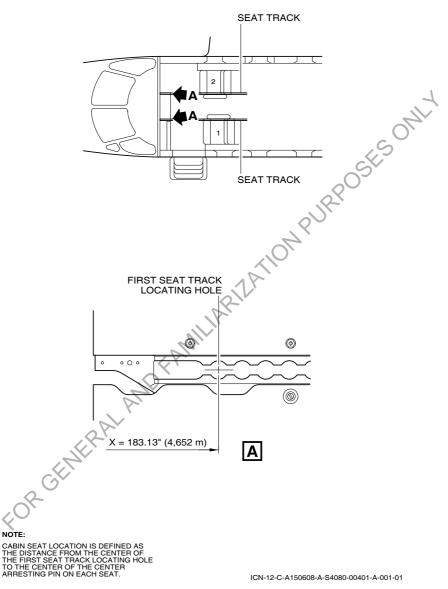
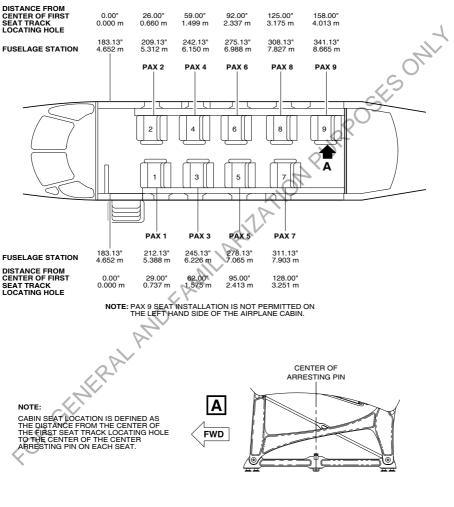


Figure 6-8-1: Interior Configurations - First Seat Track Locating Hole

6-8-2 **Corporate Commuter Interior Code STD-9S**

6-8-2.1 General


The basic Corporate Commuter Interior consisting of 9 standard passenger seats.

The section contains the following information:

- _ passenger seat location chart
- permitted passenger seat Part Numbers that can be installed
- passenger seat and furnishings weight and moment chart (standard and metric units)
- passenger seat occupant moment charts (standard and metric units).

.its) a the first poperturbation of the second seco All distances on the passenger seat locating chart are based on the first seat track locating

CORPORATE COMMUTER INTERIOR CODE STD-9S

SEAT LOCATIONS

ICN-12-C-A150608-A-S4080-00170-A-001-01

Figure 6-8-2: Corporate Commuter Interior Code STD-9S Seat Locations

6-8-2.2 Permitted Passenger Seat Part Numbers That Can Be Installed

SEAT NO.	SEAT PART NUMBER			
1,3,5,7	959.30.01.445 (with literature pocket)			
	959.30.01.447 (without literature pocket)			
2,4,6,8,9 959.30.01.446 (with literature pocket				
	959.30.01.448 (without literature pocket)			
Noto				

Table 6-8-1: STD-9S - Permitted Passenger Seat Part Numbers That Can Be Installed

The CARESTM child restraint system (part number 959.30.01.591), for children older than 24 months and weight between 22 - 44 lb (10 - 20 kg), can be used on all of the above seats.

6-8-2.3 Passenger Seats and Furnishings Weight and Moment Chart

ITEM	WEIGHT Ib (kg)	MOMENT lb-in (kg-m)
PASS SEAT 1	31.6 (14,3)	6890 (79,38)
PASS SEAT 2	31.6 (14,3)	6795 (78,29)
PASS SEAT 3	31.6 (14,3)	7933 (91,40)
PASS SEAT 4	31.6 (14,3)	7838 (90,30)
PASS SEAT 5	31.6 (14,3)	8975 (103,41)
PASS SEAT 6	31.6 (14,3)	8881 (102,32)
PASS SEAT 7	31.6 (14,3)	10018 (115,42)
PASS SEAT 8	31.6 (14,3)	9923 (114,33)
PASS SEAT 9	31.6 (14,3)	10966 (126,35)
FR 24 CARGO NET	3.6 (1,65)	941 (10,96)
FR 27 CARGO NET	3.6 (1,65)	1049 (12,21)
FR 32 EXTENDABLE	6.44 (2,92)	2325 (26,78)
BAGGAGE NET		
FR 34 BAGGAGE NET	5.13 (2,325)	1855 (21,38)

Table 6-8-2: STD-9S - Passenger Seats and Furnishings Weight and Moment Chart

Adjust the aircraft Basic Empty Weight on the Loading Form Fig. 6-5-2 for items removed/ added when converting to or from a Combi Interior Conversion.

When installing the extendable baggage net refer to Section 2, Limitations, Other Limitations for the Luggage Limitations.

6-8-2.4 Passenger Seat Occupant Moment Charts (Standard and Metric Units)

Table 6-8-3: STD-9S - Passenger Seat Occupant Moment Chart (imperial)

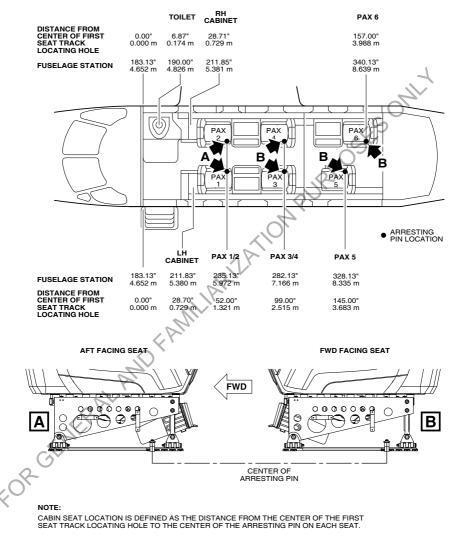
	PASSENGER SEAT OCCUPANT MOMENTS (KG - M)								
WEIGHT	PAX 1	PAX 2	PAX 3	PAX 4	PAX 5	PAX 6	PAX 7	PAX 8	PAX 9
(kg)	(5,343	(5,267	(6,181	(6,105	(7,019	(6,943	(7,857	(7,781	(8,619
	m)	m)	m)	m)	m)	m)	m)	m)	m)
25	133,57	131,67	154,53	152,62	175,48	173,58	196,44	194,53	215,49
30	160,28	158,00	185,43	183,14	210,58	208,29	235,72	233,44	258,58
35	187,00	184,33	216,34	213,67	245,67	243,01	275,01	272,34	301,68
40	213,71	210,66	247,24	244,19	280,77	277,72	314,30	311,25	344,78
45	240,43	237,00	278,15	274,72	315,86	312,44	353,58	350,15	387,87
50	267,14	263,33	309,05	305,24	350,96	347,15	392,87	389,06	430,97
55	293,85	289,66	339,96	335,76	386,06	381,87	432,16	427,97	474,07
60	320,57	316,00	370,86	366,29	421,15	416,58	471,44	466,87	517,16
65	347,28	342,33	401,77	396,81	456,25	451,30	510,73	505,78	560,26
70	374,00	368,66	432,67	427,34	491,34	486,01	550,02	544,68	603,36
75	400,71	395,00	463,58	457,86	526,44	520,73	589,31	583,59	646,46
80	427,42	421,33	494,48	488,38	561,54	555,44	628,59	622,50	689,55
85	454,14	447,66	525,39	518,91	596,63	590,16	667,88	661,40	732,65
90	480,85	473,99	556,29	549,43	631,73	624,87	707,17	700,31	775,75
95	507,57	500,33	587,20	579,96	666,82	659,59	746,45	739,21	818,84
100	534,28	526,66	618,10	610,48	701,92	694,30	785,74	778,12	861,94
105	560,99	552,99	649,01	641,00	737,02	729,02	825,03	817,03	905,04
110	587,71	579,33	679,91	671,53	772,11	763,73	864,31	855,93	948,13
115	614,42	605,66	710,82	702,05	807,21	798,45	903,60	894,84	991,23
120	641,14	631,99	741,72	732,58	842,30	833,16	942,89	933,74	1034,3
			\sim	Y .					3

Table 6-8-4: STD-9S - Passenger Seat Occupant Moment Chart (metric)

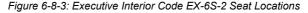
FOR GENERAL AND FA

6-8-3 Executive Interior Code EX-6S-2

6-8-3 1 General


The basic Executive Interior consisting of 6 executive passenger seats. The section contains the following information:

- passenger seat location chart
- permitted passenger seat Part Numbers that can be installed _
- passenger seats and furnishings weight and moment chart (standard and metric units
- passenger seat occupant moment charts (standard and metric units).


All distances on the passenger seat locating chart are based on the first seat track locating hole (refer to Fig. 6-8-1).

ICN-12-C-A150608-A-S4080-00171-A-001-01

6-8-3.2 Permitted Passenger Seat Part Numbers That Can Be Installed

Table 6-8-5: EX-6S-2 - Permitted Passenger Seat Part Numbers That Can Be Installed

SEAT NO.	Seat Part Number
1	959.30.00.017
	959.30.00.019
	959.30.00.081
	959.30.00.083
2	959.30.00.049
	959.30.00.051
	959.30.00.113
	959.30.00.115
3, 5	959.30.00.001 through 959.30.00.016
	959.30.00.065 through 959.30.00.080
4, 6	959.30.00.033 through 959.30.00.048
	959.30.00.097 through 959.30.00.112
	Note
	t system (part number 959.30.01.591), for children older than

24 months and weight between 22 - 44 lb (10 - 20 kg), can be used on seats 3 to 6. Additional limitations apply when the optional Drop-Down Oxygen Mask system is installed, refer to AFMS 02415.

6-8-3.3 Passenger Seats and Furnishings Weight and Moment Chart

Table 6-8-6: EX-6S-2 - Passenger Seats and Furnishings Weight and Moment Chart

ITEM	WEIGHT Ib (kg)	MOMENT Ib-in (kg-m)	
PASS SEAT 1 OR 2	56.28 (25,53)	12682.9 (146,1)	
PASS SEAT 3 OR 4	57.71 (26,18)	16327 (188,1)	
PASS SEAT 5	57.71 (26,18)	18981.6 (218,7)	
PASS SEAT 6	57.71 (26,18)	19674.1 (226,7)	
TOILET	81.0 (36,7)	15390.0 (177,3)	
LH CABINET	31.3 (14,2)	6630.3 (76,5)	
RH CABINET	27.0 (12,3)	5720 (66,0)	
FR 24 CARGO NET	3.6 (1,65)	941 (10,96)	
FR 27 CARGO NET	3.6 (1,65)	1049 (12,21)	
FR 32 EXTENDABLE	6.44 (2,92)	2325 (26,78)	
BAGGAGE NET			
FR 34 BAGGAGE NET	5.13 (2,325)	1855 (21,38)	

Adjust the aircraft Basic Empty Weight on the Loading Form Fig. 6-5-2 for items removed/ added when converting to or from a Combi Interior Conversion.

When installing the extendable baggage net refer to Section 2, Limitations, Other Limitations for the Luggage Limitations.

6-8-3.4 Passenger Seat Occupant Moment Charts (Standard and Metric Units)

PASSENGER SEAT OCCUPANT MOMENTS (LB - IN)						
WEIGHT	PAX 1/2	PAX 3/4	PAX 5	PAX 6		
(lb)	(232.22 in)	(276.04 in)	(322.04 in)	(334.04 in)		
50	11611	13802	16102	16702		
60	13933	16563	19323	20043		
70	16256	19323	22543	23383		
80	18578	22083	25763	26723		
90	20900	24844	28984	30064		
100	23222	27604	32204	S 33404		
110	25545	30365	35425	36745		
120	27867	33125	38645	40085		
130	30189	35886	41866	43426		
140	32511	38646	45086	46766		
150	34834	41406	48306	50106		
160	37156	44167	51527	53447		
170	39478	46927	54747	56787		
180	41800	49688	57968	60128		
190	44123	52448	61188	63468		
200	46445	55209	64409	66809		
210	48767	57969	67629	70149		
220	51089	60729	70849	73489		
230	53412 🔊	63490	74070	76830		
240	55734	66250	77290	80170		

Table 6-8-7: EX-6S-2 - Passenger Seat Occupant Moment Chart (imperial)

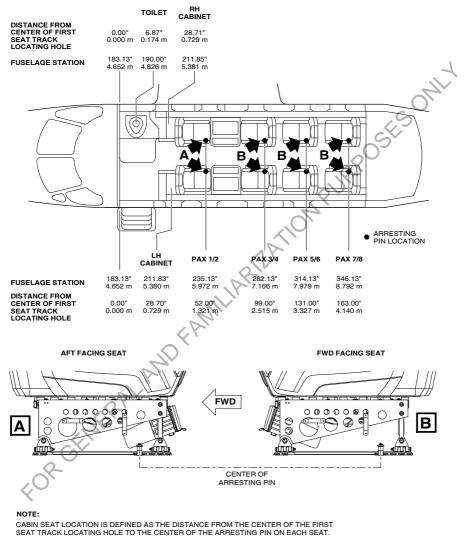
240 55734 55734 FOR GENERALAND FL

PASSENGER SEAT OCCUPANT MOMENTS (KG - M)					
WEIGHT	PAX 1/2	PAX 3/4	PAX 5	PAX 6	
(kg)	(5,899 m)	(7,011 m)	(8,180 m)	(8,485 m)	
25	147,5	175,3	204,5	212,1	
30	177,0	210,3	245,4	254,5	
35	206,4	245,4	286,3	297,0	
40	235,9	280,5	327,2	339,4	
45	265,4	315,5	368,1	381,8	
50	294,9	350,6	409,0	424,2 🌙	
55	324,4	385,6	449,8	466,7	
60	353,9	420,7	490,8	509,1	
65	383,4	455,7	531,7	551,5	
70	412,9	490,8	572,6	593,9	
75	442,4	525,9	613,5	636,4	
80	471,9	560,9	654,4	678,8	
85	501,4	596,0	695,3	721,2	
90	530,9	631,0	736,2	763,6	
95	560,4	666,1	777,1	806,0	
100	589,9	701,1	818,0	848,5	
105	619,3	736,2	858,9	890,9	
110	648,8	771,3	899,8	933,3	
115	678,3	806,3	940,7	975,7	
120	707,8	841,4	981,6	1018,2	
	707,8	FAM			
FORG					

Table 6-8-8: EX-6S-2 - Passenger Seat Occupant Moment Chart (metric)

6-8-4 Executive Interior Code EX-8S

6-8-4.1 General


This configuration is a variation of the basic executive interior and consists of 8 executive passenger seats. It is the operator's responsibility to check before using this configuration whether they require authorization by their regulatory authority. The following information is given:

- passenger seat location chart _
- permitted passenger seat Part Numbers that can be installed
- passenger seats and furnishings weight and moment chart (standard and metric units)
- passenger seat occupant moment charts (standard and metric units),


an th a on the pupped of the second s All distances on the passenger seat locating chart are based on the first seat track locating

EXECUTIVE INTERIOR CODE EX-8S

SEAT LOCATIONS

ICN-12-C-A150608-A-S4080-00392-A-001-01

6-8-4.2 Permitted Passenger Seat Part Numbers That Can Be Installed

SEAT NO.	PART NO.			
1	959.30.00.017			
	959.30.00.019			
	959.30.00.081			
	959.30.00.083			
2	959.30.00.049			
	959.30.00.051			
	959.30.00.113			
	959.30.00.115			
3, 5, 7	959.30.00.001 through 959.30.00.016			
	959.30.00.065 through 959.30.00.080			
4, 6, 8	959.30.00.033 through 959.30.00.048			
	959.30.00.097 through 959.30.00.112			
Note				
The CARES [™] child res	traint system (part number 959.30.01.591), for children older than			
24 months and weight h	petween $22 - 44$ lb $(10 - 20$ kg) can be used on seats 3 to 8			

Table 6-8-9: EX-8S - Permitted Passenger Seat Part Numbers That Can Be Installed

The CARES[™] child restraint system (part number 959.30.01.591), for children older than 24 months and weight between 22 - 44 lb (10 - 20 kg), can be used on seats 3 to 8. Additional limitations apply when the optional Drop-Down Oxygen Mask system is installed, refer to AFMS 02415.

6-8-4.3 Passenger Seats and Furnishings Weight and Moment Chart

ITEM	WEIGHT Ib (kg)	MOMENT lb-in (kg-m)			
PASS SEAT 1 OR 2	56.28 (25,53)	12682.9 (146,1)			
PASS SEAT 3 OR 4	57.71 (26,18)	16327.0 (188,1)			
PASS SEAT 5 OR 6 📎	57.71 (26,18)	18173.68 (209,4)			
PASS SEAT 7 OR 8	57.71 (26,18)	19975.4 (230,1)			
TOILET	81.0 (36,7)	15390.0 (177,3)			
LH CABINET	31.3 (14,2)	6630.3 (76,5)			
RH CABINET	27.0 (12,3)	5720 (66,0)			
FR 24 CARGO NET	3.6 (1,65)	941 (10,96)			
FR 27 CARGO NET	3.6 (1,65)	1049 (12,21)			
FR 32 EXTENDABLE BAGGAGE NET	6.44 (2,92)	2325 (26,78)			
FR 34 BAGGAGE NET	5 12 (2 225)	1955 (21.29)			
FR 34 DAGGAGE NET	5.13 (2,325)	1855 (21,38)			

Table 6-8-10: EX-8S - Passenger Seats and Furnishings Weight and Moment Chart

Adjust the aircraft Basic Empty Weight on the Loading Form Fig. 6-5-2 for items removed/ added when converting to or from a Combi Interior Conversion.

When installing the extendable baggage net refer to Section 2, Limitations, Other Limitations for the Luggage Limitations.

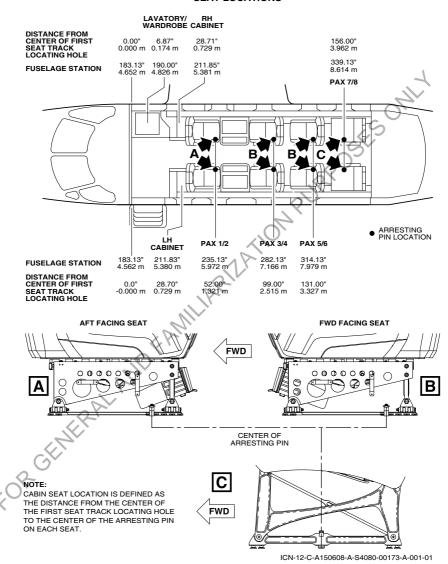
6-8-4.4 Passenger Seat Occupant Moment Charts (Standard and Metric Units)

PASSENGER SEAT OCCUPANT MOMENTS (LB - IN)					
WEIGHT	PAX 1/2	PAX 3/4	PAX 5/6	PAX 7/8	
(lb)	(232.22 in)	(276.04 in)	(308.04 in)	(340.04 in)	
50	11611	13802	15402	17002	
60	13933	16563	18483	20403	
70	16256	19323	21563	23803	
80	18578	22083	24643	27203	
90	20900	24844	27724	30604	
100	23222	27604	30804	34004	
110	25545	30365	33885	37405	
120	27867	33125	36965	40805	
130	30189	35886	40046	44206	
140	32511	38646	43126	47606	
150	34834	41406	46206	51006	
160	37156	44167	49287	54407	
170	39478	46927	52367	57807	
180	41800	49688	55448	61208	
190	44123	52448	58528	64608	
200	46445	55209	61609	68009	
210	48767	57669	64689	71409	
220	51089	60729	67769	74809	
230	53412	63490	70850	78210	
240	55734	66250	73930	816110	

Table 6-8-11: EX-8S - Passenger Seat Occupant Moment Chart (imperial)

FOR GENTERAL AND FR

Table 6-8-12: EX-8S - Passenger Seat Occupant Moment Chart (metric)


6-8-5 Executive Interior Code EX-6S-STD-2S

6-8-51 General

This configuration is a variation of the basic Executive interior and consists of 6 executive passenger seats and 2 standard seats. It is the operator's responsibility to check before using this configuration whether they require authorization by their regulatory authority. The following information is given:

- passenger seat location chart _
- permitted passenger seat Part Numbers that can be installed
- passenger seats and furnishings weight and moment chart _
- passenger seat occupant moments (standard and metric units).

ESOMIT , first se human frankling for the second se All distances on the passenger seat locating chart are based on the first seat track locating hole (refer to Fig. 6-8-1).

SIX EXECUTIVE AND TWO STANDARD INTERIOR CODE EX-6S-STD-2S SEAT LOCATIONS

Figure 6-8-5: Six Executive and Two Standard Interior Code EX-6S-STD-2S Seat Locations

6-8-5.2 Permitted Passenger Seat Part Numbers That Can Be Installed

Table 6-8-13: EX-6S-STD-2S - Permitted Passenger Seat Part Numbers That Can Be Installed

SEAT NO.	PART NO.
1	959.30.00.017
	959.30.00.019
	959.30.00.081
	959.30.00.083
2	959.30.00.049
	959.30.00.051
	959.30.00.113
	959.30.00.115
3, 5	959.30.00.001 through 959.30.00.016
	959.30.00.065 through 959.30.00.080
4, 6	959.30.00.033 through 959.30.00.048
	959.30.00.097 through 959.30.00.112
7	959.30.01.445 (with literature pocket)
	959.30.01.447 (without literature pocket)
8	959.30.01.446 (with literature pocket)
	959.30.01.448 (without literature pocket)
	Note A

The CARESTM child restraint system (part number 959.30.01.591), for children older than 24 months and weight between 22 - 44 lb (10 - 20 kg), can be used on seats 3 to 8. Additional limitations apply when the optional Drop-Down Oxygen Mask system is installed, refer to AFMS 02415.

6-8-5.3 Passenger Seats and Furnishings Weight and Moment Chart

Table 6-8-14: EX-6S-STD-2S - Passenger Seats and Furnishings Weight and Moment Chart

ITEM	WEIGHT Ib (kg)	MOMENT lb-in (kg-m)
PASS SEAT 1 OR 2	56.28 (25,53)	12682.9 (146,1)
PASS SEAT 3 OR 4	57.71 (26,18)	16327.0 (188,1)
PASS SEAT 5 OR 6	57.71 (26,18)	18173.7 (209,4)
PASS SEAT 7 OR 8	31.60 (14,30)	10903 (125,62)
TOILET or	81.0 (36,7)	15390 (177,3)
WARDROBE	45.0 (20,4)	8595 (98,97)
LH CABINET	31.3 (14,2)	6630.3 (76,5)
RH CABINET	27.0 (12,3)	5720 (66,0)
FR 24 CARGO NET	3.6 (1,65)	941 (10,96)
FR 27 CARGO NET	3.6 (1,65)	1049 (12,21)
FR 32 EXTENDABLE	6.44 (2,92)	2325 (26,78)
BAGGAGE NET		
FR 34 BAGGAGE NET	5.13 (2,325)	1855 (21,38)

Adjust the aircraft Basic Empty Weight on the Loading Form Fig. 6-5-2 for items removed/ added when converting to or from a Combi Interior Conversion.

When installing the extendable baggage net refer to Section 2, Limitations, Other Limitations for the Luggage Limitations.

6-8-5.4 Passenger Seat Occupant Moment Charts (Standard and Metric Units)

PASSENGER SEAT OCCUPANT MOMENTS (LB - IN)					
WEIGHT	PAX 1/2	PAX 3/4	PAX 5/6	PAX 7/8	
(lb)	(232.22 in)	(276.04 in)	(308.04 in)	(337.35 in)	
50	11611	13802	15402	16867	
60	13933	16563	18483	20241	
70	16256	19323	21563	23614	
80	18578	22083	24643	26988	
90	20900	24844	27724	30361	
100	23222	27604	30804	33735	
110	25545	30365	33885	37108	
120	27867	33125	36965	40482	
130	30189	35886	40046	43855	
140	32511	38646	43126	47229	
150	34834	41406	46206	50602	
160	37156	44167	49287	53975	
170	39478	46927	52367	57349	
180	41800	49688	55448	60722	
190	44123	52448	58528	64096	
200	46445	55209	61609	67469	
210	48767	57969	64689	70843	
220	51089	60729	67769	74216	
230	53412	63490	70850	77590	
240	55734	66250	73930	80963	

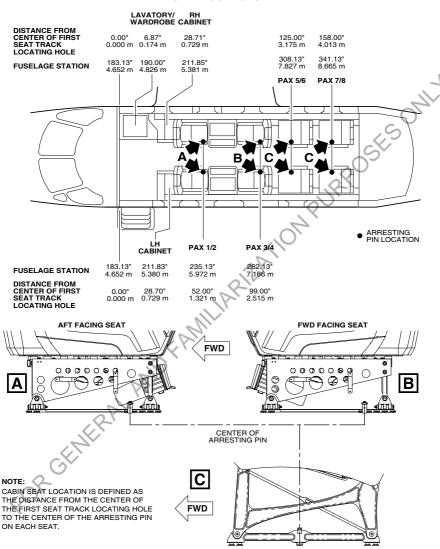
Table 6-8-15: EX-6S-STD-2S - Passenger Seat Occupant Moment Chart (imperial)

FOR GENERAL

PASSENGER SEAT OCCUPANT MOMENTS (KG - M)					
WEIGHT	PAX 1/2	PAX 3/4	PAX 5/6	PAX 7/8	
(kg)	(5,899 m)	(7,011 m)	(7,824 m)	(8,569 m)	
25	147,5	175,3	195,6	214,2	
30	177,0	210,3	234,7	257,1	
35	206,4	245,4	273,9	299,9	
40	235,9	280,5	313,0	342,7	
45	265,4	315,5	352,1	385,6	
50	294,9	350,6	391,2	428,4 🌙	
55	324,4	385,6	430,3	471,3	
60	353,9	420,7	469,5	514,1	
65	383,4	455,7	508,6	557,0	
70	412,9	490,8	547,7	599,8	
75	442,4	525,9	586,8 🗸	642,6	
80	471,9	560,9	625,9	685,5	
85	501,4	596,0	665,1	728,3	
90	530,9	631,0	704,2	771,2	
95	560,4	666,1	743,3	814,0	
100	589,9	701,1	782,4	856,9	
105	619,3	736,2	821,6	899,7	
110	648,8	771,3	860,7	942,5	
115	678,3	806,3	899,8	985,4	
120	707,8	841,4	938,9	1028,2	
120 707,8 841,4 938,9 1028,2					
FOR					

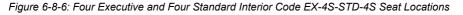
Table 6-8-16: EX-6S-STD-2S - Passenger Seat Occupant Moment Chart (metric)

Executive Interior Code EX-4S-STD-4S 6-8-6


6-8-6.1 General

This configuration is a variation of the basic Executive interior and consists of 4 executive passenger seats and 4 standard seats. It is the operator's responsibility to check before using this configuration whether they require authorization by their regulatory authority. The following information is given:

- passenger seat location chart _
- permitted passenger seat Part Numbers that can be installed
- passenger seats and furnishings weight and moment chart _
- passenger seat occupant moments (standard and metric units).


SONIT .s). I on the MARIANO FAMILLARIANON FORCEFINERALAND FAMILLARIAN All distances on the passenger seat locating chart are based on the first seat track locating

FOUR EXECUTIVE AND FOUR STANDARD INTERIOR CODE EX-4S-STD-4S

SEAT LOCATIONS

ICN-12-C-A150608-A-S4080-00174-A-001-01

6-8-6.2 Permitted Passenger Seat Part Numbers That Can Be Installed

SEAT NO.	PART NO.			
1	959.30.00.017			
	959.30.00.019			
	959.30.00.081			
	959.30.00.083			
2	959.30.00.049			
	959.30.00.051			
	959.30.00.113			
	959.30.00.115			
3	959.30.00.001 through 959.30.00.016			
	959.30.00.065 through 959.30.00.080			
4	959.30.00.033 through 959.30.00.048			
	959.30.00.097 through 959.30.00.112			
5, 7	959.30.01.445 (with literature pocket)			
	959.30.01.447 (without literature pocket)			
6, 8	959.30.01.446 (with literature pocket)			
	959.30.01.448 (without literature pocket)			
	Note			

Table 6-8-17: EX-4S-STD-4S - Permitted Passenger Seat Part Numbers That Can Be Installed

The CARESTM child restraint system (part number 959.30.01.591), for children older than 24 months and weight between 22 - 44 lb (10 - 20 kg), can be used on seats 3 to 8. Additional limitations apply when the optional Drop-Down Oxygen Mask system is installed, refer to AFMS 02415.

6-8-6.3 Passenger Seats and Furnishings Weight and Moment Chart

Table 6-8-18: EX-4S-STD-4S - Passenger Seats and Furnishings Weight and Moment Chart

(kg-m)

Adjust the aircraft Basic Empty Weight on the Loading Form Fig. 6-5-2 for items removed/ added when converting to or from a Combi Interior Conversion.

When installing the extendable baggage net refer to Section 2, Limitations, Other Limitations for the Luggage Limitations.

6-8-6.4 Passenger Seat Occupant Moment Charts (Standard and Metric Units)

PASSENGER SEAT OCCUPANT MOMENTS (LB - IN)					
WEIGHT	PAX 1/2	PAX 3/4	PAX 5/6	PAX 7/8	
(lb)	(232.22 in)	(276.04 in)	(306.35 in)	(339.35 in)	
50	11611	13802	15317	16967	
60	13933	16563	18381	20361	
70	16256	19323	21444	23754	
80	18578	22083	24508	27148	
90	20900	24844	27571	C 30541	
100	23222	27604	30635	33935	
110	25545	30365	33698	37328	
120	27867	33125	36762	40722	
130	30189	35886	39825	44115	
140	32511	38646	42889	47509	
150	34834	41406	45952	50902	
160	37156	44167	49015	54295	
170	39478	46927	52079	57689	
180	41800	49688	55142	61082	
190	44123	52448	58206	64476	
200	46445	55209	61269	67869	
210	48767	57969	64333	71263	
220	51089	60729	67396	74656	
230	53412	63490	70460	78050	
240	55734	66250	73523	81443	
240 55734 66250 73523 81443					

Table 6-8-19: EX-4S-STD-4S - Passenger Seat Occupant Moment Chart (imperial)

PASSENGER SEAT OCCUPANT MOMENTS (KG - M)					
WEIGHT	PAX 1/2	PAX 3/4	PAX 5/6	PAX 7/8	
(kg)	(5,899 m)	(7,011 m)	(7,781 m)	(8,619 m)	
25	147,5	175,3	194,5	215,5	
30	177,0	210,3	233,4	258,6	
35	206,4	245,4	272,3	301,7	
40	235,9	280,5	311,2	344,8	
45	265,4	315,5	350,2	387,9	
50	294,9	350,6	389,1	431,0	
55	324,4	3856,	428,0	474,1	
60	353,9	420,7	466,9	517,2	
65	383,4	455,7	505,8	560,3	
70	412,9	490,8	544,7	603,4	
75	442,4	525,9	583,6	646,5	
80	471,9	560,9	622,5	689,6	
85	501,4	596,0	661,4	732,6	
90	530,9	631,0	700,3	775,7	
95	560,4	666,1	739,2	818,8	
100	589,9	701,1	778,1	861,9	
105	619,3	736,2	817,0	905,0	
110	648,8	771,3	855,9	948,1	
115	678,3	806,3	894,8	991,2	
120	707,8	841,4	933,7	1034,3	

Table 6-8-20: EX-4S-STD-4S - Passenger Seat Occupant Moment Chart (metric)

6-8-7 No Cabin Interior Configuration

6-8-7.1 General

The No Cabin Interior Configuration does not have any seats, interior panels, interior lighting, PSU panels, or ${\rm O}_2$ masks

No persons are allowed in the cabin.

Cargo may be placed in the cabin using the loading procedures given in Section 6-7, General Loading Recommendations. Baggage and cargo items \leq 66 lb (30 kg) may be placed in the baggage area aft of the luggage net.

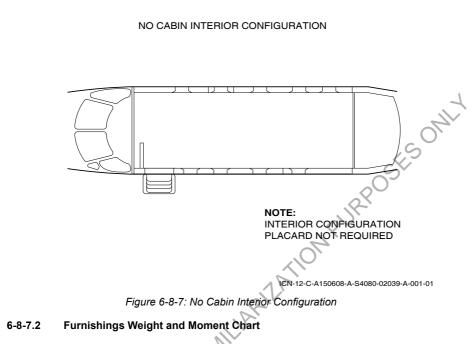


Table 6-8-21: No Cabin Interior Furnishings Weight and Moment Chart

ITEM	WEIGHT Ib (kg)	MOMENT lb-in (kg-m)
FR 24 CARGO NET	3.6 (1,65)	941 (10,96)
FR 27 CARGO NET	3.6 (1,65)	941 (10,96)
FR 34 BAGGAGE NET	5.13 (2,325)	1341 (15,44)
FORGENER		

SECTION 7

Airplane and Systems Description Table of Contents

	Subject		Page
	7-1	General	7-1-1
	7-2	Airframe	7-2-1
	7-2-1	General	7-2-1
	7-2-2	Fuselage	7-2-1
	7-2-3	Empennage	7-2-1
	7-2-4	General Fuselage Empennage Wings Flight Controls General Aileron Elevator Rudder Trim Flaps Indication / Warning	7-2-1
	7-3	Flight Controls	7-3-1
	7-3-1	General	7-3-1
	7-3-2	Aileron	7-3-1
	7-3-3	Elevator	7-3-1
	7-3-4	Rudder	7-3-1
	7-3-5	Trim R	7-3-2
	7-3-6	Flaps	7-3-2
	7-3-7	Indication / Warning	7-3-4
	7-4	Landing Gear	7-4-1
	7-4-1	General	7-4-1
	7-4-2	Description	7-4-1
	7-4-3	Electromechanical Actuators	7-4-2
	7-4-4	Indication/Warning	7-4-2
	7-4-5	Emergency Extension System	7-4-5
	7-4-6	Air / Ground System	7-4-9
	7-4-7	Brakes	7-4-9
4	7-4-8	Wheels and Tires	7-4-11
	7-5	Baggage Compartment	7-5-1
	7-5-1	General	7-5-1
	7-6	Cargo Tie-Downs	7-6-1
	7-6-1	General	7-6-1
	7-7	Seats / Restraint Systems	7-7-1
	7-7-1	Seats	7-7-1

Subject		Page
7-7-2	Seat Belts And Shoulder Harnesses	7-7-1
7-7-3	Restraint Systems for Children	7-7-5
7-8	Doors, Windows and Exits	7-8-1
7-8-1	Passenger Door	7-8-1
7-8-2	Cargo Door	7-8-1
7-8-3	Windows	7-8-2
7-8-4	Indication/Warning	7-8-2
7-8-5	Emergency Exit	7-8-2
7-8-6	Aircraft Security	7-8-2
7-9	Control Locks	ر ج کر
7-9-1	Control Locks	7-9-1
7-10	Control Locks Control Locks Engine Description and Operation Air Induction Inertial Separator Controls Engine Fuel Oil Starting Ignition Accessories Fire Detection	7-10-1
7-10-1	Description and Operation	7-10-1
7-10-2	Air Induction	7-10-3
7-10-3	Inertial Separator	7-10-3
7-10-4	Controls	7-10-5
7-10-5	Engine Fuel	7-10-11
7-10-6	Oil	7-10-11
7-10-7	Starting	7-10-14
7-10-8	Ignition	7-10-15
7-10-9	Accessories	7-10-15
7-10-10	Fire Detection	7-10-15
7-10-11	Automatic Limiting and Recovery	7-10-16
7-10-12	Engine Indications, Cautions and Warnings	7-10-16
7-11	Propeller	7-11-1
7-11-1	General	7-11-1
7-11-2	Description	7-11-1
7-11-3	Operation	7-11-3
7-11-4	Propeller De-ice	7-11-3
7-11-5	Indication / Warning	7-11-4
7-12	Fuel	7-12-1
7-12-1	General	7-12-1
7-12-2	Description	7-12-1
7-12-3	Operation	7-12-2

Subject		Page
7-12-4	Indication / Warning	7-12-3
7-13	Electrical	7-13-1
7-13-1	General	7-13-1
7-13-2	Description	7-13-1
7-13-3	Operation	7-13-6
7-13-4	Indication / Warning	7-13-8
7-14	Lighting	2-14-1
7-14-1	Interior	0 7-14-1
7-14-2	Exterior	7-14-1
7-15	Interior Exterior Environmental Control System General Air Cycle System Auxiliary Heating Vapor Cycle Cooling System ECS Operation Indication / Warning	7-15-1
7-15-1	General	7-15-1
7-15-2	Air Cycle System	7-15-1
7-15-3	Auxiliary Heating	7-15-4
7-15-4	Vapor Cycle Cooling System	7-15-5
7-15-5	ECS Operation	7-15-6
7-15-6	Indication / Warning	7-15-7
7-16	Foot Warmer System (Optional)	7-16-1
7-16-1	Description	7-16-1
7-16-2	Operation	7-16-1
7-17	Cabin Pressure Control System	7-17-1
7-17-1	General	7-17-1
7-17-2	Description	7-17-1
7-17-3	Operation	7-17-2
7-17-4	Indication / Warning	7-17-5
7-18	Oxygen System	7-18-1
7-18-0	General	7-18-1
7-18-2	Description	7-18-1
7-18-3	Operation	7-18-3
7-18-4	Indication / Warning	7-18-3
7-18-5	Larger capacity oxygen system (optional)	7-18-4
7-19	Cockpit Arrangement	7-19-1
7-19-1	General	7-19-1
7-19-2	Description	7-19-1
7-20	Pitot Static Systems	7-20-1

Subject		Page
7-20-1	General	7-20-1
7-20-2	Description	7-20-1
7-20-3	Indication / Warning	7-20-1
7-21	Stall Warning / Stick Pusher System	7-21-1
7-21-1	General	7-21-1
7-21-2	Description	7-21-1
7-21-3	Operation	7-21-2
7-21-4	Indication / Warning	7-21-3
7-22	Airfoil De-ice System	7-22-1
7-22-1	General	7-22-1
7-22-2	Description	7-22-1
7-22-3	General Description Operation Indicating / Warning Comfort Features General Cabin Features General Corporate Commuter Interior Executive Interior Combi/Cargo Interior	7-22-1
7-22-4	Indicating / Warning	7-22-2
7-23	Comfort Features	7-23-1
7-23-1	General	7-23-1
7-24	Cabin Features	7-24-1
7-24-1	General	7-24-1
7-24-2	Corporate Commuter Interior	7-24-1
7-24-3	Executive Interior	7-24-1
7-24-4	Combi/Cargo Interior	7-24-2
7-25	Emergency Locator Transmitter	7-25-1
7-25-1	Kannad Integra ELT and ENAV Unit	7-25-1
7-25-2	Low Frequency Underwater Locator Beacon (ULB) (if installed)	7-25-2
7-26	Primus APEX - Avionics Installation General	7-26-1
7-26-1	General	7-26-1
7-26-2	APEX Builds	7-26-2
7-26-3	Acronyms and Abbreviations	7-26-2
7-27	Primus APEX	7-27-1
7-27-1	General	7-27-1
7-27-2	Description	7-27-1
7-27-3	Operation	7-27-3
7-27-4	Display and Window Configuration	7-27-5
7-27-5	Display Reversion	7-27-9
7-27-6	Primary Flight Display	7-27-12

Section 7 - Airplane and Systems Description Table of Contents

Subject		Page
7-27-7	Situation Awareness Multifunction Display	7-27-20
7-27-8	Systems Multifunction Display	7-27-20
7-27-9	Indication / Warning	7-27-23
7-28	Primus APEX - Attitude and Heading	7-28-1
7-28-1	General	7-28-1
7-28-2	Air Data and Attitude Heading Reference System (ADAHRS)	7-28-1
7-28-3	Electronic Standby Instrument System (ESIS)	7-28-7
7-28-4	Standby Magnetic Compass (If Installed)	7-28-13
7-29	Primus APEX - Communication and Navigation	7-29-1
7-29-1	General	7-29-1
7-29-2	Standby Magnetic Compass (If Installed) Primus APEX - Communication and Navigation General Multimode Digital Radio Transceiver (MMDR) Radio Tuning Windows Controls And Displays Audio Control Panel Dual Audio Panel Operation Audio Panel Controls	7-29-1
7-29-3	Radio Tuning Windows	7-29-2
7-29-4	Controls And Displays	7-29-2
7-29-5	Audio Control Panel	7-29-4
7-29-6	Dual Audio Panel Operation	7-29-6
7-29-7	Audio Panel Controls	7-29-7
7-29-8	Distance Measuring Equipment (DME)	7-29-8
7-29-9	Transponder (XPDR)	7-29-8
7-29-10	Global Navigation Satellite Sensor Unit (GNSSU)	7-29-9
7-29-11	HF Communications System	7-29-17
7-29-12	Aerowave 100 Satcom System	7-29-19
7-30	Primus APEX - Situation Awareness	7-30-1
7-30-1	General	7-30-1
7-30-2	Weather Radar (WX)	7-30-1
7-30-3	Radar Altimeter	7-30-6
7-30-4	Optional Equipment	7-30-6
7-31	Primus APEX - Monitor Warning System (MWS)	7-31-1
7-31-1	General	7-31-1
7-31-2	Monitor Warning Function (MWF)	7-31-1
7-31-3	System Monitors	7-31-2
7-31-4	Aural Warning	7-31-3
7-31-5	Crew Alerting System (CAS)	7-31-5
7-31-6	CAS Warning Messages (RED)	7-31-7
7-31-7	CAS Caution Messages (AMBER)	7-31-8

Subject		Page
7-31-8	CAS Advisory Messages (CYAN)	7-31-12
7-31-9	CAS Status Messages (WHITE)	7-31-14
7-32	Primus APEX - Automatic Flight Control System	7-32-1
7-32-1	General	7-32-1
7-32-2	Description	7-32-2
7-32-3	Operation	7-32-5
7-32-4	Indication / Warning	7-32-7
7-32-5	Thrust Management System (optional)	7-32-11
7-32-6	Emergency Descent Mode	7-32-13
7-32-7	Tactile Feedback	7-32-13
7-33	Primus APEX - Flight Management System	7-33-1
7-33-1	Description	7-33-1
7-33-2	Operation	7-33-3
7-33-3	Database Loading	7-33-6
7-33-4	Indication / Warning	7-33-8
7-33-5	Primus APEX - Flight Management System Description Operation Database Loading Indication / Warning Dual FMS (Optional)	7-33-11
7-34	Primus APEX - Aircraft Condition Monitoring System (ACMS)	7-34-1
7-34-1	General	7-34-1
7-35	Primus APEX - Aircraft Diagnostic and Maintenance System (ADMS)	7-35-1
7-35-1	General	7-35-1
7-35-2	Description	7-35-1
7-35-3	Maintenance Data Download	7-35-2
7-35-4	Indication	7-35-2
7-36	Primus APEX - Optional Electronic Charts	7-36-1
7-36-1	General	7-36-1
7-36-2	Functionality	7-36-1
7-36-3	Electronic Chart Database Loading	7-36-5
7-36-4	Optional Apex Video Input	7-36-5
7-37	Primus APEX - Optional Electronic Checklist	7-37-1
7-37-1	General	7-37-1
7-37-2	Description	7-37-1
7-37-3	Operation	7-37-1
7-38	Primus APEX - Coupled VNAV Approach	7-38-1

Subject		Page
7-38-1	General	7-38-1
7-38-2	Description	7-38-1
7-38-3	VNAV Modes	7-38-1
7-38-4	Pilot's Display	7-38-2
7-38-5	VNAV Operation Description	7-38-10
7-38-6	Visual Approach (optional)	7-38-12
7-39	Primus APEX - Optional LPV/LP Approach	7-39-1
7-39-1	General	7-39-1
7-39-2	Description	7-39-1
7-39-3	Pilot's Display	5 7-39-2
7-40	Lightweight Data Recorder (If Installed)	7-40-1
7-40-1	Description	7-40-1
7-40-2	Operation	7-40-1
	MILLA	
	Visual Approach (optional) Primus APEX - Optional LPV/LP Approach General Description Pilot's Display Lightweight Data Recorder (If Installed) Description Operation Operation	

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

7-1 General

The airplane is a low wing, T-tail, single engine, retractable landing gear type designed to transport passengers, cargo, or various combinations of both passengers and cargo.

FOR GENERAL AND FAMILIARIA TION PURPOSES ONLY

12-C-A15-00-0701-00A-010A-A

UATION PURPOSES ONLY Left F This Page Intentionally Left Blank

7-2 Airframe

7-2-1 General

The aircraft construction is conventional semimonocoque, primarily incorporating aluminum alloy, but composite structures are used in certain areas. Flush riveting is used where appropriate to minimize drag. Access panels are installed to facilitate inspection and maintenance. The complete airframe is electrically bonded to eliminate electromagnetic interference and static discharge wicks are used to reduce static charges while in flight.

7-2-2 Fuselage

The fuselage consists of the engine area, nose gear assembly, cockpit, cabin, and aft fuselage. The engine area contains the powerplant and associated accessories. The engine cowling is constructed from a carbon/nomex honeycomb material and is covered by a copper foil for lightning protection. The engine mount is welded steel tubing and bolted to the firewall in four places. The firewall is titanium and protected by insulation material.

A left and a right windshield, two side windows, and a Direct Vision (DV) window provide cockpit visibility. The windshield is made of two glass layers with an interlayer, while the two side windows and the DV window are made of two stretched acrylic layers with an interlayer. All windows are made of two ply laminated design.

The cabin area is aft of the cockpit to the aft pressure bulkhead and contains the passenger door, the cargo door, and an emergency overwing exit. The nine cabin windows are two ply laminated monolithic stretched acrylic and incorporate dry neoprene seals. Airplane avionics are mounted under the cabin floor, running the length of the center cabin, and are accessible through quick release panels. The cabin carry-through spar attachment fittings are one-piece machined aluminum. Fuselage fairings are constructed from either carbon/nomex or aramid/ nomex honeycomb material.

A safety net is installed aft of the rear pressure bulkhead to protect the bulkhead from damage during maintenance.

7-2-3 Empennage

The empennage is a T-tail design with the horizontal stabilizer mounted on top of the vertical stabilizer. The vertical and horizontal stabilizer assemblies are conventional aluminum construction. The horizontal stabilizer is a trimmable structure. The dorsal fin is made of glass fiber honeycomb and the ventral fin is made of kevlar honeycomb material.

7-2-4 Wings

The wings are of conventional construction incorporating front and rear spars, ribs, and skin. The front and rear spars are mainly from machined aluminum alloy plate. Both spars include fuselage and integral landing gear attachment points, while the rear spar also integrates flap actuator attachment points. Main load carrying ribs are machined from aluminum alloy plate. All other ribs are formed sheet metal. The ribs incorporate lightening holes to reduce weight and integral beads for stiffening. The wing skin is stiffened clad aluminum alloy sheet riveted to the spars and ribs. Access panels are in the wing bottom only.

Each wing is attached to the fuselage using three titanium shear bolts and, at the aft upper fitting, one steel tension bolt.

Each wing contains an integral fuel tank, aileron, flaps, de-ice boot, and main landing gear. The fuel tanks are located between ribs 3 and 16, forward of the main spar to the nose rib and between ribs 6 and 16 behind the main spar to the rear spar.

The ailerons are conventional construction with a single spar and ribs. The aileron access panels are a carbon/nomex honeycomb construction. The ailerons are mass balanced and the aileron/wing gap is sealed.

Each wing incorporates a single piece Fowler flap of conventional construction, with three support arms and associated linkages. The wing trailing edges above the flaps are foam core covered with carbon laminate while the flap fairings are a carbon laminate with nomexhoneycomb reinforcement strips.

A surface mounted de-ice boot is attached to the nose skin of each wing. Each wing has a main landing gear attached to the front and rear spar, with a carbon fiber/nomex honeycomb enterner and the service of the serv gear door attached to the leg. The wing tips are constructed of carbon fiber/honeycomb with a top layer of copper foil for lightning protection.

7-3 Flight Controls

7-3-1 General

Refer to Fig. 7-3-1. Flight Controls - General, for system controls and flap operation.

The flight control system is conventional using push-pull rods and carbon steel cables. Electric trim systems are provided for the aileron, rudder, and elevator. All trim systems can be disconnected in the event of a runaway condition.

An aileron/rudder interconnect system is installed to improve lateral stability and turn coordination.

When the pilot initiates a turn by giving a roll control input, the spring package in the interconnect systems applies a force to the rudder cables that tends to deflect the rudder in the direction of the turn. Alternatively, when the pilot gives a yaw control input by pushing one of the rudder pedals, the spring package applies a force to the aileron control system which tends to roll the aircraft in the direction of turn.

7-3-2 Aileron

The ailerons are connected to the cockpit control wheels by control cables in the fuselage and push-pull rods in the wings. Each aileron is attached to the wing at two hinge points.

Each aileron has a trim tab which is connected to a geared lever (Flettner) mechanism. The mechanism is installed inside the aileron and makes the trim tabs act as balance tabs when the ailerons are moved. They move in the opposite direction to the ailerons. The left aileron trim tab is also operated electrically from the cockpit. Refer to Trim system, for more information.

7-3-3 Elevator

The elevator is a two piece unit attached to the horizontal stabilizer at a total of five hinge points and is connected to the cockpit control wheel by carbon steel control cables. A down spring is installed in the control circuit to improve longitudinal stability. The elevator is equipped with static discharge wicks to dissipate static charges to the atmosphere.

Pitch trim is provided by positioning the horizontal stabilizer. Refer to Trim System, for more information.

7-3-4 Rudder

The rudder is a single piece unit attached to the vertical stabilizer at two hinge points and is connected to the cockpit rudder pedals by carbon steel control cables. Both pilot and copilot rudder pedals are adjustable by use of a crank located between each set of rudder pedals. Clockwise rotation of the crank moves the pedals aft. The rudder is equipped with static discharge wicks to dissipate static charges to the atmosphere.

The rudder incorporates a trim tab that is electrically operated from the cockpit. Refer to Trim Trim system, for more information.

7-3-5 Trim

The aileron, horizontal stabilizer and rudder trim are electrically operated. Aileron and horizontal stabilizer trim operation is controlled by a switch on the outboard yoke of each control wheel, rudder trim operation is controlled by a switch on the Engine Power Control Lever. Before selecting pitch or aileron trim, press and hold the trim engage switch located on the forward side of each outboard control wheel yoke. A display for aileron, horizontal stabilizer and rudder trim position is shown on the systems Multi-Function Display (MFD).

Pitch trim is accomplished by an electrically controlled actuator connected to the moveable horizontal stabilizer. The actuator has two separate motors: a manual stabilizer trim motor (controlled by the manual trim switches) and an alternate stabilizer trim motor (controlled by the autopilot). The alternate stabilizer trim motor can also be used as a back-up system by the pilot. To activate alternate Stabilizer trim, press the ALTERNATE STAB TRIM switch on the center console to NOSE UP or NOSE DOWN as needed.

The leading edge of the horizontal stabilizer moves down for nose-up trim and moves up for nose-down trim. At the root of the left horizontal stabilizer leading edge are trim range indicator markings to show full travel in either direction and the takeoff trim range. As part of the pre-flight inspection these trim indicator markings should be used to verify the cockpit trim position indication.

If there is uncommanded trim operation, all trim operation (manual and auto trim) can be stopped by lifting the switch guard and pressing the TRIM INTR switch located in front of the Engine Control quadrant on the center console.

7-3-6 Flaps

Each wing trailing edge has a single piece Fowler type flap supported by three flap arms. The flaps are controlled by a selector handle located to the right of the power controls on the center console. The flaps may be set to one of the four preset positions 0°, 15°, 30° and 40° by moving the handle to the appropriate position. If the flap lever is not at one of the four preset positions, the Flap Control and Warning Unit (FCWU) will drive the flaps to the nearest preset position.

The flaps are electrically actuated. There is a single flap Power Drive Unit (PDU) installed below the cabin floor at the rear main frame. It drives screw actuators at the inboard and middle stations through flexible shafts. The screw actuators are connected to the flap actuating arms.

The flap control system incorporates a failure detection system. The system can detect a failure of a flexible shaft by disconnection or jamming, potentially resulting in flap asymmetry or failure of the system to achieve the selected flap position. The system can detect a failure of a single actuator, potentially resulting in single flap panel twisting. If a failure is detected, the FCWU disconnects the power to the PDU and the Crew Alerting System (CAS) window will show **Flaps**. This condition cannot be reset by pilot action, a landing should be made, refer to Section 3, Emergency Procedures, Flaps Failure.

A rotation sensor is installed on each of the outer flap screw actuators. These sense the rotation of the flexible shafts and give signals to the FCWU. The FCWU monitors these signals for asymmetrical flexible shaft rotation of more than 20 rotations (caused by a broken inner flap drive shaft). If failure is detected, the FCWU disconnects the power to the PDU and the CAS window will show a Flaps caution. This condition cannot be reset by pilot action. To detect satisfactory system operation, the FCWU monitors the left sensor for 10 rotations of the flexible shaft in the first 7 seconds of a flap up or down selection. If the selected flap position is not achieved the FCWU disconnects the power to the PDU and **Flaps** will be shown.

There are five position sensors in the flap system, one at each center flap actuating arm, one at each inner flap actuating arm and one on the flap position lever, which give signals to the FCWU. The FCWU monitors the signals from the left and right flap sensors for flap asymmetry (caused by a broken inner flap drive shaft). If an asymmetry is detected, power to the PDU is disconnected and **Flaps** will come on. Flap panel asymmetry occurs when the difference between the left and right flap angle exceeds a specific angle in accordance with the table below.

Asymmetry occurs when the left and right flap panel difference is at least:
1.6°
4.3°
5°

Table	7-3-1:	Flap	Position	Symmetry	Limits
				• • • • • • • • • • • • • • • • • • • •	

The FCWU also monitors the signals from the left and right flap sensors for twisting of the left or right flap (caused by a broken outer flap drive shaft or unequal movement of the flap screw actuators). If a failure is detected, the FCWU disconnects the power to the PDU and the CAS window will show a Flaps caution.

Additionally if flap asymmetry or twist is detected and the flap angle is greater than 2° after 10 seconds, the **Pusher** will show and the stick pusher will default to 'safe' mode. **Pusher Safe Mode** will show in the CAS window. In the 'safe' mode the stick pusher will operate at the flap 0° flap speed setting.

If the PDU motor overheats or a stalled motor condition is detected, a signal from the PDU will open the FLAP circuit breaker on the Generator 1 Bus circuit breaker panel. The FCWU then removes the up or down command to the PDU and the CAS window will show **Flaps**. After waiting for a period of 5 minutes the FLAP circuit breaker can be reset (max. 2 attempts) and normal flap operation resumes. This is the only pilot resettable failure and cycling the flap circuit breaker, if it has not opened, will not reset any other failure mode detected.

To avoid an inadvertent flap down command at high speed, flap down enable is disabled when the flap selector handle is in the 0° position.

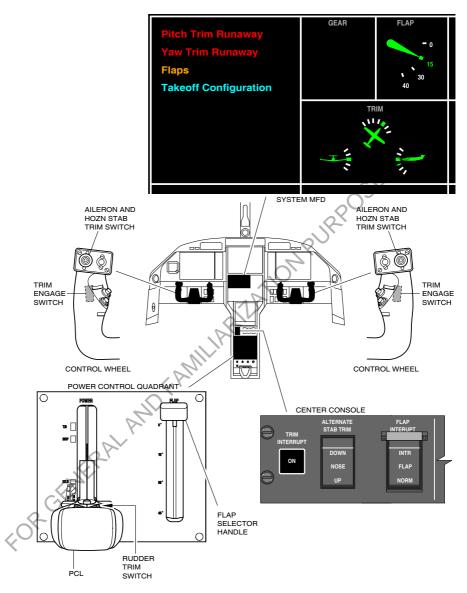
Flap system operation may be stopped at any time by lifting the switch guard and pressing the INTERRUPT FLAP switch on the center console to INTR. The CAS window will show **Flaps**. If the switch is moved back to the NORM position, normal operation will not resume, even if the FCWU does not detect any failures.

A FLAP GROUND RESET switch is installed on the maintenance test panel (right sidewall behind the copilot seat). The FLAP GROUND RESET switch is only operational on the ground for maintenance purposes.

7-3-7 Indication / Warning

Symbolic aircraft views of the trim positions for the aileron trim tab (roll), rudder trim tab (yaw) and horizontal stabilizer (pitch) are shown in the TRIM window of the systems MFD. In flight, the trim indications are shown in white. An invalid trim status will be shown with an amber cross. On the ground, the trim logic changes and the colors change based on the trim position. The neutral trim positions change to green and the pitch trim also has a green diamond (aft cg). The aircraft symbols change to green when each trim position is correctly set for takeoff. If the trim position is not correctly set, the aircraft symbol will be white and a CAS **Takeoff Configuration** will be displayed on the CAS window. A green trim in motion indicator will show when the autopilot is moving the rudder and horizontal stabilizer trim. An invalid autopilot trim parameter will be shown with an amber cross over the indicator.

Flap position is shown in the FLAP window of the systems MFD by a white symbolic flap pointer which moves in relation to flap movement. The window is marked in white with the positions 0, 15, 30 and 40. The pointer and the degree position mark will change to green when the pointer reaches the selected flap position and is adjacent to the mark. When the aircraft is on ground and flaps are at 40° the pointer will show white and a CAS **Takeoff Configuration** will be displayed on the CAS window. When airborne and the flaps are up, the flap indications change from their default white to a grey color after 20 seconds. An invalid flap condition or status related to the flap position will be shown by an amber cross.


If the airspeed goes above the maximum limit for the current flap setting, the Flight Alerting System (FAS) will initiate an "Overspeed" warning on the Primary Flight Display (PFD) and a "Speed" voice callout will be heard. A red Vconstraint bar will be shown on the right side of the PFD ASI tape and the airspeed digital readout will change to red.

If a stabilizer trim runaway of the main system is sensed, a CAS **Pitch Trim Runaway** will be displayed and a "Trim Runaway" voice callout will be heard.

If a rudder trim runaway is sensed, a CAS **Yaw Trim Runaway** will be displayed and a "Trim Runaway" voice callout will be heard.

In case of a pitch or yaw trim runaway, take action in accordance with Section 3, Emergency Procedures, Electrical Trim

On the ground and with weight on the wheels the aircraft is monitored for Takeoff Configuration by the Monitoring Warning System (MWS). The MWS monitors the position of the trim tabs, horizontal stabilizer, flaps, and the engine and airspeed conditions. If any of the trims or the flap position are not in the takeoff range with the engine running, **Takeoff Configuration** will be shown in the CAS window of the systems MFD. If any of the trims or the flap position are not in the takeoff range, and the engine torque is increased more than 20 psi with an airspeed of less than 50 KIAS, the FAS will initiate a NO TAKEOFF warning on the PFD and a "No Takeoff" voice callout will be heard.

ICN-12-C-A150703-A-S4080-00003-A-002-01

Figure 7-3-1: Flight Controls - General

WATION PURPOSES ONLY Left F This Page Intentionally Left Blank

7-4 Landing Gear

7-4-1 General

Refer to Fig. 7-4-2. Landing Gear System, for system operation.

The landing gear is a conventional tricycle configuration that is extended and retracted using electromechanical actuators. Landing gear operation is completely automatic upon pilot gear selection.

All landing gear are held in the fully retracted position by a mechanical brake internal to the actuators. No mechanical uplocks are installed.

Landing gear position is shown on three icons in the GEAR window of the systems Multi Function Display (MFD).

Nosewheel steering is accomplished by mechanical nosewheel steering and by differential braking.

Aircraft braking is controlled by toe pedals that operate brake assemblies attached to the left and right landing gear. Propeller reverse also contributes to aircraft braking. Refer to Section 7-11, Propeller, for more information.

7-4-2 Description

The nose gear is a hydraulic fluid and nitrogen filled shock strut. The shock strut consists of a piston and fork assembly that slides inside a cylinder. A torque link connects the piston/fork assembly to the cylinder. The cylinder is mounted inside the nosewheel well. The nose gear is locked in the extended position by putting the folding strut in an overcenter position. A spring is attached to the nose gear to assist in free fall during emergency extension. The nose gear doors are spring loaded to the open position and are mechanically closed during nose gear retraction. The nose gear retracts rearward into the nosewheel well and is completely enclosed by the gear doors when the landing gear is retracted. Proximity switches give the up or down signal to the Modular Avionics Unit (MAU).

Both main landing gear are trailing link types. A hydraulic fluid and nitrogen filled shock strut connects the trailing link to the main leg hinge point. The main gears are locked in the extended position by putting the folding strut in an overcenter position. A spring is attached to the main gears to assist in free fall during emergency extension. The main landing gear doors consist of a single door that is attached to the main gear leg and the outside edge of the main gear wheel well. Each main gear retracts inward into the main gear wheel well. With the landing gear retracted the main landing gear wheel and tire assemblies are not enclosed and protrude out of the main gear wheel well approximately one inch (25.4 mm). Proximity switches give the up signal to the MAU.

All landing gear are held in the fully retracted position by a mechanical brake internal to the actuators. No mechanical uplocks are required.

Nose wheel steering is accomplished using the rudder pedals which are mechanically connected to the nosewheel. Additional nosewheel steering is done through differential braking. Use of rudder pedal only will turn the nosewheel \pm 12 degrees from center while differential braking will turn the nosewheel \pm 60 degrees from center. A shimmy damper is installed on the nose landing gear strut to eliminate nosewheel oscillations.

The tires are a low pressure type that allow operations from soft and unimproved fields.

7-4-3 Electromechanical Actuators

7-4-3.1 Description

Both nose landing gear and main landing gear actuators have the same functionality and are electromechanical, self-rigging type actuators. The actuator motor control and monitoring electronics are incorporated within the actuator. Control is provided by the landing gear selector handle and the landing gear control system (including the Gear Relay Unit).

The actuator consists of an electric motor connected to a series of gears which reduce speed. The gear train has a thrust bearing connected to a ball screw and shaft. The ball screw transforms the rotation of the gear to the linear movement necessary to extend and retract the landing gear.

The motor brake is engaged when actuator movement is stopped.

An emergency gear extension system is a cable-operated system to disengage the gear train from the electric motor. Once initiated, the emergency free fall is damped by a centrifugal brake within the actuator to avoid damage to the structure.

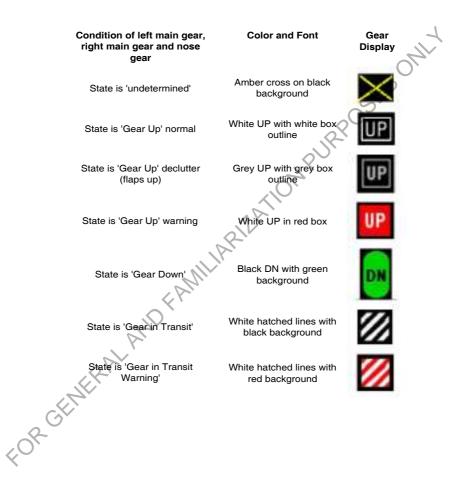
Electrical power supply for the actuators is provided from the SECONDARY POWER LINE. Power is applied to the actuators for 30 seconds following gear handle movement.

Cockpit controls consist of the following:

- A landing gear selector handle is located on the pilot's lower right panel and facilitates extension or retraction of the landing gear. It activates up and down switches situated directly on the handle system. The handle is equipped with an electrical spring loaded solenoid which prevents it from moving to the retracted position when the airplane is on the ground. The airplane on ground status is sensed by the MAU
- An emergency gear extension (release cable) system, actuated with a handle, located at the rear of the center console, is used to disengage the gear train in the actuator and enables emergency free fall of the landing gear if the electric drive system fails.

7-4-3.2 Operation

When the landing gear handle is set to the up (or down) position a command signal is sent to the actuator to move to the retracted/extended position. At the same time the actuators are powered for 30 seconds


The main and nose landing gears are held in its extended position by an overcenter two piece drag link and an overcenter spring.

The actuators are of the linear type with the main landing gear actuators also incorporating the down locking mechanism.

7-4-4 Indication/Warning

Extended position indication is provided by micro switches situated at the main landing gear drag link and a proximity switch on the nose landing gear door. Retraction position indication is provided by proximity switches on the main and nose landing gear doors.

Landing gear position is shown by three icons (one for each gear) in the GEAR window of the systems MFD. Each icon can show gear displays for various conditions (refer to Fig. 7-4-1).

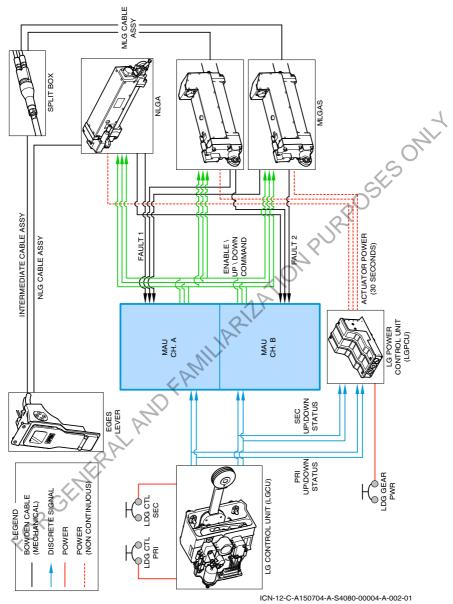
ICN-12-C-A150704-A-S4080-00045-A-001-01

Figure 7-4-1: Landing Gear Position Icons

The Flight Alerting System (FAS) will initiate a Gear warning message on the Primary Flight Display (PFD) and an aural warning will sound if the landing gear is not down and locked whilst in the air with:

- an airspeed of less than 130 KIAS and the PCL at idle
- the flaps set to 30 or 40°
- a radar altitude of less than 200 ft and a power setting of less than 10 psi.

The Crew Alerting System (CAS) displays the following cautions and advisory messages for the Electric Landing Gear System:


ear Actuator Cntl Indicates a failure reported by one of the landing gear actuators Gear should not be cycled unnecessarily. Gear can be lowered if it is raised. Maintenance action required.

Gear Control Fault

entr. still fur. Indicates loss of redundancy in landing gear control system, such as a stuck gear handle position switch. Gear will still function normally with

7-4-5 Emergency Extension System

To manually extend the landing gear set the landing gear selector handle to DN with airspeed 120 KIAS. Open the Emergency Gear Extension Lever cover and pull the Emergency Lever. This will allow the landing gear to free fall. If the landing gear does not completely extend and show three green indicators, banking the airplane left and right to use the G-load may assist , a po gear. J gear. the emergency extension of the main landing gear. Reducing airspeed and engine power to

Pilot's Operating Handbook Issue date: Mar 06, 2020

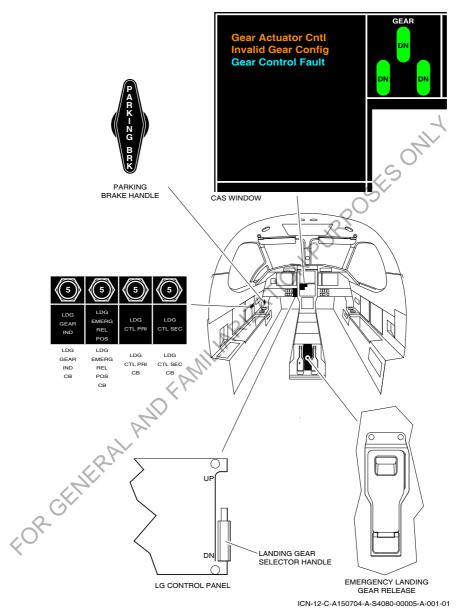


Figure 7-4-2: Landing Gear System (Sheet 2 of 3)

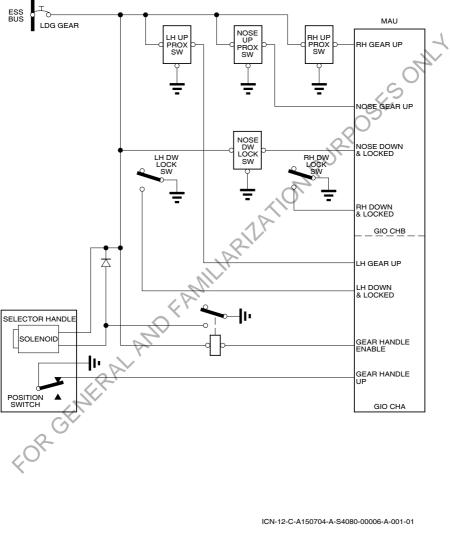


Figure 7-4-2: Landing Gear System (Sheet 3 of 3)

7-4-6 Air / Ground System

The aircraft "in air" or "on ground" (AIR/GND) status is determined from a combination of aircraft systems interfaced to the MAU:

- LH main gear proximity switch
- RH main gear proximity switch
- Radar Altimeter altitude
- Calibrated airspeed (ADAHRS computed).

By comparison monitoring of the above systems the MAU determines the AIR/GND status of the aircraft. MAU Channel A outputs a discrete signal to control the LH AIR/GND relays. MAU Channel B outputs a discrete signal to control the RH AIR/GND relays.

THOMPURPC The LH AIR/GND signal is sent to the following systems:

- Propeller de-ice
- Flaps
- ECS
- LH Stick Pusher Computer
- Flight Time Counter.

The RH AIR/GND signal is sent to the following systems:

- **RH Stick Pusher Computer**
- Logo Lights (optional system)

If the MAU determines a disparity between the monitors by comparison monitoring, a correct determination of the AIR/GND status is still possible as the suspect (invalid) monitor is disregarded in the determination. When the MAU determines that all monitors disagree it results in an invalid AIR/GND state. If the AIR/GND state is invalid a Air/Ground Fail will be shown on the CAS.

When **Air/Ground Fail** shows the AIR/GND state defaults to AIR.

A dormant fault in the LH and RH main gear proximity switches is possible as a result of the AIR/GND monitor function of the MAU. To avoid this CAS status alerts will be given for WOW Fault , RH WOW Fault or LH + RH WOW Fault when the MAU determines either or both proximity switch inputs are invalid.

7-4-7 Brakes

Refer to Fig. 7-4-3, Brake System, for system operation.

Aircraft braking is provided by two brake assemblies, one bolted to each main landing gear axle. The brakes are controlled by toe pedals attached to each rudder pedal assembly. The pilot and copilot left toe brakes operate the left brake while the pilot and copilot right toe brakes operate the right brake.

The brake system consists of a brake fluid reservoir, four brake master cylinders, a left and right shuttle valve, a parking brake valve, and two brake assemblies. If the pilot and copilot simultaneously apply pressure to the same side brake pedal, the one applying the greatest pressure will control the braking.

The brake fluid reservoir is located on the right hand side of the cabin sidewall and incorporates a fluid level indicator.

A separate brake master cylinder, located in the cockpit footwell, is mechanically connected to each toe pedal. There is no mechanical connection between the pilot and copilot brake pedals. Two shuttle valves, a left and a right, are used to select inputs from their respective pilot and copilot brake pedals. Pressing a brake pedal causes the applicable brake master cylinder to force brake fluid through the respective shuttle valve and parking brake valve to the brake assembly.

The six piston brake assemblies have steel friction surfaces and three retractors. The retractors pull the pressure plate back when no hydraulic pressure is applied to the brake assembly. When the system is pressurized and the retractors are flush with the piston housing, the brake linings must be overhauled.

The parking brake valve has two off-center cams that hold open popper valves whenever the parking brake is released. This allows hydraulic fluid flow through the brake system. When the parking brake is set, the off-center cams are rotated to allow the poppet valves to close. This traps brake fluid under pressure between the parking brake valve and the brake assemblies.

To set the parking brake, pull the PARKING BRK T-handle fully out and rotate to lock, then evenly press both brake pedals. Release pedal pressure and the brakes will remain set. To release the brakes, rotate and push the PARKING BRK T-handle fully in.

7-4-8 Wheels and Tires

The wheels are split-hub type, the main wheels have three fusible plugs which melt when there is too much heat from the brakes. Tubeless tires are installed on the wheels and each wheel has a tire inflation valve and an overinflation safety plug. The main wheels have fairings on the outer hubs which make the wheels aerodynamically smooth when the landing gear is FOR GENERAL AND FAMILIARIA TION PURPOSES ONLY retracted.

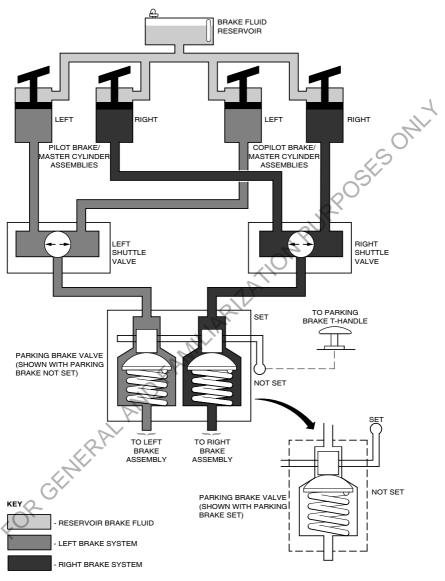


Figure 7-4-3: Brake System

7-5 Baggage Compartment

7-5-1 General

A baggage compartment is provided at the rear of the cabin and is accessible during flight. A standard luggage net is secured at twelve attachment points to secure the baggage. An , net c. , net c. , net c. , net c. extendible baggage net can be installed instead of the standard net, to secure baggage in front of and in the baggage compartment. The floor attachments at the front of the net can be

UATION PURPOSES ONLY Left F This Page Intentionally Left Blank

7-6 Cargo Tie-Downs

7-6-1 General

Tie-down anchor points fit into the seat rails and lock into place by an over-center lever. Tiedown straps can be secured to these anchor points. FOR GENERAL AND FAMILARIA TION PURPOSES ONLY

12-C-A15-00-0706-00A-043A-A

UATION PURPOSES ONLY Left F This Page Intentionally Left Blank

7-7 Seats / Restraint Systems

7-7-1 Seats

7-7-1.1 Crew Seats

Refer to Fig. 7-7-1, Crew Seat - Controls

The crew seats are adjustable fore and aft and vertically. They also have controls for recline, thigh support, back cushion lumbar support, armrests and headrest. The fore and aft and recline control levers are on the rear inboard side of the seats. The vertical adjustment lever and the thigh support control wheel are at the front of the seat cushion. When the thigh support control wheel is turned it raises or lowers the thigh pads. There is a push button at the bottom of each side of the seat back board. When the inboard button is pushed the lumbar support pad can be moved up or down with the aid of a handle. When the outboard button is pushed the lumbar support pad can be moved inwards or outwards by easing or applying body weight to the back cushion. The padded armrests can be moved upwards and inwards to provide free access to get in and out of the seat. They also have a control wheel on the underside which can be used to adjust the height of the armrest. The seat headrest can be adjusted by moving the headrest to the side and rotating it to one of the six lock positions. There is a life vest stowage box installed under the seat.

7-7-1.2 Passenger Seats

Refer to Fig. 7-7-2, Commuter Seat - Typical

Refer to Fig. 7-7-3, Executive Seat - Typical

The standard passenger seats have a reclining backrest, sliding headrest, a folding inner armrest, and a restraint system.

The executive seats are leather upholstered, with swivel and forward/rear/inboard travel. Seat travel is as follows:

- 4" (101.6 mm) forward/aft for forward facing executive seats
- 2" (50.8 mm) forward/aft for rearward facing executive seats
- 3.6" (91.4 mm) inboard for all executive seats.

A reclining backrest, sliding headrest, sliding armrest, magazine pocket and a restraint system are fitted. The seat position control is located on the forward edge of the arm. Pulling up on the control handle will allow the seat to be moved to the desired position. Releasing the control handle will lock the seat in position. The control for the back recline is a round push button located in the inner surface of the arm. Depressing the button will allow the seat back angle to be adjusted. Depending on the seat location in the cabin, the seat can be reclined to a lay flat position.

7-7-2 Seat Belts And Shoulder Harnesses

Each crew seat is equipped with a four-point restraint system consisting of an adjustable lap belt and a dual-strap inertia reel-type shoulder harness. Each passenger seat is equipped with a three-point restraint system consisting of an adjustable reel-type lap belt and an inertia reel-type shoulder harness.