

COURSEWARE SUPPORT-HURST 8900 Trinity Blvd. Hurst, Texas 76053 (817) 276-7500 Fax (817) 276-7501

LEARJET 31A PILOT TRAINING MANUAL VOLUME 1

Record of Revision No. .03

This is a revision of the Learjet 31A Pilot Training Manual.

The portion of the text or figure affected by this revision is indicated by a solid vertical line in the margin. A vertical line adjacent to blank space means that material has been deleted. In addition, each revised page is marked "Revision .03" in the lower left or right corner.

The changes made in this revision will be further explained at the appropriate time in the training course.

This revision includes all AFM changes up to and including Change 27.

the best safety device in any aircraft is a well-trained crew. . .

VOLUME 1 — Operational Information

.....

FlightSafety International, Inc. Marine Air Terminal, LaGuardia Airport Flushing, New York 11371-1061 (800) 877-5343 www.FlightSafety.com Courses for the Learjet 31A are taught at the following FlightSafety learning centers:

Tucson Learning Center 1071 East Aero Park Blvd. Tucson, Arizona 85706 (800) 203-5627

Atlanta Learning Center 1010 Toffie Terrace Atlanta, Georgia 30354 (800) 889-7916

Courses for other Learjet aircraft are taught at the following FlightSafety learning centers:

Wichita (Learjet) Learning Center Two Learjet Way Wichita, Kansas 67209 (800) 491-9807

West Palm Beach Learning Center 3887 Southern Blvd. West Palm Beach, Florida 33406-1431 (800) 769-6763

FOR TRAINING PURPOSES ONLY

NOTICE

The material contained in this training manual is based on information obtained from the aircraft manufacturer's Pilot Manuals and Maintenance Manuals. It is to be used for familiarization and training purposes only.

At the time of printing it contained then-current information. In the event of conflict between data provided herein and that in publications issued by the manufacturer or the FAA, that of the manufacturer or the FAA shall take precedence.

We at FlightSafety want you to have the best training possible. We welcome any suggestions you might have for improving this manual or any other aspect of our training program.

FOR TRAINING PURPOSES ONLY

CONTENTS

EXPANDED CHECKLIST Normal Procedures Abnormal Procedures Emergency Procedures LIMITATIONS MANEUVERS AND PROCEDURES WEIGHT AND BALANCE PERFORMANCE CRM RECURRENT TRAINING Recurrent Training Syllabus Systems Review

EXPANDED CHECKLIST

CONTENTS

Page

NORMAL PROCEDURES	NP-i
ABNORMAL PROCEDURES	AP-i
EMERGENCY PROCEDURES	EP-i

Page

LEARJET 31A PILOT TRAINING MANUAL

NORMAL PROCEDURES

CONTENTS

	-
INTRODUCTION	NP-1
THROUGH-FLIGHT PROCEDURES (BOTH ENGINES SHUT DOWN)	NP-1
EXTERIOR INSPECTION	NP-3
Power Off Checks	NP-3
Power On Checks	NP-10
CABIN PREFLIGHT	NP-11
BEFORE STARTING ENGINES	NP-12
STARTING ENGINES	NP-23
BEFORE TAXI	NP-26
TAXI AND BEFORE TAKEOFF	NP-30
RUNWAY LINEUP	NP-32
TAKEOFF	NP-33
AFTER TAKEOFF	NP-34
CLIMB	NP-35
CRUISE	NP-35
DESCENT	NP-36
APPROACH	NP-38
BEFORE LANDING	NP-39
GO-AROUND	NP-40
LANDING	NP-41
AFTER LANDING/CLEARING RUNWAY	NP-41
SHUTDOWN	NP-43
QUICK TURNAROUND (ONE OR NO ENGINE SHUTDOWN)	NP-44
Taxi	NP-45
Runway Lineun	NP-45
COLD WEATHER OPERATION	NP-47
Preflight Preparation	NP-47

Preflight Inspection	NP-48
Engine Start	NP-48
Taxiing	NP-49
Takeoff	NP-49
After Takeoff	NP-50
Before Landing	NP-50
Landing	NP-50
After Clearing Runway	NP-50
Shutdown and Postflight	NP-51
ICE DETECTION	NP-51
ANTI-ICE SYSTEMS	NP-52
Exterior Windshield Defog, Anti-ice and Rain Removal	NP-54
Interior Windshield and Passenger Window Defog	NP-55
Radome Anti-ice	NP-56
Wing Anti-ice	NP-56
Horizontal Stabilizer Anti-ice	NP-57
Nacelle Heat	NP-57
Pitot-Static Heat	NP-58
ANNUNCIATOR PANEL	NP-58
AUDIO CONTROL SYSTEM PANEL	NP-58
Transmit Select Switch	NP-59
Mic Select Switch	NP-59
Volume Controls	NP-59
Speaker Switch	NP-59
Mixer Switches	NP-60
BOTH/VOICE/IDENT Switch	NP-60
MKR HI/LO Switch	NP-61
Audio Control—Flight Operation	NP-61
AUTOPILOT/FLIGHT DIRECTOR SYSTEM	NP-61
Self Test	NP-62

To Engage Autopilot	NP-62
To Disengage Autopilot	NP-62
To Engage Yaw Damper	NP-63
To Disengage Yaw Damper	NP-63
Autopilot/Flight Director Mode Selection	NP-63
CONTROL WHEEL SWITCHES	NP-63
Control Wheel Master Switch (MSW)	NP-63
Control Wheel Trim Switches (Vertical and Lateral Command)	NP-63
FD Clear Switch	NP-64
CWS Switch	NP-64
Go-Around Switch	NP-64
Autopilot Reset	NP-64
ELECTRONIC FLIGHT INSTRUMENT SYSTEM	NP-65
EFIS Control Panel	NP-65
AVIONICS MASTER SWITCH	NP-66
STANDBY HSI	NP-67
ELECTRIC POWER MONITOR	NP-67
ENGINE SYNCHRONIZER	NP-68
CABIN TEMPERATURE CONTROL	NP-69
Bleed-Air Heating and Cooling	NP-69
Additional Cooling or to Decrease Cabin Humidity	NP-69
Additional Heating	NP-71
Additional Air Circulation	NP-72
OXYGEN SYSTEM	NP-73
Oxygen Duration	NP-73
Passenger Oxygen	NP-73
Crew Oxygen	NP-74
PRESSURIZATION SYSTEM OPERATION	NP-76
Manual Mode Operation	NP-77
Landing at Field Elevation above 8,500 Feet	NP-77

Takeoff at Field Elevation above 8,500 Feet	NP-78
FUEL MANAGEMENT	NP-79
Fuselage Tank-to-Wing Fuel Transfer	NP-80
Wing-to-Fuselage Tank Fuel Transfer	NP-81
Fuel Crossflow (Wing-to-Wing Fuel Transfer)	NP-82
Operation with Cold Wing Fuel	NP-82
REFUELING	NP-83
BRAKE SYSTEMS	NP-83
Normal Braking	NP-83
Emergency Braking	NP-84
LANDING GEAR WARNING SYSTEM	NP-84
REDUCED VERTICAL SEPARATION MINIMUMS (RVSM)	NP-85
Before Starting Engines	NP-85
Cruise	NP-85
RUDDER BOOST SYSTEM	NP-85
Self Test	NP-86
To Engage Rudder Boost	NP-86
To Disengage Rudder Boost	NP-86
TRIM SYSTEMS OPERATIONAL CHECK	NP-86

ILLUSTRATIONS

FigureTitlePageNP-1Walkaround InspectionNP-2NP-2Takeoff Trim—CG FunctionNP-21

NORMAL PROCEDURES

INTRODUCTION

The procedures in this section of the manual have been developed by Learjet Inc. for the certification of this aircraft. This section contains those procedures which may be considered routine in day-to-day operations. The presentation includes, but is not limited to, detailed checklist procedures by flight phase.

THROUGH-FLIGHT PROCEDURES (BOTH ENGINES SHUT DOWN)

Normal preflight procedures (all checklist line items) must be accomplished prior to takeoff at the original departure point of a flight. At each intermediate stop of flight where both engines are shut down, the Through-Flight checklist may be used for preflight provided certain criteria are met during a stop. In the following section, procedures marked with this symbol (\blacklozenge) denote Through-Flight checklist items. When permitted, accomplishment of all Through-Flight checklist items fulfills a minimum preflight requirement.

The Through-Flight checklist may be used following an intermediate stop with both engines shut down provided the following criteria have been satisfied during that stop:

- There has been no change in flight crew personnel.
- No maintenance has been performed on the aircraft. Routine line servicing is not considered maintenance.
- No more than three (3) hours have elapsed between engine shutdown and engine start.
- Extreme weather conditions (heavy precipitation, ice, snow, extreme cold, etc.) have not occurred which would change the preflight status of the aircraft.

For intermediate stops with one or no engine shut down, completion of the Quick Turn-Around procedure in this section provides the minimum preflight requirements.

Figure NP-1. Walkaround Inspection

EXTERIOR INSPECTION

POWER OFF CHECKS

- During exterior inspection, check all vents clear, check access doors for security, and all aircraft surfaces for condition.
- a. Controls Lock REMOVE AND STOW
- 0

OBSTRUCTIONS

♦ b. Left Pitot-Static Probe...... COVER REMOVED, CLEAR OF OBSTRUCTIONS

 c. Left Stall Warning Vane..... FREEDOM OF MOVEMENT

Leave in the down position.

d. Left Pitot-Static Drain Valves (3) DRAIN

Required only if moisture in the pitot-static system is known or suspected.

NOTE

If pitot-static drain valves are opened, assure that valve stem returns to the closed position.

e. Nose Gear and Wheel Well...... HYDRAULIC LEAKAGE, CONDITION, AND COOLING VENTS CLEAR

•	f.	Nosewheel and Tire	CONDITION AND
			NOSE GEAR
		U	PLOCK FORWARD

NOTE

Chine on nose tire must be a minimum of 3/4 inch (19 mm) from ground to operate safely with an accumulation of 3/4 inch (19 mm) water on runway surface.

3

a. Radome Alcohol Discharge Port..... CLEAR OF OBSTRUCTIONS

	b.	Radome and Radome Erosion Shoe CONDITION
4	a.	Oxygen Bottle Supply Valve (if applicable) OPEN (ON)
•	b.	Right Pitot-Static probe COVER REMOVED, CLEAR OF OBSTRUCTIONS
	c.	Total Temperature probe (if installed) CLEAR OF OBSTRUCTIONS
•	d.	Right Stall Warning vane FREEDOM OF MOVEMENT
		Leave in the down position.
	e.	Pressurization Static Port CLEAR OF OBSTRUCTIONS
	f.	Right Pitot-Static Drain valves (2) DRAIN
		Required only if moisture in the pitot-static system is known or suspected.
		NOTE If pitot-static drain valves are opened, assure that valve stem returns to closed position.
	g.	Oxygen Discharge Disc (if applicable) CONDITION
	h.	Copilot's Windshield Defog Outlet CLEAR OF OBSTRUCTIONS
	i.	Wing Inspection Light and Lens CONDITION
	j.	Lower Fuselage Antennas, Rotating Beacon Light and Lens CONDITION
6	a.	Emergency Exit SECURE
	b.	Upper Fuselage Antennas, and Dorsal Inlet CONDITION

 c. Right Engine Inlet and Fan

Inlet and Fan CLEAR OF OBSTRUCTIONS AND CONDITION

WARNING

- If fan is windmilling, stop by pressing on fan spinner. Do not attempt to stop windmilling by grabbing blades.
- The wing, flight control surfaces, and engine inlet must be free of frost, snow, and ice.

	d.	Cooling Scoops CLEAR
	e.	Fuel Crossover Drain Valve, Wing Scavenge Pump Drain valves (2), Wing Sump Drain valves (2), and Engine Fuel Drain valves (2) DRAIN
	f.	Right Main Gear and Wheel Well
	g.	Right Main Gear Landing Light and Doors CONDITION
	h.	Right Main Gear Wheels, Brakes and Tires CONDITION
6	a.	Wing Stall Fences CONDITION
5	a. b.	Wing Stall Fences CONDITION Leading Edge CONDITION
5	a. b. c.	Wing Stall Fences
5	a. b. c. d.	Wing Stall Fences

		Outboard Vent Sump DRAIN
•	b.	Right Wing Fuel Filler Cap CONDITION AND SECURITY
8	a.	Right Winglet Light(s) and Lens CONDITION
	b.	Right Winglet Static Discharge Wicks CONDITION
	c.	Recognition and Beacon Light and Lens CONDITION
9	a.	Right Aileron CHECK FREE MOTION, BALANCE TAB LINKAGE AND BRUSH SEAL CONDITION
	b.	Boundary Layer Energizers CONDITION
0	a.	Right Spoiler and Flap CONDITION
	b.	Right Engine Oil OPEN ACCESS

Check oil level (normal) and oil tank filler cap for security. Secure access.

NOTE

If preflight oil level checks low, start and run engine until stabilized at idle. Shut down engine and recheck oil level. If there is no oil level indication, add enough oil to obtain an indication before starting engine to recheck oil level.

		c.	Right Engine Oil Bypass Valve Indicator CHECK NOT
			EXTENDED
			If red pin indicator protrudes INVESTIGATE.
0	•	a.	Right Engine Turbine Exhaust Area CONDITION/CLEAR OF OBSTRUCTIONS
Ð	٠	a.	Single-point Fueling Access Doors (if applicable) SECURE

b. On Aircraft not Equipped with Fuel Heaters:

		Right Engine Fuel Bypass Valve Indicator NOT E≯	. CHECK
		If red pin indicator protrudes INVE	STIGATE
٠	c.	c. Fuel Vent Drain valves DRAIN COM	PLETELY
	d.	 fuselage Tank Sump Drain valve, Expansion Line Drain valves (2), and Transfer Line Drain valve 	DRAIN
	e.	e. Fuel Filter Drain valves (2) and Fuel Computer Drain valves (2)	DRAIN
	f.	f. Single-point Fueling Pressure Vent Screen (if applicable)	. CLEAR
13	a.	a. Tailcone Access Door	OPEN
	b.	b. Tailcone Interior CHECK FC LEAKS, S AND COND INSTALLED EQ	OR FLUID ECURITY ITION OF UIPMENT
	c.	c. Hydraulic Accumulator Pressure CHEC N	K/750 PSI IINIMUM
	d.	d. Drag Chute (if applicable) CHECK FOR INSTA	PROPER
	e.	e. Tailcone Access Door CLOSE AND	SECURE
1	a.	a. Oxygen Discharge Disc (if applicable) CO	NDITION
	b.	b. Right VOR/LOC Antenna CO	NDITION
	c.	c. Right ELT Antenna (if applicable) CO	NDITION
()	a.	a. Vertical Stabilizer, Rudder, Horizontal Stabilizer, Elevator, and Delta Fins	N, DRAIN ES CLEAR

WARNING

The vertical and horizontal stabilizers and flight control surfaces must be free of frost, snow, and ice.

	b.	Static Discharge Wicks (6 on Elevators, 1 above Navigation Light, and 4 on Delta Fins)	CONDITION
	c.	Vertical Fin Navigation Lights, Strobe Light and Lens	CONDITION
	d.	VLF H-Field Antenna (if applicable)	CONDITION
•	e.	Tailstand	REMOVED
	a.	Left VOR/LOC Antenna	CONDITION
	b.	Left ELT Antenna (if applicable)	CONDITION
	a.	Fire Extinguisher Discs	CONDITION
	b.	Left Engine Oil Bypass Valve Indicator	CHECK, NOT EXTENDED
		If red pin indicator protrudes	INVESTIGATE
•	a.	Left Engine Turbine Exhaust Area	CONDITION/CLEAR OF OBSTRUCTIONS
	a.	On Aircraft Not Equipped with Fuel Heaters.	
		Left Engine Fuel Bypass Valve Indicator	CHECK NOT EXTENDED
		If red pin indicator protrudes	INVESTIGATE
	b.	Left Engine Oil	OPEN ACCESS/CHECK OIL LEVEL (NORMAL) SECURE ACCESS

16

Ð

18

Ð

LEARJET 31A PILOT TRAINING MANUAL

NOTE

If preflight oil level checks low, start and run engine until stabilized at idle; then shut down engine and recheck oil level. If there is no oil level indication, add enough oil to obtain an indication before starting engine to recheck oil level.

	c.	Left Spoiler and Flap	CONDITION
20	a.	Left Aileron	CHECK FREE MOTION, BALANCE AND TRIM TAB LINKAGE, AND BRUSH SEAL CONDITION
	b.	Boundary Layer Energizers	CONDITION
2)	a.	Left Winglet Static Discharge Wicks	CONDITION
	b.	Left Winglet Light(s) and Lens	CONDITION
22 🔶	a.	Left Wing Fuel Filler Cap	CONDITION AND SECURITY
	b.	Outboard Fuel Vent Ram Airscoop (Underside of Wing)	CLEAR OF OBSTRUCTIONS
		Outboard Vent Sump	DRAIN
23	a.	Left Wing Access Panels (Underside of Wing)	CHECK FOR FUEL LEAKAGE
	b.	Inboard Fuel Vent Ram Airscoop (Underside of Wing)	CLEAR OF OBSTRUCTIONS
	c.	Wing Leading Edge	CONDITION
	d.	Wing Stall Fences	CONDITION
24	a.	Left Main Gear and Wheel Well	

- If fan is windmilling, stop by pressing on fan spinner. Do not attempt to stop windmilling by grabbing blades.
- The wing, flight control surfaces, and engine inlet must be free of frost, snow, and ice.
- e. Generator Nacelle Cooling Scoops CLEAR

POWER ON CHECKS

	0	Landing Gear Switch DOWN Both BATTERY Switches ON Fuel Quantities
2	4	Use caution when touching pitot-static mast leading edges and probes, total temperature probe (if installed), and stall warning vanes to check for heat. Set PITOT HEAT switches OFF.
5	8	If night flight is anticipated, check exterior lighting.
		All Exterior Light Switches ON
15	4	Check Proper Illumination; then:
		All Exterior Light Switches OFF
	0	Both BATTERY Switches OFF

CABIN PREFLIGHT

♦ 1.	Baggage SECURE
2.	Cabin Blower Switch AS REQUIRED (on blower duct in aft cabin, if applicable)
	NOTE When cabin blower switch is in the OFF position, air- flow is diverted above the headliner at all times ex- cept during auxiliary heater operation.
♦ 3.	Emergency Exit AISLE CLEAR AND HANDLE

- UNOBSTRUCTED
- ◆ 4. Brief Passengers AS REQUIRED

Briefing includes seat belt operation, oxygen system operation, life vest location and operation, emergency evacuation, and fire extinguisher location.

NOTE

- Inform passengers that smoking in the lavatory area when the privacy curtains are closed is prohibited.
- Passengers should be advised not to use portable electronic equipment during takeoff, approach, and landing.

BEFORE STARTING ENGINES

♦ 1.	Controls Lock	STOWED
-------------	---------------	--------

NOTE

Ensure that seat is adjusted so that full travel can be obtained on all controls.

◆ 3. Flight Controls CHECK

Full travel on all controls.

NOTE

Ensure that, during full rudder pedal movement, foot wear does not hinder movement of rudder pedals.

4.	Oxygen System:
	a. PASSENGER OXYGEN valve AUTO
٠	b. Oxygen Pressure gage CHECK
	c. Crew Masks:
	(1) Check oxygen flow available and masks properly stowed
♦ 5.	Circuit-Breaker Panels:
	a. Breakers IN
	b. BUS TIE switches OPEN (DOWN)
6.	EMER BAT 1 and 2 switchesON
	Check standby attitude gyro for starting and erection, amber EMR PWR 1 and 2 lights illuminated, Fan Speed (N_1) indicators Off flags out of view, and green gear DOWN lights illuminated.
٠	For thru flight; EMER BAT switchesON
	Check standby attitude gyro for starting and erection.

7.	Panel Switches and Avionics OFF OR SET
	a. RUDDER BOOST Switch ON AS DESIRED
	b. STATIC SOURCE Switch BOTH
	c. FUEL CMPTR Switches ON
	d. EMER BUS Switch NORMAL
	e. ANTI-SKID Switch ON
	f. LANDING GEAR Switch DOWN
	g. BLEED AIR Switches ON
	h. EMER PRESS Switches NORMAL

NOTE

For takeoff at field elevations above 8,500 feet pressure altitude, refer to Pressurization System Operation, this section.

i.	PITCH TRIM Switch	PRI
i.	JET PUMP Switches	ON

8. Battery Check:

NOTE

- Setting battery switches ON also energizes the windshield ice detect lights. Check turbine temperature (ITT), fan speed (N₁), and turbine speed (N₂) to ensure red OFF flags are retracted.
- Do not move aircraft during AHS alignment (approximately 45 seconds).
- a. BATTERY 1 Switch SET TO BATTERY 1

Check for proper voltage; amber EMR PWR lights will go out.

- b. BATTERY 2 Switch SET TO BATTERY 2
- c. BATTERY 1 Switch..... OFF

Check for proper voltage, then BATTERY 1 switch set to BATTERY 1.

For Through-flight:
 Both BATTERY switches..... ON

NOTE

- On aircraft with Lead-Acid Batteries, do not attempt a battery start with less than 24 VDC each battery at 70°F (21°C) or below, or less than 25 VDC each battery at 110°F (43°C) or above. Interpolate for temperatures between 70°F (21°C) and 110°F (43°C).
- On aircraft with Nickel-Cadmium Batteries, do not attempt a battery start with less than 23 VDC each battery.
- 9. GPU (if desired).....CONNECT

NOTE:

Ensure unit is regulated to 28 VDC and limited to 1000 amps maximum.

			-
	a.	Aux	tiliary Inverter (if installed) Check:
		(1)	AUX INV switch L
			Check L VAC reading is within normal range
		(2)	AUX INV switch R
			Check R VAC reading is within normal range
		(3)	AUX INV switch OFF
٠	b.	LIN	VERTER switch ON
			Check L VAC reading is within normal range
٠	c.	R II	NVERTER switch ON

Check R VAC reading is within normal range

NOTE

For normal operation, the left and right AC buses are separated (AC BUS TIE open), the left inverter powers the left AC bus and the right inverter powers the right AC bus. Each AC bus should be powered by only one inverter.

10.

Inverter System Check:

FlightSafety

11.	EMER LT Switch (if installed) TEST
	Check for illumination, then switch ARMED
•	For through-flight: EMER LT Switch (if installed) ARMED
♦ 12.	Systems Pressure Checks:
	a. HYDRAULIC PRESS Gage CHECK If Pressure Is Below 1,000 psi, HYD PUMP Switch ON
	b. EMERGENCY AIR Pressure Gage CHECK
♦ 13.	PARKING BRAKE SET
	PARK BRAKE light illuminated.
♦ 14.	HYD PUMP Switch OFF
15.	Warning Light Test Switch (under glareshield) DEPRESS
	Check that all glareshield, instrument panel, and pedestal lights illuminate. Check for audible indication of scavenge pumps operation. During daylight, check photoelectric cells by covering both cells and noting that lights dim. Alternately uncover and cover cells to assure warning lights dim and come on full bright. During darkness, check photoelectric cells by shining flashlight on each cell and noting that lights are full bright. Then note that lights dim when light source is removed.
16.	Warning System Checks:
	a. Windshield Ice Detect Lights CHECK
	Check illuminated by placing an object between the lights and windshield. Use care to prevent scratching windshield when checking Ice Detect lights.
	b. Takeoff Warning System CHECK HORN
	Advance right thrust lever and note that warning horn sounds.

- c. Landing Gear Warning Lights:
 - (1) Check three (3) green DOWN lights illuminated

(2) SYSTEM TEST Selector Switch	(2	
DEPRESS AND HOLD Check horn sounds and amber MUTE and three (3) red UNSAFE lights illuminated		
(3) TEST Button RELEASE	(.	
d. Fire Detect System CHECK	• d. F	٠
(1) SYSTEM TEST Selector Switch ROTATE TO FIRE DET	(
(2) TEST Button DEPRESS	(2	
ENG FIRE PULL T-Handle shall illuminate and flash. This indicates continuity of the fire detect systems.		
(3) TEST Button RELEASE	(:	
e. Air Data System CHECK	e. A	
(1) SYSTEM TEST Selector Switch ROTATE TO ADC	(1	
(2) TEST Button MOMENTARILY DEPRESS	(2	
The pilot's system will test and the overspeed warning will sound, then the copilot's system will test and the overspeed warning will sound. Air data instruments, (Airspeed/Mach, Altimeter/Vertical Speed, and SAT/TAS), will display all 8's.		
f. Cabin Altitude Warning CHECK	f. C	
(1) SYSTEM TEST Selector Switch ROTATE TO CABIN ALT	(1	
Then, TEST Button DEPRESS AND HOLD		
Cabin altitude warning horn shall sound and <i>on aircraft 31-240</i> and subsequent and prior aircraft modified by SB 31-31-5 the MSTR WARN light and CAB ALT HI will illuminate.		
(2) Thrust Lever MUTE Switch MOMENTARILY ENGAGE	(2	
Cabin altitude warning shall cease.		

(3)	TEST Button RELEASE
g. Stal	l Warning System Check:
(1)	SYSTEM TEST Selector Switch ROTATE TO L STALL
	Then, TEST Button DEPRESS AND HOLD
	The pilot's angle-of-attack indicator needle will begin to sweep from the green segment to the red segment. As the needle passes the green-yellow margin, the shaker will actuate, the MSTR WARN lights will illuminate, and the red L STALL warning light shall flash. Shaker actuation is made evident by high-frequency vibration of the control column.
(2)	TEST Button RELEASE
(3)	SYSTEM TEST Selector Switch ROTATE TO R STALL
	Then, TEST Button DEPRESS AND HOLD
	The test operation will be identical to Step (1) above except needle will sweep the copilot's angle-of-attack indicator, and the red R STALL warning light will flash.
(4)	TEST Button RELEASE

NOTE

Except for system test, the stall warning shakers and lights are disabled on the ground. However, the angle-of-attack indicators will function normally.

◆ 17. Uncage standby attitude gyro.

Check standby attitude gyro for starting and erection.

- Pressurization and Temperature Controls...... CHECK AND SET AS FOLLOWS
 - a. Pressurization Controls:

NOTE

- For manual mode pressurization, refer to Pressurization System Operation, this section.
- For takeoff at field elevations above 8,500 feet pressure altitude, refer to Pressurization System Operation, this section.

	(1)	CAB AIR Switch OFF
	(2)	PRESSURIZATION AUTO–MAN Switch AUTO
•	(3)	CABIN CONTROLLER SELECT CRUISING ALTITUDE OR DESIRED CABIN ALTITUDE
	(4)	Cabin RATE Selector POSITION AS DESIRED
b.	CAI Con	BIN CLIMATE trol Switches AS DESIRED
•	Aut	omatic Mode Operation:
	(1)	AUTO-MAN Switch AUTO
	(2)	COLD-HOT Knob ON
		Rotate to desired cabin temperature. After takeoff, the cabin temperature control system will automatically maintain the cabin at the desired setting.
•	Mar	ual Mode Operation:
	(1)	AUTO-MAN Switch MAN
	(2)	COLD-HOT Knob ROTATE TO DESIRED SETTING

19. Trim Check:

NOTE

The following procedure accomplishes the minimum trim systems preflight check. For the complete trim systems operational check, refer to Trim Systems Operational Check in this section.
Throughout the following procedure, verify that the trim-in-motion audio clicker sounds approximately 1/4 second after initiating pitch trim with the flaps up. The trim-in-motion audio clicker will

not sound when the flaps are lowered beyond 3°.

a.	Mac	h Trim CHECK
	(1)	SYSTEM TEST Selector Switch ROTATE TO MACH TRIM
	(2)	Depress and hold TEST button. The stabilizer should trim slowly in the nose up direction for one to three seconds and then stop. The trim-in-motion audio clicker may or may not sound. The amber MACH TRIM light shall illuminate.
	(3)	TEST Button RELEASE
		Amber MACH TRIM light shall go out.
b.	Trin	n Monitor CHECK
	(1)	SYSTEM TEST Selector Switch ROTATE TO TRIM MON
	(2)	TEST Button DEPRESS
		Amber PITCH TRIM light shall illuminate.
	(3)	TEST Button RELEASE
c.	Trin	n Speed CHECK
	(1)	SYSTEM TEST Selector Switch ROTATE TO TRIM OVRSPD
	(2)	While trimming NOSE UP or NOSE DN with either Control

(2) While trimming NOSE UP or NOSE DN with either Control Wheel Trim Switch, depress TEST button. Amber PITCH TRIM light shall illuminate.

(3	(3) TEST Button	RELEASE
(4	(4) SYSTEM TEST Selector Switch	OFF
d. Se	Secondary Pitch Trim	CHECK
(1	(1) PITCH TRIM Selector Switch (pedestal)	SEC
(2	(2) Operate NOSE DN–OFF–NOSE UP switch (pedest and NOSE DN. Trim motion shall occur in both direction)	al) NOSE UP ctions.
(3	(3) Check that depressing either control wheel master s while trimming NOSE UP and NOSE DN will stop while control wheel master switch (MSW) is held.	witch (MSW) trim motion
e. Pl So	PITCH TRIM Selector Switch	PRI
f. Pi W	Pilot's and Copilot's Control Wheel Trim Switches IND	CHECK IVIDUALLY
♦ (1)	 Without depressing arming button, move switch N NOSE DN. Trim motion shall not occur. 	OSE UP and
(2	(2) Without depressing arming button, move switch LW Trim motion shall not occur.	D and RWD.
♦ (3	(3) Depress arming button and move switch NOSE U DN. Trim motion shall occur.	P and NOSE
♦ (4)	(4) Check that depressing either control wheel master s while trimming NOSE UP and NOSE DN will stop tri	witch (MSW) m motion.
(5	(5) Depress arming button and move switch LWD and motion shall occur.	l RWD. Trim
g. R	Rudder Trim Switch (pedestal)	CHECK
C N	Check operation by moving both halves of switch simu NOSE LEFT and NOSE RIGHT. Trim motion shall occur	ltaneously to
h. T	Frim	SET
S	Set all axes for takeoff and check the amber T.O. T extinguished. Refer to Figure NP-2 for takeoff trim setting	RIM light is g.

20. Fuel Panel

♦ a.	Fuel Quantities CHECK
♦ b.	Fuel Counter ZERO
c.	L STANDBY PUMP ON
	Check white light above switch (if installed) illuminated and red L FUEL PRESS light not illuminated.
d.	L STANDBY PUMP OFF
e.	R STANDBY PUMP ON
	Check white light above switch (if installed) illuminated and red

Check white light above switch (if installed) illuminated and red R FUEL PRESS light not illuminated.

EXAMPLE:

Figure NP-2. Takeoff Trim—CG Function

	f. R STANDBY PUMP OFF
٠	g. CROSSFLOW Switch CLOSE
٠	h. FUS TANK XFR-FILL Switch OFF
٠	i. GRAV XFR Switch CLOSE
♦ 21.	DRAG CHUTE Handle (if installed) STOWED
22.	Autopilot Controller Warning Lights EXTINGUISHED
23.	Rudder Boost System Check (if applicable):
	a. RUDDER BOOST Switch ON
	b. Amber RB Annunciator CHECK EXTINGUISHED
	c. Yaw Damper DISENGAGED
	(YD annunciator extinguished.)
	d. Rudder Pedal DEPRESS
	Green RB annunciator shall illuminate when rudder pedal force reaches approximately 35 pounds and extinguish when rudder pedal force is released.
	e. Repeat check using opposite rudder pedal.
♦ 24.	Takeoff Data (N ₁ , V ₁ , V _R , V ₂ , Distance) COMPUTED AND BUGS SET
	Refer to Section V of the AFM.

STARTING ENGINES

It is recommended that a GPU be used when ambient temperature is $32^{\circ}F(0^{\circ}C)$ or below. Ensure GPU supply is regulated to 28 VDC, has adequate capacity for engine starting, and is limited to 1,000 amps maximum.

Airflow into the TFE 731 engine is sufficient to draw personnel and equipment into the engine inlet. Personnel in proximity of the engine inlet should maintain a safe distance at all times during engine operation.

CAUTION

On aircraft equipped with nickel-cadmium batteries, do not dispatch if red BAT 140 or BAT 160 warning light comes on at any time prior to takeoff, including engine start. Check batteries per Learjet Maintenance Manual.

♦ 1.	Cabin Door	CLOSED AND LOCKED
	a. Both Door Handles	FORWARD
	b. Door Hooks	RELEASED
	c. DOOR Light (red)	NOT ILLUMINATED
♦ 2.	COOL Switch	OFF
♦ 3.	AUX HT Switch	OFF
◆ 4.	Electric Power Monitor (AC & DC)	CHECK FOR MINIMUM VOLTAGE
♦ 5.	PARKING BRAKE	
	(Hydraulic Pressure Required)	SET
	PARK BRAKE light illuminated	
♦ 6.	HYD PUMP Switch	OFF
♦ 7.	BCN/STROBE Light Switch	BCN

- 8. Thrust Levers..... CUTOFF
- ♦ 9. Engine...... START
 - a. START-GEN Switch START

Starter engaged light will illuminate.

b. Thrust Lever..... IDLE AT 10% TURBINE SPEED (N₂)

Ignition light will illuminate.

c. If temperature is 0°F (-17.8°C) or below, SPR switch set to L or R, depending on engine being started. Release switch at 300-400°C turbine temperature (ITT). Use of SPR switch is not required at temperatures above 0°F (-17.8°C).

NOTE

Do not energize SPR switch at any time other than engine start.

- - (2) Starter Engaged Light OUT

If starter engaged light remains illuminated, refer to Starter Engaged Light Remains Illuminated After Start, in "Abnormal Procedures" chapter.

NOTE

If engine does not start, adhere to the following cooling periods between starting attempts.

After	Start Attempt	Wait	
	1	One Minute	
	2	One Minute	
	3	Thirty Minutes	
	The above cycle may then be re-	epeated.	
f. Eng	zine Instruments		CHECK FOR NORMAL INDICATIONS

(1)	At Turbine Speed (N_2)	
	Idle 55%–62%	CHECK FAN
		SPEED (N1) 26%-32%

(2) OIL PRESS..... CHECK

Check applicable red L or R OIL PRESS light is extinguished.

◆ 10. START-GEN Switch GEN AT IDLE

NOTE

- The generator will not come on line with a GPU connected.
- Illumination of a FUEL PRESS light when the START-GEN switch is set to GEN indicates a jet pump failure.

11. Spoiler Check:

	a.	SPOILER Switch EXT
		Check that spoilers extend fully and symmetrically. SPOILER light will illuminate (flaps up) or flash (flaps extended).
	b.	SPOILER Switch RET
		Check that spoilers retract fully and symmetrically and SPOILER light goes out.
2.	Fl	aps SET 20° OR 8°
3.	H	YD PRESS CHECK

▶ 1^{*}

• 1

Check LO HYD PRESS light not illuminated.

♦ 14.	Electrical Power Monitor (AC and DC)	CHECK FOR
	MINIMU	JM VOLTAGE

- ◆ 15. Start other engine by repeating steps 9 and 10.
- ♦ 16. GPU (if applicable)DISCONNECT Note that both Generators come online.
- ◆ 17. Electrical Power Monitor (AC and DC)..... CHECK GEN lights extinguished.

BEFORE TAXI

◆ 1. AVIONICS

	a. LEFT and RIGHT MASTER Switches ON
	b. COMM 1 ON
	c Avionics ON AND SET AS DESIRED
	d. FMS INITIALIZE
2.	Radar STANDBY
3.	Circuit Breakers CHECK, IN
4.	Coffee/Oven Switches (if installed) AS REQUIRED
5.	Fuel Control Governor Check:

a. Left Thrust Lever IDLE

CAUTION

If the engine accelerates uncontrolled during the following step, set FUEL CMPTR switch ON until engine stabilizes at idle. Shut down engine and determine and correct cause prior to flight.

b. L FUEL CMPTR Switch MAN

Note amber L FUEL CMPTR light illuminated (Engine RPM may increase or decrease slightly).

CAUTION

If turbine speed does not respond during the following steps, shut down engine and determine and correct cause prior to flight.

- c. Once rpm stabilizes, gradually advance thrust lever until an increase in turbine speed (N_2) is observed.
- d. Retard thrust lever and note decrease in turbine speed (N₂).
- e. If turbine speed responds to thrust lever changes, set L FUEL CMPTR switch to ON and note that the L FUEL CMPTR light is out.
- f. Repeat steps a. through e. using R FUEL CMPTR switch and right thrust lever.
- 6. Anti-Ice Systems
- a. WSHLD DEFOG ON IF DESIRED
- b. Purge windshield heat system of possible moisture accumulation (first flight of day and if exposed to moisture):

(1)	WSHLD HEAT Switch	ON UNTIL WATER
		HAS CLEARED

(2) WSHLD HEAT Switch AS REQUIRED

NOTE

Maintain minimum rpm required to keep windshield clear.

c. STAB WING HEAT Switch..... ON

Check amber STAB HEAT light illuminated, and no additional rise in DC amperes. Check for increase in ITT indicating bleed air is being extracted for wing heat.

CAUTION

If amber STAB HEAT light does not illuminate and DC amperes increase, immediately set STAB WING HEAT switch to OFF.

• d. STAB WING HEAT Switch AS REQUIRED

Monitor WING TEMP indicator to prevent overheat condition. e. Pitot Heat CHECK, THEN OFF (1) L PITOT HEAT Switch ON Note that PITOT HT light remains illuminated. R PITOT HEAT Switch..... ON (2)Check PITOT HT light goes out. (3) L PITOT HEAT Switch..... OFF Check PITOT HT light comes on. (4) R PITOT HEAT Switch OFF f. NAC HEAT Switches ON ONE AT A TIME Check amber NAC HT lights extinguish by 60% fan speed (N_1) and green NAC HT ON light illuminated. g. NAC HEAT Switches..... AS REQUIRED Lights ON, AS REQUIRED 7. ANTI -SKID Lights OUT ▶ 8. ♦ 9. Cabin Check: a. Passengers Briefed b. Swivel Seats..... FORWARD OR AS PLACARDED Seat backs in upright and locked position c. Work Tables and Toilet Door (if installed)..... CHECK STOWED d. Emergency Exit AISLE CLEAR AND HANDLE UNOBSTRUCTED..... NO SMOKING FASTEN SEAT BELT Switch...... ON ♦ 10. 11. •Aircraft 31-035 through 31-054 not incorporating SB 31-32-2, Nosewheel Steering AS DESIRED

NOTE

- Nosewheel steering may be locked in by depressing the STEER LOCK switch. The STEER ON light will illuminate. The steer lock may be disengaged at any time by depressing and releasing the pilot's or copilot's control wheel master switch (MSW).
- The PITCH TRIM light will illuminate whenever either control wheel master switch (MSW) is depressed.

NOTE

- Aircraft equipped with digital nosewheel steering computer P/N 501-1661-04: Upon initial powerup, nosewheel steering will not be available unless ARM is selected (i.e., control wheel master switch [MSW] can not be used to engage steering). This situation also exists any time a power interruption is experienced. If a power interruption is experienced, rearm the system using the NOSE STEER switch.
- Nosewheel steering is armed by depressing the NOSE STEER switch. The ARM & STEER ON light will illuminate. The steering may be disengaged at any time by depressing and releasing the pilot's or copilot's control wheel master switch (MSW) or by depressing the NOSE STEER switch.
- The PITCH TRIM light will illuminate whenever either control wheel master switch (MSW) is depressed.
- ◆ 12. PARKING BRAKE...... RELEASE

Check PARK BRAKE light is extinguished.

TAXI AND BEFORE TAKEOFF

◆ 1. Brakes and Nosewheel Steering..... CHECK, AND AS REQUIRED THROUGHOUT TAXI

NOTE

When taxiing through slush or snow, use brakes to create some friction heat in the brake discs to prevent brakes from freezing.

2. Fuel Panel:

•	a. Fuel Quantities CHECK AND BALANCED
	b. CROSSFLOW Switch CLOSE
	c. FUS TANK XFR-FILL Switch OFF
	d. GRAV XFR Switch CLOSE
3.	Flight Controls CHECKED
4.	Flight Instruments CHECK
	a. EFIS Controls CHECK Normal and on-side systems selected (green annunciations).

NOTE

For dispatch, two symbol generators must be operational and the pilot's and copilot's EFIS displays must be sourced by separate symbol generators. Symbol Generator 3 (amber) may be selected as a source.

- b. Pilot, Copilot, and Standby Airspeed/Mach Indicators...... VALID NO FLAGS
- c. Pilot, Copilot Altimeter/Vertical Speed Indicators and Standby Altimeter..... SET BAROMETRIC PRESSURE VALID, NO FLAGS
- d. EADIs and Standby Attitude GyroVALID, NO FLAGS
- e. EHSIs and Standby HSI..... HEADING VALID, NO FLAGS
- ♦ 5. Takeoff Data (N_1, V_1, V_R, V_2) REVIEWED AND BUGS SET

♦ б.	Engine Instruments CHECK
♦ 7.	Navigation Equipment SET FOR TAKEOFF
♦ 8.	Radar AS REQUIRED
♦ 9.	Spoilers RETRACTED AND SPOILER LIGHT OUT
◆ 10.	Flaps SET 20° OR 8°, CHECK INDICATION
♦ 11.	Trims SET FOR TAKEOFF
	Check PITCH TRIM switch in PRI and T.O. TRIM light out.
♦ 12.	Pressurization System SET
♦ 13.	CAB AIR Switch ON
♦ 14.	Cabin Temp Controls SET

◆ 15. Anti-ice Systems:

WARNING

The wings, vertical and horizontal stabilizers, flight control surfaces, and engine inlets must be free of frost, snow, and ice.

NOTE

- Anti-ice systems should be turned on prior to flight into visible moisture and static air temperature 5°C or below.
- If anti-ice systems are required during takeoff, they should be turned ON prior to setting take-off power.

a.	WSHLD HEAT Switch	AS REQUIRED
b.	NAC HEAT Switches	AS REQUIRED
c.	STAB WING HEAT Switch	AS REOUIRED

Even **small** accumulations of ice on the wing leading edge can cause an increase in stall speed and possibly a degradation in stall characteristics.

NOTE

Wing-heat bleed air exits overboard through the center wing/wheel well area. If takeoff were made from a snowor slush-covered runway, activation of STAB WING HEAT for approximately 10 minutes will help to melt moisture on the wheels and brakes. Monitor WING TEMP indicator for overheat condition.

♦ 16.	Crew Takeoff Briefing COMPLETE
RUN	IWAY LINEUP
♦ 1.	Parking Brake RELEASED
	Check the PARK BRAKE light is extinguished.
♦ 2.	Transponder ON
♦ 3.	PITOT HEAT Switches ON
	Check PITOT HT light is out.
◆ 4.	Lights: a. RECOG Light Switch ON b. BCN/STROBE Light Switch BCN/STROBE c. LDG LT–TAXI Switches ON AS DESIRED
♦ 5.	IGNITION Switches ON
♦ 6.	Annunciator Panel and Warning Lights CHECK
	Check that lights are not illuminated, except the STEER ON light and PITCH TRIM light (if Control Wheel Master switch [MSW] is depressed).

NP-32

NOTE

- STAB HEAT, WSHLD HT, and NAC HT lights will illuminate if the corresponding systems have been turned on.
- L and R WS DEFOG lights will illuminate upon initial activation of the windshield defog system and remain illuminated until windshield temperature reaches 80°F (27°C).

TAKEOFF

◆ 1. Aircraft 31-035 through 31-054 not incorporating 31-32-2,

Nosewheel Steering...... AS REQUIRED FOR HEADING CONTROL

Release at first indication of airspeed.

NOTE

- If STEER LOCK was used to engage nosewheel steering, depressing and then releasing control wheel master switch (MSW) will disengage steering.
- If control wheel master switch (MSW) was used to engage nosewheel steering, releasing MSW will disengage steering.
- The PITCH TRIM light will be illuminated when the control wheel master switch (MSW) is depressed.

AFTER TAKEOFF

NOTE

- JET PUMP switches should always be in the ON position. However, at any time during flight, if either or both switches are noted to be in the OFF position, reset to ON during steady engine operation at 80% Fan Speed (N₁), or above.
- If taxi and/or takeoff were on ice, snow, or slush, allow the wheels to spin down for approximately one minute prior to gear retraction to throw off as much slush as possible.

1.	LANDING GEAR switch UP
	Landing gear should be fully retracted prior to retracting flaps.
2.	Yaw Damper AS DESIRED
3.	Flaps UP PRIOR TO V _{FE}
4.	IGNITION switches OFF

Set to OFF unless ambient conditions require ignition to remain ON.

NOTE

During periods of heavy precipitation, set IGNITION switches ON to prevent possible engine flameout due to large quantities of water entering the engine.

- 5. LDG LT-TAXI switches OFF
- 6. HYD PRESS gage CHECK, NORMAL
- 7. Pressurization System:

NOTE

- For manual mode pressurization, refer to Pressurization System Operation, this section.
- For takeoff at field elevations above 8,500 feet pressure altitude, refer to Pressurization System Operation, this section.

a.	Cabin Altitude and Cabin Climb Indicators		MONITOR
b.	Cabin RATE Selector	A	S DESIRED

CLIMB

10,000-Foot Checks

1.	NO SMOKING FASTEN SEATBELT Switch	AS REOUIRED
. .		1 m rub Q C m ub D

18,000-Foot (or Transition Altitude) Checks

FL 35	0 Checks
5.	EMER PRESS Switches NORMAL
4.	Oxygen Pressure Gage CHECK
3.	WSHLD DEFOG Switch AS DESIRED
2.	RECOG Light Switch OFF
1.	Altimeters (3) SET TO 29.92 IN. HG. (1,013 MB)

On aircraft 31-035 through 31-190,

1. COOL Switch..... OFF

CRUISE

Once established at cruise altitude, crew duties consist mainly of monitoring aircraft systems indications and annunciators to ensure proper operation. Monitor pressurization and engine instruments. Monitor fuel distribution and crossflow fuel as required to maintain wings balanced. Use small thrust adjustments as necessary to maintain desired cruise Mach.

NOTE

On aircraft 31-035 through 31-093, at high altitudes (FL 450 or above), engine compressor stalls may occur during engine decelerations. These compressor stalls will not result in engine damage, and may be corrected by an increasing or decreasing thrust lever change.

DESCENT

1.	WSHLD DEFOG switch	•••••	CHEC	K ON
2.	Pressurization	SET AS	5 FOLL	lows

NOTE

- For manual mode pressurization, refer to Pressurization System Operation, this section.
- Maintain sufficient RPM, especially at high altitudes, to maintain cabin pressurization.
- For landing at field elevations above 8,500 feet pressure altitude, refer to Pressurization System Operation, this section.
- a. CABIN CONTROLLER selector knob TURN TO DESTINATION FIELD ELEVATION
- b. Cabin RATE selector...... ADJUST AS DESIRED DURING DESCENT
- 3. Anti-ice Systems AS REQUIRED

Even **small** accumulations of ice on the wing leading edge can cause an increase in stall speed and possibly a degradation in stall characteristics.

NOTE

- Anti-ice systems should be turned on prior to flight into visible moisture and SAT of 5°C or below.
- Use of external windshield heat is required for antiicing and recommended for rain removal. When the electric windshield defog system is operating, use of the external windshield heat (bleed air) will not be required for defog.

FL 180 (or Transition Level) Checks

4.	Altimeters (3) SET
	Set to field barometric pressure. Cross-check pilot's, copilot's and standby instruments.
5.	RECOG Light Switch ON
6.	Pressurization CHECK
7.	NO SMOKING FASTEN SEAT BELT Switch ON
8.	Cabin Check:
	a. Passengers BRIEFED
	b. Swivel Seats FORWARD OR AS PLACARDED
	Check seat backs in upright and locked position.
	c. Work Table and Toilet Doors (if installed) CHECK STOWED
	d. Emergency Exit AISLE CLEAR AND HANDLE UNOBSTRUCTED

APPROACH

1.	Circuit Breakers	CHECK IN
2.	Systems Pressure	CHECK
	a. HYD PRESS	1,500 TO 1,550 PSI
	b. EMER AIR Pressure	1,800 TO 3,000 PSI
3.	Landing Approach Speed (V_{REF}), Approach Climb Speed (approximately V_{REF} + 7), and N_1 for Go-Around	COMPUTED AND BUGS SET

Refer to Section V of the AFM.

CAUTION

It is recommended that if turbulence is anticipated due to gusty winds, wake turbulence, or windshear, the approach speed be increased. For gusty wind conditions, an increase in approach speed of one half the gust factor is recommended.

4.	Fuel BALANCED
5.	Radio Altimeter SET TO APPROACH MINIMUMS
6.	Crew Approach Briefing COMPLETE
7.	Spoilers CHECK, RETRACTED

BEFORE LANDING

1.	Flaps	8°	OR 2	20°
----	-------	----	------	-----

2. LANDING GEAR Switch DN AT V_{LO} OR LESS

Check for green DOWN indication.

NOTE

- If taxi and/or takeoff were on ice, snow, or slush: ANTI-SKID switch—OFF, pump brakes 6 to 10 times, then ANTI-SKID switch—ON. Brake application will tend to crack any ice between brake discs and between the discs and wheels.
- The amber ENG SYNC light will illuminate whenever the nose gear is down and the ENG SYNC switch is in the SYNC position.

3.	Aircraft 31-055 and subsequent and prior aircraft incorpor	ating
	SB 31-32-2,	0
	Nosewheel Steering	CHECK ARM

4. LDG LT-TAXI Switches..... ON AS REQUIRED

NOTE

The left landing light will not illuminate unless the left main gear is down and locked. The right landing light will not illuminate unless the right main gear is down and locked.

5.	ANTI-SKID Lights CHECK OUT
6.	ENG SYNC Switch OFF
7.	Flaps DN, CHECK INDICATION
8.	HYDRAULIC PRESS Gage CHECK (1,500 TO 1,550 PSI)
9.	IGNITION Switches ON
10.	Autopilot DISENGAGE

NOTE

Control Wheel Master switch (MSW) will also disengage yaw damper.

- 11. Yaw Dampers as follows:
 - If Rudder Boost ON, Yaw Damper.....AS DESIRED
 - If Rudder Boost OFF, Yaw DamperDISENGAGE

GO-AROUND

1	Autonilot	DISENGAGED
1.	Autophot	DISENGAGED

NOTE

Depressing Go-Around button in left thrust lever handle will disengage autopilot and select flight director go-around mode.

2.	Thrust Levers
	Set to takeoff power or as required.
3.	SPOILER switch CHECK RET
4.	Flaps 20°
5.	LANDING GEAR switch UP
	Position after positive rate of climb is established.

- 6. Climb at Approach Climb Speed (approximately V_{REF} + 7).
- 7. When clear of obstacles, accelerate to V_{REF} + 20 and retract flaps.

BELOW 45 KNOTS

LEARJET 31A PILOT TRAINING MANUAL

LANDING

1.	Brakes AS REQUIRED
2.	SPOILER switch EXT
	CAUTION
	• If, upon touchdown, one or more ANTI-SKID lights come on, anti-skid protection for the associated wheel is inoperative and has reverted to manual brake control.
	• If not already operating do not turn on cooling sys- tem during landing with anti-skid system oper- ating. Initial voltage drop may cause false signals in the anti-skid system and dump brake pressure for 2 to 3 seconds.
3.	Thrust Reversers or Drag Chute (if installed) AS DESIRED
4.	•Aircraft 31-035 thru 31-054 not incorporating SB 31-32-2, Nose Wheel Steering AS REQUIRED

NOTE

During moderate to heavy braking action on patchy snow or ice, avoid use of nosewheel steering above 10 knots.

•Aircraft 31-055 and subsequent and p	prior incorporating SB 31-32-2,
Nose Wheel Steering	CHECK STEER ON
-	LIGHT ILLUMINATED
	BELOW 90 KNOTS

AFTER LANDING/CLEARING RUNWAY

- 1. IGNITION Switches OFF
- 2. CAB AIR Switch..... OFF
- 3. Anti-Ice Systems:

a. WSHLD DEFOG and WSHLD HEAT Switches..... AS REQUIRED

NOTE

Maintain minimum rpm required to keep windshield clear.

- b. ALCOHOL Switch OFF
- c. STAB WING HEAT Switch AS REQUIRED

Monitor WING TEMP indicator to prevent overheat condition.

CAUTION

If amber STAB HEAT light is not illuminated and DC ammeter indicates stabilizer heat operation, *imme-diately* set STAB WING HEAT switch to OFF.

	d. PITOT HEAT Switches	OFF
	e. NAC HEAT Switches	AS REQUIRED
4.	Lights	AS DESIRED
5.	Thrust Lever (on engine started first)	CUTOFF (OPTIONAL)

NOTE

Idle engine for 2 minutes prior to thrust lever cutoff.

6.	SPOILER Switch RET
7.	Flaps 20°, 8°, OR UF
8.	HYDRAULIC PRESS Gage CHECK
9.	Unnecessary Avionics OFF
10.	Transponder STBY OR OFF

SHUTDOWN

1.	PARKING BRAKE and/or Chocks SET
2.	WSHLD DEFOG Switch OFF
3.	Anti-ice Systems OFF
4.	EMER LT Switch (if installed) DISARM
5.	Panel Switches and Avionics OFF OR SET
	a. RUDDER BOOST Switch ON AS DESIRED
	b. FUEL CMPTR Switches ON

NOTE

A flashing FUEL CMPTR light during shutdown indicates a failed ITT system or shorted manual mode solenoid driver circuit. Correct before further flight.

	c. ANTI-SKID Switch ON
	d. BLEED AIR Switches ON
	e. JET PUMPS Switches ON
6.	Standby Attitude Gyro CAGE
7.	EMER BAT Switches OFF
8.	Coffee and Oven Switches (if installed) OFF
9.	Thrust Lever(s) CUTOFF
10.	START-GEN switches OFF
11.	INVERTER switches OFF
12.	Fuel Transfer OFF
	CROSSFLOW switch CLOSE
13.	BCN/STROBE Light switch OFF

- 14. Battery switches OFF
- 15. Controls lock INSTALL

QUICK TURNAROUND (ONE OR NO ENGINE SHUTDOWN)

1.	Cabin Door CLOSED AND LATCHED DOOR LIGHT OUT
2.	Cabin Check:
	a. Passengers BRIEFED
	b. Swivel Seats FORWARD OR AS PLACARDED
	Seat backs in upright and locked position.
	c. Work Tables and Toilet Door (if installed) CHECK STOWED
	d. Emergency Exit AISLE CLEAR AND HANDLE UNOBSTRUCTED
3.	NO SMOKING FASTEN SEAT BELT Switch ON
4.	COOL Switch OFF
5.	AUX HT Switch OFF
6.	Engine START (TWO RUNNING)
	Check N ₁ rotation during start.
7.	START-GEN Switches
8.	Electrical Power Monitor CHECK
9.	Circuit Breakers IN
10.	AVIONICS LEFT and RIGHT MASTER Switches ON
11.	FMS SET
12.	Coffee/Oven Switches (if installed) ON, AS DESIRED
13.	Anti-Ice Systems AS REQUIRED
14.	• Aircraft 31-035 thru 31-054 not incorporating SB 31-32-2, Nosewheel Steering AS REQUIRED

• Aircraft 31-055 and subsequent and prior aircraft incorporating SB 31-32-2,

Nosewheel Steering CHECK ARM	
	ΤΑΧΙ
Fuel Control Panel and Quantity CHECK	1.
Takeoff Data $(N_1, V_1, V_R, V_2, Distance)$ COMPUTE	2.
Bugs SET	
Refer to Section V of the AFM.	
Nav Equipment SET	3.
Radar AS REQUIRED	4.
Flight Controls CHECK	5.
Flight Instruments CHECK	6.
SPOILER Lever RET	7.
. Flaps SET 20° OR 8°, CHECK INDICATION	8.
Trims (3) SET FOR TAKEOFF	9.
Pressurization SELECT CRUISING ALTITUDE OR DESIRED CABIN ALTITUDE	10.
CAB AIR Switch ON	11.

12. Crew Takeoff Briefing...... COMPLETE

RUNWAY LINEUP

1.	Parking Brake	RELEAS	SED
	Check PARK BRAKE light extinguished.		
2.	Transponder		ON

3. PITOT HEAT Switches..... ON

PITOT HT light out.

4. Anti-ice Systems:

The wings, vertical and horizontal stabilizers, flight control surfaces, and engine inlets must be free of frost, snow, and ice.

NOTE:

- Anti-ice systems should be turned on prior to flight into visible moisture and SAT of 5°C or below.
- If anti-ice systems are required during takeoff, they should be turned on prior to setting takeoff thrust.

a.	WSHLD HEAT Switch	AS REQUIRED
b.	NAC HEAT Switches	AS REQUIRED
c.	STAB WING HEAT Switch	AS REQUIRED

Even **small** accumulations of ice on the wing leading edge can cause an increase in stall speed and possibly, a degradation in stall characteristics.

NOTE

Wing-heat bleed air exits overboard through the center wing/wheel well area. If takeoff is made from a snow or slush covered runway, activation of STAB WING HEAT for approximately 10 minutes after takeoff will help to clear moisture on the wheels and brakes. Monitor WING TEMP gage for overheat condition.

- 5. Lights:
 - a. RECOG Light Switch..... ON

	b. BCN/STROBE Light Switch	BCN/STROBE
	c. LDG LT-TAXI Switches ON	AS DESIRED
6.	IGNITION Switches	ON

7. Annunciator Panel and Warning Lights..... LIGHTS NOT ILLUMINATED

Lights not illuminated, except STEER ON light, and PITCH TRIM light (if control wheel master switch [MSW] is depressed).

NOTE

- STAB HEAT, WSHLD HT, and NAC HT lights will illuminate if the corresponding systems have been turned on.
- L and R WS DEFOG lights will illuminate upon initial activation of the windshield defog system and remain illuminated until windshield temperature reaches 80°F (27°C).

COLD WEATHER OPERATION

Operational problems related to cold weather may occur unless proper preflight and inspection procedures are accomplished. Additionally, operational difficulties due to ice, snow, slush, or water accumulation may be encountered. The following instructions supplement the normal procedures and, when followed, will help ensure satisfactory operation of the aircraft and its systems in cold climatic conditions.

PREFLIGHT PREPARATION

It is essential to take off with an aerodynamically clean airplane. Low temperatures and precipitation associated with cold weather operation create problems while the airplane is on the ground in that frost, ice, and snow adhere to and accumulate on the surfaces of the airplane. All surfaces of the airplane (wing, vertical and horizontal stabilizers, flight controls, spoilers, and flaps, including gaps between control surfaces and aircraft structure) must be free of frost, ice, and snow before take off. During periods of precipitation, once the airplane has been deiced, anti-icing is likely to be required to ensure that the airplane remains aerodynamically clean for departure. Deicing/anti-icing must be accomplished at the last possible time prior to takeoff to maximize the time that anti-icing will be able to provide protection (holdover time). Refer to Learjet addendum in *AFM* for deicing/anti-icing procedures.

PREFLIGHT INSPECTION

- 1. Conduct normal exterior inspection.
- 2. Check the entire aircraft (including top surface of horizontal stabilizer) for ice, snow, and frost. Brush off light snow. Remove all frost, encrusted snow, and ice from the entire aircraft.
- 3. Remove ice, snow, and dirt from landing gear shock struts and wheel wells. Check gear doors, position switches, squat switches, wheels, brakes, and tires.
- 4. Carefully inspect engines for frozen precipitation in fan duct and tailpipe. Under certain climactic conditions, ice can form on the back of fan blades and cause vibration during start.

ENGINE START

Use of a GPU for an engine start is recommended at ambient temperatures of $32^{\circ}F(0^{\circ}C)$ or below. Ensure GPU is regulated to 28 VDC, has adequate capacity (at least 500 amps), and is limited to 1,000 amps maximum.

Use of SPR is recommended for engine starts at ambient temperatures of 0° F (-17.8°C) or below. During an engine start using SPR, discontinue SPR at 300-400°C Turbine Temperature (ITT).

NOTE

Use of SPR is not required above $0^{\circ}F(-17.8^{\circ}C)$. Do not energize SPR at any time other than engine start.

If the engines are exposed to extremely cold temperatures (below -40° F [-40° C]) for an extended period, the engines should be preheated prior to attempting a start. For ambient temperatures between -40° F (-40° C) and -65° F (-54° C), direct warm air flow into each engine for a minimum of 30 minutes prior to engine start.

During engine starts in cold weather, engine acceleration, particularly Fan Speed (N_1) , is much slower than normal and Turbine Temperature (ITT) has a tendency to increase more rapidly due to the increased spool-up times. Additionally, higher than normal oil pressure can be expected which may exceed the maximum allowable transients.

CAUTION

During engine starts in cold conditions:

• If Fan Speed (N₁) does not rise with Turbine Speed (N₂) or stops during the start attempt, abort start attempt.

- If Turbine Temperature (ITT) is rising rapidly and appears likely to exceed the start limit, abort start attempt.
- Exceeding idle power with oil temperature below 30°C is not recommended. However, if ambient temperature prevents attainment of 30°C, idle power may be exceeded as required to further warm the oil to normal operating limits prior to takeoff.

When the aircraft has been cold soaked at ambient temperatures below -13° F (-25° C), the engines should be operated a minimum of 3 minutes to bring the hydraulic system up to normal operating temperature.

TAXIING

Use normal taxi procedures if the ramp and taxiways are clean and dry. If it is necessary to taxi on ice, snow, slush, or water, taxi at reduced speed and allow greater distance for decreased braking efficiency.

If taxi is to be accomplished through slush or snow, use the brakes to create some friction induced heating of the brake discs to prevent the brakes from freezing.

Use both engines for taxi on slippery surfaces. Directional control may be difficult to maintain during one-engine taxi on a slick surface.

Use anti-ice systems as required.

Insofar as possible, taxi should be accomplished with the flaps up on snow or slush covered surfaces.

Avoid taxiing in the exhaust wake or propeller wash of other aircraft on other than hard packed or dry surfaces.

Thrust reversers (if installed) should be used with extreme caution on slippery surfaces and only when absolutely necessary to maintain directional control.

Do not use thrust reversers (if installed) if taxiways and ramps are covered with slush, ice, standing water or snow except in the interest of safety.

TAKEOFF

Refer to the WET/CONTAMINATED RUNWAY DATA for guidance material pertaining to takeoff on a wet or contaminated runway.

If anti-ice systems are required for takeoff, the systems should be energized prior to setting takeoff power.

Do not take off with frost, snow, or ice on the wings or aircraft control sur-

faces, including the horizontal stabilizer and elevators.

Even *small* accumulations of ice on the wing leading edge can cause an increase in stall speed and, possibly, a degradation in stall characteristics.

AFTER TAKEOFF

After takeoff from a snow-covered or slush-covered runway, delay retracting landing gear to allow residual slush to be thrown or blown off. Wing-heat bleed air exits overboard through the center wing/wheel well area. If takeoff was made from a snow or slush covered runway, activation of STAB WING HEAT for approximately 10 minutes will help to melt moisture on the wheels and brakes. Monitor WING TEMP indicator for overheat condition.

BEFORE LANDING

If taxi or takeoff was made from a snow-covered or slush-covered field, it is recommended that the following procedure be used to help crack any ice between brake discs and between the brake discs and wheels:

- 1. After landing gear is extended, set ANTI-SKID switch to OFF.
- 2. Pump brakes 6 to 10 times. Use moderate to heavy braking pressure.
- 3. Prior to touchdown, set ANTI-SKID switch ON and check ANTI-SKID lights are out.

LANDING

Use normal landing procedures if runway is clean and dry. Refer to the WET/CONTAMINATED RUNWAY DATA for guidance material pertaining to landing on a wet or contaminated runway.

AFTER CLEARING RUNWAY

On aircraft 31-035 thru 31-054 not incorporating SB 31-32-2, moderate to heavy braking action on patchy snow or ice, avoid use of nosewheel steering above 10 knots.

CAUTION

For taxi after landing on a slush or snow covered field, it is recommended that the flaps not be re-tracted above 20°. This will protect flaps and wing

from damage in the event ice or snow has accumulated on the flaps.

SHUTDOWN AND POSTFLIGHT

When the aircraft must be parked outside in extremely cold or fluctuating freeze/thaw temperatures, perform the following in addition to the normal shutdown and postflight procedures:

- 1. Chock main gear wheels before releasing park brake. Do not leave aircraft parked for extended periods in subfreezing weather with parking brake set.
- 2. Remove ice, snow, and dirt from landing gear shock struts and wheel wells. Check gear doors, position switches, squat switches, wheels, and tires.
- 3. Remove ice, snow, and dirt from flaps and flap tracks before retracting flaps.
- 4. If the aircraft is to be parked for an extended period at ambient temperatures of 20° F (-6.7°C) or below, it is recommended that the crew oxygen masks be stowed in a heated room or the cabin should be warmed to at least 20° F (-6.7°C) before use.
- 5. If the aircraft is to remain in subfreezing temperatures for an extended period, remove water and beverage containers from the aircraft. Remove toilet-tank and reservoir fluid from aircraft or add ethylene glycol base antifreeze containing antifoam agent to the flush fluid.
- 6. Install aircraft protective covers.
- 7. If the aircraft will be exposed to extremely cold temperatures for an extended period, it is recommended that the batteries be removed and stored in a warm area, if possible.

ICE DETECTION

During atmospheric conditions conducive to icing, identification of ice on aircraft surfaces may be accomplished by the following methods:

- 1. During daylight operations, a visual inspection of the lower corners of the windshield or the wing leading edge for ice accumulation can be made.
- 2. The windshield ice-detect lights will indicate ice or moisture formation on the windshield during night operations. These lights are illuminated whenever the BATTERY switches are ON and will cause red areas approximately 1 1/2 inches (38 mm) in diameter to appear on the windshield if ice or moisture is encountered. The light on the pilot's side is located in the anti-ice airstream, and the light on the copilot's side is

located outside the anti-ice airstream. Therefore, the copilot's light must be monitored whenever windshield heat or alcohol anti-ice systems are operating. The lights indicate ice encounters when SAT is below freezing and moisture encounters when SAT is above freezing.

- 3. The wing inspection light may be used to visually inspect the right wing leading edge for ice accumulation during night operations. The light is illuminated by depressing the WING INSP LT button on the copilot's dimmer switch panel. The light illuminates a black dot on the outboard wing leading edge to enhance visual detection of ice accumulation.
- 4. Wing structure temperature conditions where icing can occur may be identified through observing the WING TEMP indicator. When the indicator pointer is in the green band, the wing temperature is above 40°F (4°C) and is warm enough so that ice will not adhere. When the indicator pointer is in the blue band, the wing temperature is below 40°F (4°C) and the wing anti-ice system should be used if flying through visible moisture. If the indicator pointer is in the blue band and the STAB WING HEAT switch is ON, a wing heat system failure is indicated.

ANTI-ICE SYSTEMS

NP-52

Anti-ice systems should be turned on prior to operation in icing conditions.

Icing conditions exist when the SAT is 5° C to -40° C and visible moisture in any form is present (such as clouds, rain, snow, sleet, ice crystals, or fog with visibility of 1 mile or less).

If icing conditions are encountered and the anti-ice systems have not been energized, turn them on prior to significant ice accumulation. Observe *AFM* recommendations for normal use of all anti-ice systems.

Even *small* accumulations of ice on the wing leading edge can cause an increase in stall speed and, possibly, a degradation in stall characteristics.

The aircraft is approved for icing conditions, however, icing conditions vary widely. Therefore, as with any plane, caution should be used when operating in icing conditions.

Minimize the duration of the icing encounters as much as practical. Minimize holding in icing conditions with flaps extended. This includes requesting an altitude above or below icing conditions, if practical.

Intermittently operating with the autopilot off will allow more readily detectable changes in flight control feel.

Move center of gravity as far forward as practical. This includes transferring fuselage fuel to the wing tanks. A forward center of gravity keeps the elevator more streamlined with the horizontal stabilizer, thus providing the elevator horn more protection from icing.

Delay flap extension to a slower speed. For example, consider delaying flaps 8° until slowing to 170 KIAS instead of extending flaps at 250 KIAS. Extending flaps at a higher speed than necessary exposes the elevator horn to icing conditions.

If flight has been conducted in icing conditions, check the elevator horn after landing and remove any accumulated ice prior to next flight.

NOTE

Ensure any accumulated ice is removed from the elevator horn area prior to the next flight.

In the event of significant ice accumulation or failure of any portion of the anti-ice system, refer to Inadvertent Icing Encounter procedures in "Abnormal Procedures" chapter.

When using wing and/or nacelle anti-ice systems, maintain the higher of the following: 60% fan speed or sufficient engine power to keep the wing temperature indicator in the green band.

Aircraft anti-icing is accomplished through the use of electrically heated anti-ice systems, engine bleed-air heated anti-ice systems, and alcohol anti-ice systems. Electrically heated systems include pitot-static probes, engine inlet air-temperature/pressure sensor, stall warning vanes, total temperature probe, and horizontal stabilizer. Engine bleed air is utilized to heat the wing leading edge, windshield, and for engine anti-icing. An alcohol anti-ice system is installed for radome anti-ice and as a backup for windshield bleed-air anti-ice system.

An electrically heated windshield provides defogging of the windshield interior. The heat output of the windshield is not sufficient to prevent ice formation. Therefore, bleed-air windshield heat (WSHLD HEAT) should be turned on prior to entering icing conditions.

Systems controls and control functions are as follows:

- **1. STAB WING HEAT switch**—Controls wing heat system (bleed air) and the horizontal stabilizer heat system (electric)
- 2. NAC HEAT switches—Control engine anti-icing (bleed air) and engine inlet air temperature/pressure sensor electric heaters
- **3. PITOT HEAT switches**—Energize pitot-static probe, stall warning vane heaters, and total temperature probe heaters

- 4. ALCOHOL switch—Controls windshield and radome alcohol anti-ice system
- 5. WSHLD HT switch—Controls bleed air to the windshield for defog, antiice and rain removal.
- 6. WSHLD DEFOG switch—Controls the electrically heated windshield for defog.
- 7. The red ice detect lights are energized whenever the BATTERY switches are ON.

EXTERIOR WINDSHIELD DEFOG, ANTI-ICE AND RAIN REMOVAL

The WSHLD HT switch has three positions labeled WSHLD HEAT, HOLD, and OFF. In the OFF position no windshield airflow is available. In the WSHLD HEAT position, the control valve is fully open allowing maximum airflow to the windshield. The HOLD position is used to stop the control valve in any position between fully closed and fully open. If a change in airflow is desired, set switch to OFF or WSHLD HEAT until desired airflow is obtained then set switch to HOLD. The control valve will fully open or close in approximately 15 seconds. Illumination of the red WSHLD OV HT light indicates a windshield heat system failure.

To activate the system:

1. WSHLD HT Switch WSHLD HEAT

The green WSHLD HT light will illuminate.

NOTE

The overheat shutoff valve may cycle to prevent overheating of the windshield. When the overheat shutoff valve cycles closed, the green WSHLD HT light will extinguish. The system will automatically reset (green WSHLD HT light will illuminate) after the system cools.

2. To reduce flow in the event of excessive noise or system cycling:

WSHLD HT Switch	OFF UNTIL FLOW
	IS ACCEPTABLE,
	THEN HOLD

If red WSHLD OV HT light illuminates:

1. WSHLD HT Switch OFF

Leave in OFF until red WSHLD OV HT light extinguishes, then HOLD.

To deactivate the system:

1. WSHLD HT Switch OFF

If airflow should fail, the pilot's windshield may be anti-iced by the following:

1. ALCOHOL Switch WS/RAD

This will anti-ice the radome and pilot's windshield and give alcohol flow for approximately 45 minutes. The amber ALC LOW light will illuminate when alcohol level is low.

2. ALCOHOL Switch..... OFF

Position to OFF when alcohol is depleted or clear of icing conditions.

INTERIOR WINDSHIELD AND PASSENGER WINDOW DEFOG

Interior windshield defogging is provided by electrically heated windshield panels. Passenger windows are normally defogged by normal cabin airflow.

To provide interior windshield defogging:

1. WLSHD DEFOG Switch..... ON

This activates the electrically heated windshield panels.

NOTE

Normal system operation is indicated by illumination of the L and R WS DEFOG lights when the system is activated (windshield temperature below 80°F). When the windshield is heated above 80°F, the WS DEFOG lights will extinguish.

On aircraft 31-191 and subsequent, for additional windshield defogging:

To ensure all of the air delivered from the evaporator will be directed to eyebrow outlets above the windshield

For maximum windshield defogging:

1.	At start of descent, WSHLD HEAT	ON
2.	Leave CAB AIR, WSHLD DEFOG,	
	and WSHLD HEAT	ON UNTIL
		SHUTDOWN

RADOME ANTI-ICE

Anti-icing the radome prevents ice from shedding off the nose and entering the engines. Anti-icing the radome is accomplished by setting the ALCOHOL switch to RAD. Alcohol for radome anti-icing only will last for approximately 2 hours 9 minutes. The ALC LOW light will illuminate when alcohol level is low. Set ALCOHOL switch OFF when alcohol is depleted or clear of icing conditions.

NOTE

Use WS/RAD position of the switch if bleed air for the windshield anti-ice has failed or as needed.

WING ANTI-ICE

The wing anti-ice system utilizes engine bleed air directed through diffuser tubes in the leading edges for anti-icing.

Wing-heat bleed air exits overboard through the center wing/wheel well area. If takeoff was made from a snow- or slush-covered runway, activation of STAB WING HEAT for approximately 10 minutes will help to melt moisture on the wheels and brakes. Monitor WING TEMP indicator for overheat condition.

- 1. STAB WING HEAT Switch ON
- 2. Monitor WING TEMP indicator. Adjust power as necessary to maintain the higher of the following: 60% fan speed or sufficient engine power to keep the wing temp indicator in the green band. Also, visually monitor the right wing for any ice accumulation. At night, the wing inspection light will be required. If indicator progresses to the red band, structure is approaching "too hot" condition. Monitor the WING OV HT warning light. Corrective action can be taken by turning the STAB WING HEAT switch to OFF and/or reducing engine rpm until indicator pointer returns to the green band.

NOTE

If the system is on and the WING TEMP indicator pointer

is in the blue band or either wing shows signs of ice accumulation, a system failure has occurred. Refer to Wing Heat Failure procedure in "Abnormal Procedures" chapter.

HORIZONTAL STABILIZER ANTI-ICE

The horizontal stabilizer anti-ice system utilizes sequenced electrical heating elements along the horizontal stabilizer leading edge for anti-icing. The system is controlled by the STAB WING HEAT switch. Control circuits for the system are wired through the squat switch to prevent overheating the elements when the airplane is on the ground.

- 1. STAB WING HEAT Switch ON
- 2. Monitor amps for an increase in load from the heating elements. A fluctuating amps reading indicates proper operation due to the sequencing of the elements.

CAUTION

For ground operation and to prevent overheating of the horizontal stabilizer heating elements, ensure that the amber STAB HEAT light is illuminated and there is no additional amps increase. If the STAB HEAT light is not illuminated and amps increase, *immediately* set STAB WING HEAT switch to OFF.

NOTE

During flight, if the electrical heating elements should fail, the amber STAB HEAT light on the annunciator panel will illuminate.

NACELLE HEAT

The NAC HEAT switches energize both nacelle heat and engine inlet air pressure and temperature sensor heat. The NAC HT ON light will illuminate anytime a NAC HEAT switch is set ON. Maintain 60% N_1 or above for effective anti-icing.

CAUTION

To prevent damage to the engine inlet sensor heating element, nacelle heat operation should be limited to 30 seconds if the engine is not running.

NOTE

- Illumination of the L or R NAC HT lights with the NAC HEAT switches ON indicates that bleedair pressure is not being applied to the nacelle heat anti-ice system because of a malfunction.
- Illumination of the L or R NAC HT lights with the NAC HEAT switches OFF indicates that bleedair pressure is being applied to the nacelle heat system because of a malfunction.

PITOT-STATIC HEAT

Anti-ice protection for pitot-static probe, stall warning vanes, and total temperature probe heater is accomplished by setting the L and R PITOT HEAT switches ON.

A dual pitot heat monitor system provides the crew with a means of determining if sufficient current is being applied to the pitot-static probe heating elements.

With the BATTERY and PITOT HEAT switches ON, illumination of the amber PITOT HT light indicates insufficient current is being applied to a pitotstatic probe heating element. A failure in either system will cause the light to illuminate. The light will also illuminate whenever the BATTERY switches are ON and either PITOT HEAT switch is OFF.

ANNUNCIATOR PANEL

The annunciator panel lights may be tested by pressing the test switch under the glareshield which causes the lights to illuminate. Photoelectric cells, outboard of each ENG FIRE PULL T-Handle, automatically dim the lights to a level corresponding to existing light in the cockpit or to a minimum preset level for a totally dark cockpit. If an annunciator light illuminates and the condition is corrected, the light will extinguish. If the condition recurs, the light will again illuminate. Any time a red annunciator light illuminates, the MSTR WARN lights on the pilot's and copilot's instrument panel will also illuminate and flash. Depressing the MSTR WARN light will extinguish the MSTR WARN light; however, the annunciator light will remain on as long as the condition exits.

AUDIO CONTROL SYSTEM PANEL

The audio control system panels provide a means of controlling communications and/or navigation audio information being received or transmitted. The panel also controls audio communication within the cabin.

TRANSMIT SELECT SWITCH

The TRANSMIT SELECT switch is a multiposition rotary-type switch labeled "VHF 1," "VHF 2," "HF," and "PASS SPKR." This switch provides the proper microphone audio inputs for the respective functions.

- 1. VHF 1, VHF 2, and HF positions—When any of these positions are selected, microphone inputs are provided for the respective transceiver. Microphone must be keyed to transmit.
- 2. PASS SPKR position—When this position is selected, the pilot or copilot, utilizing this function, may speak to the passengers through the passenger speaker. Microphone must be keyed to transmit.

NOTE

PASS SPKR should not be selected on both audio control panels simultaneously as degradation of the volume level may result.

MIC SELECT SWITCH

- **1. NORM position**—When the switch is in this position, voice transmissions are accomplished with the headset microphone or hand-held microphone.
- 2. OXY position—When the switch is in this position, voice transmissions are accomplished with the oxygen mask microphone. Both cockpit speakers, phone and interphone functions (see MIXER SWITCHES) will be active. The microphone must be keyed to transmit to the passengers or via a communications radio.

VOLUME CONTROLS

- **1. MASTER VOL**—This control regulates the volume level of all audio output.
- **2. PASS VOL**—This control regulates the volume level of the passenger speaker audio.

SPEAKER SWITCH

- 1. Speaker OFF position—When the switch is pushed in and any mixer switch is on, audio is fed to the on-side headphones only. Rotating the knob will adjust the volume level to the headphones.
- 2. Speaker ON position—When the switch is pulled out and any mixer switch is on, audio is fed to the on-side headphones and on-side cockpit speaker. Rotating the knob will adjust the volume level to the headphones and cockpit speaker. The ON (pulled) position is indicated as follows:

- *During daylight*—A white ring on the switch stem will be exposed.
- During darkness—The switch will be illuminated.

MIXER SWITCHES

All mixer switches have a volume control which is rotated to regulate the volume level of individual audio inputs. The ON (pulled) position of each mixer switch is indicated as follows:

- *During daylight*—A white ring on the switch stem will be exposed.
- During darkness—The switch will be illuminated.

Mixer switches on the audio control panel are labeled and perform the following functions:

- 1. VHF 1 and VHF 2 switches—When in the ON (pulled) position, provide audio from the VHF 1 and VHF 2 transceivers, respectively.
- **2. HF switch**—When in the ON (pulled) position, provides audio from HF transceiver (if installed).
- **3. INPH switches**—When in the ON (pulled) position, provides audio from the interphone, employs a voice-activated hot microphone.
- 4. NAV 1 and NAV 2 switches—When in the ON (pulled) position, provide audio from the NAV 1 and NAV 2 receivers, respectively.
- 5. ADF 1 and ADF 2 switches—When in the ON (pulled) position, provide audio from the ADF 1 and ADF 2 receivers, respectively.
- 6. MKR 1 and MKR 2 switches—When in the ON (pulled) position, provide "marker" audio from the MKR 1 and MKR 2 receivers, respectively.
- 7. DME 1 and DME 2 switches—When in the ON (pulled) position, provide audio identification signals from the DME 1 and DME 2 receivers. DME 1 switch controls audio for the DME channel tuned by the NAV 1 receiver and DME 2 switch controls audio for the DME channel tuned by the NAV 2 receiver.

BOTH/VOICE/IDENT SWITCH

This switch controls the audio *filtering* for the NAV and ADF receivers.

1. BOTH position—When the switch is in this position, both the station identifier and voice transmissions will be heard. The BOTH position is the normal position.

- 2. **VOICE position**—When the switch is in this position, only voice transmissions will be heard.
- **3. IDENT position**—When the switch is in this position, only the station identifier will be heard.

MKR HI/LO SWITCH

- **1. HI position**—When the switch is in this position, the marker beacon receiver sensitivity is increased.
- **2. LO position**—When the switch is in this position, the marker beacon receiver sensitivity is decreased.

AUDIO CONTROL—FLIGHT OPERATION

- 1. MASTER VOL control—Rotate to a comfortable listening level.
- 2. Applicable Mixer switches—Pull "on" and adjust audio gain controls on each system for comfortable volume level.

NOTE

The VHF 1 and VHF 2 volume controls do not affect sidetone levels. The HF volume control will affect the sidetone level on most models since audio and sidetone utilize a common line from the transceivers. Some HF transceivers do not have sidetone capabilities.

3. TRANSMIT SELECT switch—Rotate to desired position.

AUTOPILOT/FLIGHT DIRECTOR SYSTEM

A Bendix/King KFC 3100 Flight Control System is installed to provide automatic flight control and guidance for climb, cruise, descent, and approach. The system's dual flight computers provide separate pilot and copilot flight directors, and either computer can be coupled to the autopilot. Mode selection and annunciation for each flight director and engage controls for autopilot and yaw damper are provided through the glareshield-mounted autopilot controller. Mode and system status annunciation is also provided on the appropriate EFIS displays.

Refer to *Bendix/King KFC 3100 Flight Control System Pilot's Guide* (No. 006-08486-0000) for a detailed description and operation of the autopilot/flight director system.

SELF-TEST

The system initiates a self-test sequence when the system is powered up (both AC and DC power). If the self-test sequence is not successfully completed, a failure will be displayed on the mode controller and the autopilot will not engage. Also, an "FD" flag will be displayed on the EADI.

TO ENGAGE AUTOPILOT

- 1. XFR ButtonSELECT DESIRED FLIGHT GUIDANCE COMPUTER (LEFT OR RIGHT)
- 2. AP Button......DEPRESS

A green AP light will illuminate and an appropriate annunciation will appear on the flight displays. The yaw damper will also engage if not already engaged.

NOTE

- The autopilot will not engage if:
 - 1. The PITCH TRIM selector switch is in the OFF position.
 - 2. A red "PT" annunciator on the autopilot controller is illuminated.
- Upon engagement, if no modes are selected, the autopilot will automatically assume the attitude hold mode and maintain the attitude existing at the time of engagement.

TO DISENGAGE AUTOPILOT

- Depressing the AP button will disengage the pitch and roll axes.
- Either Control Wheel Trim switch (arming button depressed) moved in any of four directions (NOSE UP, NOSE DN, LWD, or RWD) will disengage the pitch and roll axes.
- Either Control Wheel Master switch (MSW), when depressed, will disengage the pitch and roll axes, and the yaw damper.
- PITCH TRIM selector switch, when moved to OFF position, will disengage the pitch and roll axes.
- Moving the pedestal NOSE DN-OFF-NOSE UP switch to NOSE UP or NOSE DN will disengage the pitch and roll axes.
- Depressing the GO-AROUND button (left thrust lever knob) will disengage the pitch and roll axes and select flight director go-around mode.

• Depressing the XFR button will disengage the pitch and roll axes.

NOTE

Whenever the autopilot disengages, the autopilot disengage tone will sound.

TO ENGAGE YAW DAMPER

- Yaw damper will automatically engage each time the autopilot is engaged.
- If the yaw damper is not engaged, depressing the YD button will engage the yaw damper.

TO DISENGAGE YAW DAMPER

- If yaw damper is engaged, depressing the YD button will disengage the yaw damper.
- Depressing either Control Wheel Master switch will disengage the yaw damper.

AUTOPILOT/FLIGHT DIRECTOR MODE SELECTION

Autopilot and flight director modes are selected by depressing the applicable mode selector button on the autopilot controller. Flight director only mode selection is accomplished by depressing the applicable mode selector button without the autopilot engaged. Engaged autopilot and flight director modes may be disengaged by depressing the selector button a second time or selecting an incompatible mode. Autopilot/flight director mode engagement is also annunciated on the associated EFIS displays.

CONTROL WHEEL SWITCHES

CONTROL WHEEL MASTER SWITCH (MSW)

Depressing the Control Wheel Master switch (MSW) on the outboard horn of either control wheel will disengage the autopilot pitch and roll axes and the yaw damper.

CONTROL WHEEL TRIM SWITCHES (VERTICAL AND LATERAL COMMAND)

When either Control Wheel Trim switch (arming button depressed) is moved to any of the four positions (LWD, RWD, NOSE UP, or NOSE DN), an aircraft trim input is made and the autopilot will disengage. If the arming button is not depressed, the switch may be used to input lateral commands (LWD and RWD) and vertical commands (NOSE UP and NOSE DN) to the autopilot/flight director. Refer to the *Bendix/King KFC 3100 Flight Control System Pilot's Guide* for a detailed explanation of the Control Wheel Trim switch functions.

FD CLEAR SWITCH

Depressing the FD CLEAR switch will stow the on-side flight director command bars during flight director only operation. The FD CLEAR switch has no affect if the autopilot is coupled.

CWS SWITCH

Depressing the CWS (Control Wheel Steering) switch decouples autopilot servo clutches (if engaged) and synchronizes the on-side flight director command bars with the current vertical and lateral modes. Manual pitch, roll, and trim commands can be made while the switch is depressed. Selected roll and pitch modes will not disengage when the switch is depressed. When the switch is released, the autopilot servo clutches reengage and the flight director commands attitudes to maintain the current values set in the engaged modes. If the flight director is not engaged, depressing the CWS switch will activate the flight director Attitude Hold mode.

GO-AROUND SWITCH

Depressing the GO-AROUND switch in the left thrust lever knob will disengage the autopilot and select flight director GA mode on both flight directors.

AUTOPILOT RESET

An autopilot reset function is provided to reset the autopilot in the event it disengages and cannot be reengaged.

WARNING

Do not reset the autopilot during taxi, takeoff or landing because of momentary servo engagement.

To Reset Autopilot:

- 1. SYSTEM TEST Selector switch..... ROTATE TO A/P RESET
- 2. TEST Button DEPRESS AND RELEASE

NOTE

On the ground, both autopilots will test. In flight, the selected autopilot will test; however, the servos will not engage.

ELECTRONIC FLIGHT INSTRUMENT SYSTEM

The electronic flight instruments system is a Bendix / King 5-tube EFS 50. The EFIS consists of an EADI and EHSI on both pilot's and copilot's instrument panels, a multifunction display (MFD) on the center instrument panel, three symbol generators and control panels to operate the EADI's, EHSI's and MFD.

The EFIS is used to display airplane attitude data, navigational data, flight director commands, mode annunciators, weather, checklists, warnings and diagnostic messages.

Refer to Bendix/King EFS 50 Electronic Flight Instrumentation System Pilot's Guide (No. 006-08485-0000) for a detailed description and operation of the EFIS system.

EFIS CONTROL PANEL

An EFIS control panel is installed on both the pilot's and copilot's instrument panel. Each panel controls its respective EFIS. Each switch is an alternate action switch. On-side selection is indicated by a green annunciation and crossside or reversionary mode selection is indicated by an amber annunciation. The EFIS system will power up in the normal, non-reversionary mode.

This switch selects the attitude heading system for the respective EFIS display, autopilot and other systems requiring attitude or heading data. The switch is used to recover attitude and heading data if the on-side AHS fails.

Whenever cross-side AHS data is selected, the pitch, roll, and heading comparators will be disabled, and all equipment nor-

COPILOT'S

mally sourced by the on-side AHS will be sourced by the crossside AHS. Standby HSI heading data and weather radar antenna stabilization functions are provided by AHS 2 and cannot be assumed by AHS 1.

This switch selects the air data system for the respective air data displays, EFIS display, autopilot and other systems requiring air data. The switch is used to recover air data if the on-side ADC fails.

This reversionary mode selection switch is used to combine the EADI and EHSI display on the upper or lower EFIS tube. This would be used if an EADI or EHSI tube fails and is not desired to use the reversionary EADI down selection.

This reversionary mode selection switch is used to move the EADI display down to the EHSI display. On the pilot's side, the EHSI will move over to the MFD. This switch is used to display an EADI if an upper EFIS tube fails. On the copilot's side, use of the EADI down mode may only be used in conjunction with the composite mode.

This switch selects the symbol generator (either the on-side SG or SG 3) for the respective EFIS display. This switch is used to recover EADI and EHSI displays if the on-side symbol generator fails.

If SG 3 is selected on both the pilot's and copilot's side, the copilot's displays will repeat the pilot's displays including pilot's flight director commands. The pilot's EFIS controls will control both sides. The copilot's EFIS controls will be disabled. The copilot's

sides. The copilot's EFIS controls will be disabled. The copilot's autopilot should not be used since the operational modes will not be displayed on the copilot's EFIS.

For dispatch, the pilot's and copilot's EFIS displays must be sourced by two separate symbol generators.

This switch is used to select either single-cue (V-bar or doublecue cross pointer) format on the flight director.

AVIONICS MASTER SWITCH

Two Avionics Master switches are installed which allow the crew to turn certain avionics equipment off and on without using the individual system's switches. The LEFT MASTER switch is installed on the pilot's switch panel and the RIGHT MASTER switch is installed on the copilot's switch panel.

The equipment controlled by the avionics master switches is shown in the following list:

LEFT MASTER	RIGHT MASTER
VHF NAV 1 MARKER BEACON 1 DME 1 ATC TRANSPONDER 1 ADF 1 HF 1 (IF INSTALLED) PILOT'S EADI PILOT'S EHSI RADIO ALTIMETER MFD	VHF COMM 2 VHF NAV 2 MARKER BEACON 2 DME 2 (IF INSTALLED) ATC TRANSPONDER 2 (IF INSTALLED) ADF 2 (IF INSTALLED) HF 2 (IF INSTALLED) COPILOT'S EADI COPILOT'S EHSI RADIO ALTIMETER 2 (IF INSTALLED) RADAR

NOTE

VHF COMM 1 is not controlled by the Avionics Master switches.

STANDBY HSI

The standby HSI provides the pilot with an additional indicator to display the following data:

- Compass Heading (AHS 2)
 VOR 1 Course Deviation
- VOR 1 Bearing Pointer
 LOC 1 Course Deviation
- ADF 1 Bearing Pointer
 Glide-Slope Deviation

Pilot's controls consist of an HSI/RMI selector switch and course select knob. In the RMI mode, VOR 1 bearing pointer and ADF 1 bearing pointer are provided. In the HSI mode, VOR/LOC 1 course deviation and ADF 1 bearing pointer are provided. In both modes, heading data from AHS 2 is presented. Failure flags will drop into view if the associated data is invalid. The ADF bearing pointer will park at the 3:00 o'clock position with the loss of the ADF signal. With the loss of ADF receiver or DC power, the pointer will park at either the 1:30 o'clock position or its last position.

ELECTRIC POWER MONITOR

An electric power monitor is installed which monitors left and right AC bus voltage, left and right DC generator load and the DC charging bus voltage. Digital displays are used for voltage and amperage readouts.

Each parameter being monitored is divided into ranges as follows:

Normal
 Caution
 Warning

Whenever any parameter goes from the normal range to the caution range, the indicator's amber light and affected parameter will flash. If the parameter progresses into the warning range, the indicator's red light and affected parameter will flash. The amber ELEC PWR light (annunciator panel) will illuminate (steady or flashing) anytime an amber or red light on the indicator is illuminated (steady or flashing). Whenever any parameter goes into the warning range, the MSTR WARN lights will flash. Depressing the amber or

red light, as applicable, will cause the lights and displays to stop flashing. Depressing either MSTR WARN light will cancel the flashing of red warnings, the affected parameter and the amber ELEC PWR light. The amber or red light will remain illuminated (steady) until the affected parameter returns to normal range.

A malfunction which affects the accuracy of the indicator will cause EE.E to be displayed in the VDC readout and dashes "-" in all other readouts.

Whenever the left and right inverters are out-of-phase, a "C" will flash in the least significant digit of each VAC display.

Caution and warning annunciations are inhibited during starter engagement.

ENGINE SYNCHRONIZER

The engine synchronizer consists of the R ENG indicator, two ENG SYNC switches below the thrust levers, an amber ENG SYNC light on the glareshield annunciator panel, and an engine synchronizer control box. During flight, the engine synchronizer, if selected, will maintain the right engine Fan Speed (N_1) or Turbine Speed (N_2) in sync with left engine Fan Speed (N_1) or Turbine Speed (N_2) . The engine synchronizer must not be used during takeoff, landing or during single-engine operations.

The amber ENG SYNC light will be illuminated whenever the nose gear is down and the ENG SYNC SYNC–OFF switch is in the SYNC position.

The R ENG indicator provides an indication of right engine synchronization with left engine Fan (N_1) or Turbine (N_2) speed. The indicator indicates fan sync when the ENG SYNC selector switch is in the FAN position and turbine sync when the selector switch is in the TURB position. The indicator can be used to manually synchronize the engine or to monitor operation of the automatic synchronizer. The indicator is operative whenever the right fuel computer is ON and operative.

Automatic engine synchronization can be utilized whenever both fuel computers are ON and operating and the ENG SYNC SYNC–OFF switch is set to SYNC. Since the engine synchronizer authority is limited, the operator should manually synchronize the desired parameter $(N_1 \text{ or } N_2)$ within approximately 2.5% before selecting SYNC.

CABIN TEMPERATURE CONTROL

Cabin air is provided by cooling engine bleed air in a ram-air heat exchanger. Primary heating and cooling is obtained by controlling the amount of warm air that goes through the heat exchanger.

CABIN AIR LIGHT (Aircraft 31-240 and subsequent and prior aircraft modified by SB 31-31-5).

A white CABIN AIR advisory light, located in the glareshield annunciator panel, indicates that any of the following switches are in the off position, L or R BLEED AIR or CAB AIR.

BLEED-AIR HEATING AND COOLING

1.	BLEED AIR Switches	ON
2	CAB AIR Switch	ON

NOTE

With the aircraft sitting statically on the ground, do not perform extended engine operation above IDLE with CAB AIR switch ON. There is no ram-airflow through the heat exchanger and possible damage to air-conditioning components may occur.

3.	AUTO-MAN Switch	AUTO

4. COLD-HOT Knob..... ROTATE

Rotate to desired cabin temperature. In flight, the cabin temperature control system will automatically maintain the cabin at the desired temperature.

5. If satisfactory cabin temperature is not maintained:

a.	AUTO–MAN Switch	MAN
b.	COLD-HOT Knob ROTA DESIRED SE	TE TO TTING

ADDITIONAL COOLING OR TO DECREASE CABIN HUMIDITY

NOTE

Power for the cooling system must be supplied by an engine generator or GPU.

- 2. On aircraft 31-035 through 31-190, CREW and CABIN FAN Controls AS DESIRED

NOTE

- If the overhead air outlets are closed, the cockpit blower must be turned off to prevent overheating of fan motor.
- On aircraft with an optional forward evaporator and blower unit:
 - 1. CABIN FAN Control:
 - a. CABIN FAN control in the off detent— Cabin fan will operate on high speed and the airflow will be diverted above the headliner.
 - b. CABIN FAN control in any position but the OFF detent—Cabin fan speed will vary with the position of the control and the airflow will be directed straight forward from the aft evaporator and blower unit.
 - 2. CREW FAN Control:
 - a. CREW FAN control in the off detent— Cockpit fan (forward evaporator and blower unit) will operate on low speed and cockpit fan (aft evaporator and blower units) will be off.
 - b. CREW FAN control in any position but the OFF detent—Cockpit fan speed (both forward and aft evaporator and blower units) will vary with the position of the control.

NOTE

If all of the cabin gasper vents are closed, the GASPER FAN must be turned off to prevent overheating of fan motor.

- 1. GASPER FAN Control:
 - a. GASPER FAN control in the off detent— Cabin fan will operate on low speed.
 - b. GASPER FAN control in any position but the OFF detent—Cabin fan speed will vary with the position of the control.
- 2. FLOOD FAN Control:
 - a. FLOOD FAN control in the off detent— Flood fan will not operate.
 - b. FLOOD FAN control in any position but the OFF detent—Flood fan speed will vary with the position of the control.
 - c. Flood fan will only operate with the COOL Switch in COOL position.
- 3. CREW FAN Control:
 - a. CREW FAN control in the off detent— Crew fan will operate on low speed.
 - b. CREW FAN control in any position but the OFF detent—Crew fan speed will vary with the position of the control.

ADDITIONAL HEATING

NOTE

Power for the auxiliary heater must be supplied by an engine generator or GPU.

Cockpit

1. AUX/HT Switch..... CREW

To prevent damage to the heater element, CAB AIR must be ON and airflow available before activating the cockpit heater. *On aircraft 31-046 and subsequent*, the cockpit heater will not activate unless an engine is running and bleed air from that engine is available to the RH distribution duct.

Cabin

1.	Cabin Blower Switch (on blower duct in aft cabin) (if applicable)	SET ON
2.	AUX HT Switch	CAB & CREW

ADDITIONAL AIR CIRCULATION

1.	For additional cabin air circulation,	
	On aircraft 31-035 through 31-190,	
	CABIN FAN Control	AS DESIRED

On aircraft 31-191 and subsequent, GASPER FAN Control...... AS DESIRED

NOTE

On aircraft 31-191 and subsequent, if all of the cabin gasper vents are closed, the GASPER FAN must be turned off to prevent overheating of fan motor.

2. For additional cockpit air circulation, CREW FAN Control...... AS DESIRED

NOTE

On aircraft 31-035 through 31-190, if all the overhead air outlets are closed, the CREW FAN must be turned off to prevent overheating of fan motor.

OXYGEN SYSTEM

WARNING

Smoking is prohibited while oxygen system is in use.

OXYGEN DURATION

Figures AP-2 and AP-3 in the Abnormal Procedures chapter show oxygen supply duration of a fully charged system as a function of cabin altitude and number of occupants using the system. Passenger durations above 30,000 feet cabin altitude are provided for information only. Prior to extended overwater flights, plan oxygen requirements to provide sufficient oxygen for all occupants in the event of a pressurization failure. Additional oxygen may be required to assure that both oxygen duration and range (fuel) requirements are satisfied.

PASSENGER OXYGEN

WARNING

- Passenger oxygen masks are intended for use during an emergency descent to an altitude not requiring supplemental oxygen.
- Passenger masks will not provide sufficient oxygen for prolonged operation above 34,000 feet cabin altitude. Prolonged operation above 25,000 feet cabin altitude with passengers on board is not recommended.
- 1. With the PASSENGER OXYGEN valve in the OFF position no oxygen is supplied to the cabin.
- 2. With the PASSENGER OXYGEN valve in the AUTO position, the passenger oxygen masks will drop from their storage compartments if the cabin altitude reaches 14,000 (\pm 750) feet. Whenever the oxygen masks deploy, the upper center panel lights will illuminate to provide maximum visibility for donning masks. The passengers must don the masks and pull the attached lanyards to start the flow of oxygen.

NOTE

If Generator and Battery switches are OFF, automatic presentation of masks will not occur. In this event, turn PASSENGER OXYGEN valve to DEPLOY if passenger oxygen is required.

- 3. With the PASSENGER OXYGEN valve in the DEPLOY position, the passenger oxygen masks will drop. The passengers must don the masks and pull the attached lanyards to start the flow of oxygen. This should be used if the automatic presentation of the masks does not occur.
- 4. Deploy passenger oxygen, if pressurization irregularities are encountered above 10,000 feet.

NOTE

The rebreather bag will not inflate even though oxygen is flowing. This is normal.

CREW OXYGEN

I

1. If oxygen is required by the crew only:

PASSENGER OXYGEN Valve OFF

2. When oxygen masks are worn by the crew:

MIC SELECT Switch OXY

When set to OXY, the interphone function of the audio control system will be active allowing communication between crew members.

- 3. Crew Oxygen Masks:
 - Operate 6600214 series masks as follows:
 - a. With NORM selected on the pressure regulator control, the crew mask will deliver automatic oxygen dilution from SL to 33,000 feet cabin altitude and 100% oxygen above 33,000 feet cabin altitude. Automatic positive pressure breathing is provided above 39,000 feet cabin altitude.
 - b. To obtain 100% oxygen at any time, select 100% on the pressure regulator control.
 - c. For emergency operation, select EMER on the Pressure Regulator control. With the regulator control in this position, the crew mask will

deliver 100% oxygen, maintain a slight positive pressure in the mask cup at all times for respiratory protection from smoke or fumes, and automatic positive pressure breathing above 39,000 feet cabin altitude.

- Operate Scott ATO MC 10-15-01 masks as follows:
- a. To check for oxygen availability to the mask while stowed, depress the PRESS TO TEST button/knob on the bottom of mask pressure regulator—oxygen will flow while the button is held.
- b. To don crew oxygen masks:
 - (1) Remove hats and "ear muff" type headsets.

NOTE

Headsets and eyeglasses worn by crewmembers may interfere with quick-donning capabilities.

- (2) Squeeze and hold the red handles on the mask pressure regulator together to inflate the pneumatic harness for donning.
- (3) Position harness over the head, position mask as desired, then release red handles.
- (4) Ensure that mask is properly sealed. Reposition mask if required.

NOTE

Beards worn by crewmembers may make proper sealing of the mask more difficult.

- c. With the 100% lever extended and the PRESS TO TEST button/knob rotated to the position, the mask will deliver automatic oxygen dilution from SL to 30,000 feet cabin altitude, 100% oxygen above 30,000 feet cabin altitude and automatic pressure breathing above approximately 37,000 feet cabin altitude.
- d. To obtain 100% oxygen at any time, depress 100% lever on mask pressure regulator.
- e. For emergency operation, select EMERGENCY (rotate PRESS TO TEST button/knob to ●). With the mask pressure regulator controls in this position the crew mask will deliver 100% oxygen at all cabin altitudes and maintain a positive pressure in the mask cup at all times for respiratory protection from smoke or fumes.
- Operate Puritan Bennet Seep-on 2000 masks as follows:

- a. An inline pressure detector will show green when oxygen pressure is available to the mask.
- b. To don crew oxygen masks:
 - (1) Remove hats and "ear muff" type headsets.

NOTE

Headsets and eyeglasses worn by crewmembers may interfere with quick-donning capabilities.

- (2) Remove mask from stowage box.
- (3) Squeeze and hold the red handles on the mask pressure regulator together to inflate the pneumatic harness for donning.
- (4) Position harness over the head, position mask as desired, then release red handles.
- (5) Ensure that mask is properly sealed. Reposition mask if required.

NOTE

Beards worn by crewmembers may make proper sealing of the mask more difficult.

- c. With the the regulator set to NORM, the mask will deliver automatic oxygen dilution from SL to 33,000 feet cabin altitude, 100% oxygen above 33,000 feet cabin altitude and automatic pressure breathing above approximately 39,000 feet cabin altitude.
- d. To obtain 100% oxygen at any time, rotate the regulator knob to 100%.
- e. For emergency operation, rotate the regulator knob to EMER. With the mask pressure regulator knob in this position the crew mask will deliver 100% oxygen at all cabin altitudes and maintain a positive pressure in the mask cup at all times for respiratory protection from smoke or fumes.

PRESSURIZATION SYSTEM OPERATION

NOTE

For Automatic Mode operation, refer to BEFORE STARTING ENGINES, BEFORE TAKEOFF, AFTER TAKEOFF and DESCENT procedures in this section.

MANUAL MODE OPERATION

- 1. AUTO-MAN switch MAN
- 2. UP–DN Manual control (red) AS REQUIRED TO MAINTAIN SATISFACTORY

PRESSURIZATION

3. To return to automatic operation, proceed as follows:

NOTE

If cabin altitude should increase to $8,750 (\pm 250)$ feet or above, the automatic pressurization mode is deactivated and the amber CAB ALT light will illuminate. Automatic mode operation will not be available until the cabin altitude is decreased to extinguish the CAB ALT light.

a.	CABIN CONTROLLER	SET AT OR BELOW 7,200 FT
b.	UP–DN Manual	
	control (red)	CONTROL TO
	ALT	ITUDE SELECTED ON
		CABIN CONTROLLER
c.	AUTO-MAN switch	AUTO
d.	CABIN CONTROLLER	RESET
		(IF REQUIRED)

Reset to appropriate cabin altitude for flight altitude.

LANDING AT FIELD ELEVATION ABOVE 8,500 FEET

Descent

1.	EMER PRESS switches	OVERRIDE
2.	AUTO-MAN switch	MAN
3.	UP-DN Manual control (red)	UP TO DESTINATION FIELD ELEVATION

NOTE

• After landing, leave EMER PRESS switches in OVERRIDE position. If the switches are set to

NORMAL above approximately 9,500 feet, emergency pressurization will activate. In the event of inadvertent activation of emergency airflow, the system may be reset as follows:

- a. EMER PRESS switches OVERRIDE
- b. Both BLEED AIR switches..... OFF THEN ON
- Applicable operating rules, pertaining to the use of oxygen at high cabin altitude, must be observed.

TAKEOFF AT FIELD ELEVATION ABOVE 8,500 FEET

Before Starting Engines

1.	EMER PRESS Switches	OVERRIDE
2.	BLEED AIR Switches	ON
3.	CAB AIR Switch	OFF
4.	AUTO-MAN Switch	MAN

NOTE

- Applicable operating rules, pertaining to the use of oxygen at high cabin altitude, must be observed.
- At field elevations above 8,750 (±250) feet, the automatic pressurization mode will be deactivated and the CAB ALT light will be illuminated.

5.	CABIN CONTROLLER	SELECT CRUISING
		ALTITUDE OR
		DESIRED CABIN
		ALTITUDE

Taxi

1. CAB AIR Switch ON

After Takeoff

1.	UP-DN Manual control (red) D	N
	Position DN to obtain cabin altitude selected on CABIN CONTROLLER	₹.
2.	AUTO-MAN Switch	Ю

NOTE

The pressurization system cannot be reset to automatic mode until the CAB ALT light is extinguished.

3. EMER PRESS Switches NORMAL

FUEL MANAGEMENT

For aircraft range calculations, use TOTAL fuel quantity indications. Do not use individual tank fuel quantity readings because, when summed, these gage readings will be less accurate than the TOTAL gage reading. The accuracy of the individual readings is adequate for the fuel management procedures (crossflow and transfer) presented in this section. Each individual tank and the TOTAL indication reads zero when its unusable fuel quantity is reached. The accuracy of all fuel quantity readings will be enhanced when taken with the aircraft in wings level, unaccelerated cruise flight.

The amber LOW FUEL light on the glareshield annunciator panel will illuminate when the fuel level in either wing tank is approximately 350 pounds. If the FUS TANK XFR–FILL switch is in the FILL position when the LOW FUEL light illuminates, the switch will revert to the OFF position and fuse-lage fill will stop.

The FUEL XFLO light on the glareshield will be illuminated whenever the crossflow valve is open. The crossflow valve will be open during wing-to-wing transfer, wing-to-fuselage transfer, or fuselage-to-wing transfer.

Steady illumination of any of the amber fuel system valve lights on the fuel control panel indicates the corresponding valves are not in the position selected or a loss of power. Momentary illumination while the corresponding valve is in transit after switching modes indicates proper operation.

On aircraft 31-037 & subsequent and prior aircraft incorporating SB 31-28-7, illumination of either white light, adjacent to the standby pump switches, indicates power is applied to the corresponding standby pump (regardless of switch position). It is normal for the lights to illuminate during starter-assisted starts, fuselage tank FILL operations and whenever the STANDBY PUMP switch is ON.

The fuel control panel on the pedestal contains all the necessary switches and indicators to fuel the aircraft and maintain proper fuel management.

NOTE

The FUS TANK XFR-FILL switch utilizes a timed magnetic latch in the FILL position. The switch must be held to FILL for a minimum of 3 seconds before the latch will engage.

FUSELAGE TANK-TO-WING FUEL TRANSFER

Fuel may be transferred from the fuselage tank to the wings by either of the methods described below. However, fuel transfer pump operation may be minimized by selecting gravity transfer after cruise attitude has been established. If gravity transfer is selected, normal transfer should be selected when the wing fuel quantity starts to decrease.

Normal Transfer Procedure

۱.	FUS TANK	
	XFR-FILL switch	XFR

Set to XFR when wing tank fuel quantity indicates 1,200 pounds or less in each tank. When XFR is selected, the standby pumps will be deenergized, the crossflow valve will open, the left fuselage fuel transfer valve will open, and the transfer pump will be energized. If the green L or R WING FULL light illuminates, the left fuselage transfer valve will close and the transfer pump will shut off until the WING FULL light extinguishes.

2. FUS TANK XFR-FILL switch...... OFF

Position to OFF when FUS TANK EMPTY light illuminates.

NOTE

Some fuel may remain in the fuselage tank after the FUS TANK EMPTY light illuminates. This fuel can be transferred to the wings by cycling the XFR–FILL switch to XFR several times.

Gravity Transfer Procedure

1.	FUS TANK XFR-FILL switch	. OFF
2.	FUS TANK GRAV XFR switch	OPEN

When OPEN is selected, the standby pumps will be deenergized, the crossflow valve will open, and both transfer valves will open. Fuel will gravity flow from the fuselage tank until the wing tanks are full or the fuselage and wing tank heads are equal. When using gravity transfer, 150 to 300 pounds (depending upon flight attitude) of fuselage fuel will be unusable.

3. FUS TANK GRAV XFR switch CLOSE

Position switch to CLOSE when gravity transfer is complete or prior to approach.

NOTE

- Gravity transfer may be used after cruise is established to minimize transfer pump operation. When the wing fuel quantity starts to decrease, use NORMAL TRANSFER PROCEDURE to transfer remaining fuselage fuel.
- When flying in extreme nose-up attitude for extended periods, fuel may gravity flow from the wing tanks to the fuselage tank. Periodically transfer fuel back into wings.

WING-TO-FUSELAGE TANK FUEL TRANSFER

To transfer fuel from the wing to the fuselage tank, the following procedure may be used:

1. FUS TANK XFR–FILL switch...... HOLD TO FILL UNTIL SWITCH LATCHES (3 SECONDS MINIMUM)

When FILL is selected, both standby pumps will be energized, both transfer valves will open, and the crossflow valve will open. Fuel will be transferred from the wing tanks to the fuselage tank until:

- a. Green FUS TANK FULL light comes on, causing the standby pumps to deenergized, and both transfer valves to close. When the XFR–FILL switch is positioned to OFF, the FULL light will go out and the crossflow valve will close.
- b. LOW FUEL light comes on, causing the FUS TANK XFR-FILL switch to move to the OFF position. Transfer can be restarted with the LOW FUEL light on, if required.
- c. The aircraft lifts off causing the FUS TANK XFR-FILL switch to move to the OFF position. Transfer can be restarted after liftoff, if required.

2. FUS TANK XFR–FILL switch...... OFF

Position to OFF when desired fuselage fuel quantity is reached. Check that fuel transfer and crossflow valves close.

FUEL CROSSFLOW (WING-TO-WING FUEL TRANSFER)

NOTE

Do not crossflow with main jet pump(s) inoperative. Engine starvation may occur due to fuel being pumped through open crossflow valve into opposite wing.

1.	CROSSFLOW Switch OI	PEN
2.	STANDBY PUMP Switch (heavy wing)	ON
3.	STANDBY PUMP Switch (light wing)	OFF
4.	CROSSFLOW Switch CLOSE AF FUEL BALAI IS OBTAIN	TER NCE NED
5.	STANDBY PUMP Switches	OFF

6. If the preceding procedure fails to balance fuel, unequal power settings may be used to balance fuel load.

OPERATION WITH COLD WING FUEL

Operation on wing fuel exposed to indicated Total Air Temperatures (TAT) below the freeze-points shown below for 30 minutes or more may result in a reduction of usable fuel due to fuel freezing.

Fuel Type	Maximum Freeze-Point (TAT)
JET-A	40°C
JP-5	–46°C
JET-A1	50°C
JP-8	50°C

To minimize fuel freezing at TATs below these values, transfer the warmer fuel from the fuselage tank to maintain approximately 800 pounds of fuel in each wing tank.

REFUELING

The airplane may be refueled through a filler on the top of each wing tank or through the single-point pressure filler (if installed) below the right engine. Usable fuel using either refuel procedure is given with the applicable procedure. Refer to Addendum I—FUEL SERVICING for refuel procedures.

On aircraft not equipped with fuel heaters, to prevent fuel filter icing and possible engine flameout, anti-icing additive must be blended with the fuel in the concentration specified in FUEL LIMITS, Section I of the AFM.

The engine fuel computers must be adjusted to the recommended specific gravity position as specified in FUEL LIMITS, Section I of the *AFM*. Refer to *Addendum I—FUEL SERVICING* for adjustment procedures.

BRAKE SYSTEMS

The primary brake system utilizes hydraulic system pressure for power boost and incorporates an anti-skid system to prevent tire skid and/or tire blow-out during landing or aborted takeoff. The brakes are operated by depressing the upper portion of the rudder pedals.

NOTE

Large temperature differences between wheels after landing may indicate improper brake operation.

A parking brake is installed. The parking brake is operated by depressing and holding the toe brakes (hydraulic system pressurized) and then pulling the PARKING BRAKE handle (pedestal) to set the brakes. Whenever the PARK-ING BRAKE handle is not fully in, the amber PARK BRAKE light will be illuminated.

An emergency air braking system is installed to provide emergency braking in the event of a hydraulic system failure. Refer to EMERGENCY PROCE-DURES (Section III of the *AFM*) for emergency braking procedures.

NORMAL BRAKING

Anti-skid On Operation

1. ANTI-SKID Switch ON

Check ANTI-SKID lights extinguished.

NOTE

If, during approach, an ANTI-SKID light or lights remain illuminated after the landing gear is lowered, setting the ANTI-SKID switch to OFF, then back to ON, should clear the system.

2. Apply brakes as required. Maximum braking pressures can be maintained when anti-skid is operative.

NOTE

The takeoff and landing distances with anti-skid ON, presented in Section V of the *AFM*, are based on full anti-skid braking from first brake application to complete stop.

Anti-skid Off Operation

When anti-skid is inoperative, care must be used during brake application and stopping distances will be increased. Refer to Section IV of the *AFM* for operation of the brake system with anti-skid off, and Section V for increased stopping distances for takeoff and landing.

EMERGENCY BRAKING

In the event of a normal brake system failure, emergency (pneumatic) brakes can be used to stop the airplane. Refer to Section III of the *AFM* for operation of the emergency brake system.

LANDING GEAR WARNING SYSTEM

The landing gear warning horn only will sound under the following conditions:

- Landing gear is not extended.
- Flaps are lowered beyond 25°.

NOTE

When the horn sounds because the flaps are lowered, the horn cannot be silenced by the mute switches.

The landing gear warning horn will sound and the three red UNSAFE lights will illuminate under the following conditions:

- Landing gear is not extended.
- Altitude is below 14,500 feet.
- Airspeed is below 170 KIAS.
- At least one thrust lever is below 55-60% N₁.

NOTE

When the horn sounds under these conditions, the horn can be silenced by moving the LANDING GEAR-MUTE switch to MUTE or depressing the GEAR MUTE button in the right thrust lever handle. The UNSAFE light indication will continue until either the gear is lowered or one of the above conditions is corrected.

REDUCED VERTICAL SEPARATION MINIMUMS (RVSM)

(Aircraft 31-213, 31-222 & Subsequent and prior aircraft modified by SB 31-34-11)

This aircraft has been shown to meet the airworthiness requirements for operation in Reduced Vertical Separation Minimum (RVSM) airspace between 29,000 and 41,000 feet inclusive. This does not constitute an operational approval.

BEFORE STARTING ENGINES

1. Altimeters — Set pilot, copilot and standby. Verify the pilot's and copilot's altimeters agree within 75 feet of the local field elevation.

CRUISE

Check pilot's (ADC1) and copilot's (ADC 2) altimeter agree within 150 feet.

The autopilot Altitude Hold (ALT HOLD) mode should be operative and engaged during level cruise except when circumstances such as the need to retrim the aircraft or turbulence require disengagement. If autopilot is coupled to the pilot's flight director, select transponder 1 as the active transponder. If autopilot is coupled to the copilot's flight director, select transponder 2 as the active transponder.

RUDDER BOOST SYSTEM

The rudder boost system reduces rudder forces, increases directional control effectiveness, and improves takeoff performance. Whenever the pilot exerts approximately 35 pounds of rudder pedal force, the system engages (if armed)

I

and using the yaw damper servo assists the pilot in deflecting the rudder. A RUDDER BOOST switch is used to arm the system and system status is provided by green RB (active) and amber RB (fail) lights on the glareshield-mounted autopilot controller. If a conflict exists between the yaw damper and rudder boost commands, the rudder boost system will override the yaw damper.

SELF TEST

The system initiates a self-test when the system is powered up. During the self-test sequence, the amber RB fail light will be continuously displayed and the green RB active light will blink. Successful completion of the self-test sequence will extinguish both RB lights and arm the rudder boost system. Failure of the self-test sequence will leave the amber RB light illuminated and the rudder boost will not be armed.

TO ENGAGE RUDDER BOOST

If the system is armed and a rudder pedal force of approximately 35 pounds or more is present, the rudder boost computer will activate rudder boost and assist the pilot in deflecting the rudder. The green RB light will illuminate to indicate rudder boost is active. Failure of the rudder boost system is indicated by illumination of the amber RB light.

TO DISENGAGE RUDDER BOOST

- Setting the RUDDER BOOST switch to OFF will disengage rudder boost.
- Depressing either control wheel master switch (MSW) will disable rudder boost while the switch is held.
- Pulling the RUDDER BOOST circuit breaker (LEFT AFCS group) will disengage rudder boost.

NOTE

On aircraft 31-055 and subsequent and prior aircraft incorporating SB 31-32-2, nosewheel steering will not arm with the RUDDER BOOST circuit breaker pulled. Refer to Section IV, Abnormal Procedures, Operation with Nosewheel Steering Not Armed.

TRIM SYSTEMS OPERATIONAL CHECK

The following procedure performs the complete three-axis trim systems operational check. This check must be completed a minimum of once every 10 hours of flight operation.

NOTE

• Throughout the following checks, verify that the trim-in-motion audio clicker sounds approximately 1/4 second after initiating pitch trim with

the flaps up. The trim-in-motion audio clicker will not sound when the flaps are lowered beyond 3°.

- The amber PITCH TRIM light on the glareshield will illuminate whenever either Control Wheel Master switch (MSW) is depressed.
- 1. BATTERY Switches ON
- INVERTER Switch (L or R)......ON
 FlapsUP
- 4. PITCH TRIM Selector switch (pedestal)...... SEC
 - a. NOSE DN–OFF–NOSE UP switch (pedestal)...... CHECK OPERATION
 - (1) Operate switch NOSE UP and NOSE DN. Trim motion shall occur in both directions.
 - (2) Check that depressing either Control Wheel Master switch (MSW) while trimming NOSE UP or NOSE DN will stop trim motion while Control Wheel Master switch (MSW) is held.
 - b. Pilot's Control Wheel Trim switch (arming button depressed)...... OPERATE NOSE UP AND NOSE DN

Trim motion shall not occur. Repeat using copilot's Control Wheel Trim switch.

- 5. PITCH TRIM Selector switch (pedestal)...... OFF
 - a. NOSE DN-OFF-NOSE UP switch (pedestal) Operate NOSE UP and NOSE DN

Trim motion shall not occur.

 b. Pilot's Control Wheel Trim switch (arming button depressed)...... OPERATE NOSE UP AND NOSE DN

Trim motion shall not occur. Repeat using copilot's Control Wheel Trim switch.

PITCH TRIM Selector 6. switch (pedestal)..... PRI a. NOSE DN-OFF-NOSE UP switch (pedestal) OPERATE NOSE UP AND NOSE DN Trim motion shall not occur. b. Pilot's and copilot's Control Wheel Trim switches CHECK INDIVIDUALLY AS FOLLOWS: (1) Without depressing arming button, move switch NOSE UP, NOSE DN, LWD, and RWD. Trim motion shall not occur. (2) Depress arming button without displacing switch. Trim motion shall not occur. (3) Depress arming button and move switch NOSE UP, NOSE DN, LWD, and RWD. Trim motion shall occur in all directions. (4) Check that depressing pilot's Control Wheel Master switch (MSW) while trimming NOSE UP and NOSE DN will stop trim motion. Repeat step using copilot's Control Wheel Master switch (MSW). c. Trim by positioning copilot's Control Wheel Trim switch. While trimming, trim in opposite direction using pilot's Control Wheel Trim switch. Pilot's trim shall override copilot's trim. Repeat for each trim position. 7. Mach Trim..... CHECK a. SYSTEM TEST Selector switch ROTATE TO MACH TRIM b. TEST button DEPRESS AND HOLD Stabilizer should trim slowly in the nose up direction for 1 to 3 seconds and then stop. The trim-in-motion audio clicker may or may not sound. The amber MACH TRIM light shall illuminate. MACH TRIM light shall go out. Trim Monitor..... CHECK 8.

NOTE

The trim monitor continuously monitors the primary pitch trim system for electrical faults which could cause a trim runaway if an additional fault were to occur. During flight, the trim monitor will illuminate the amber PITCH TRIM light to alert the crew a fault has occurred. During ground test, a signal simulating an electrical fault is applied to the trim monitor.

a.	TEST Selector switch	ROTATE TO TRIM MON
b.	TEST button	DEPRESS
	Amber PITCH TRIM light shall illuminate.	
c.	TEST button	RELEASE
_		<u> </u>

9. Trim Speed and Trim Speed Monitor CHECK

NOTE

The trim speed monitor compares pitch trim rate with flap position. During flight, the monitor will illuminate the amber PITCH TRIM light to alert the flight crew that the aircraft is trimming at the high trim rate with the flaps up. During ground test, a flaps down signal is applied to the trim speed controller and a flaps up signal is applied to the trim speed monitor simulating the high trim rate with the trim speed monitor in the low trim rate mode.

a.	TEST Selector switch ROTATE TO TRIM OVRSPD
b.	While trimming NOSE UP or NOSE DN with either Control Wheel Trim switch:
	TEST button DEPRESS
	Amber PITCH TRIM light shall illuminate.
c.	TEST button RELEASE
d.	Flaps DN
e.	Either Control Wheel Trim switch NOSE UP OR NOSE DN

Verify that PITCH TRIM indicator needle moves faster with flaps down.

10.	Either Control Wheel Trim switch (arming button depressed) OPERATE
	Operate as required to move PITCH TRIM indicator pointer through the 4 to 11° point to observe illumination of the T.O. TRIM light. The amber T.O. TRIM light shall be illuminated whenever the indicator pointer is less than the 5° point or more than the 10° point, and shall be extinguished whenever the indicator pointer is within the T.O. segment.
11.	Rudder Trim switch (pedestal) CHECK
	Switch operation should occur as follows:
	a. Move each half of switch separately to NOSE LEFT and NOSE RIGHT. Trim motion shall not occur.
	b. Move both halves of switch simultaneously to NOSE LEFT and NOSE RIGHT. Trim motion shall occur.
12	INVERTER switch OFF
13.	BATTERY switches OFF

Page

LEARJET 31A PILOT TRAINING MANUAL

ABNORMAL PROCEDURES CONTENTS

	-
INTRODUCTION	AP-1
Overriding Considerations	AP-1
Terminology	AP-1
ANTI-ICING	AP-2
ALC LOW Light Illuminated	AP-2
Engine Ice Ingestion	AP-2
Inadvertent Icing Encounter	AP-3
NAC HT Light Illuminated	AP-5
PITOT HT Light Illuminated	AP-6
STAB HT Light Illuminated	AP-6
Wing Heat Failure	AP-7
Windshield Heat Failure	AP-7
WS DEFOG Light Illuminated	AP-8
ELECTRICAL	AP-9
ELEC PWR Light Illuminated	AP-9
Single Generator Failure—L or R GEN Light Illuminated	AP-10
ENGINES	AP-11
Abnormal Engine Operation	AP-11
Airstart	AP-11
FUEL CMPTR Light Illuminated	AP-16
ENGINE CHIP Light Illuminated	AP-17
Engine Overspeed	AP-17
Engine Shutdown in Flight	AP-18
Starter Engaged Light Remains Illuminated after Start	AP-19
ENVIRONMENTAL	AP-20
Failure to Depressurize on the Ground	AP-20
Inadvertent Activation of Emergency Airflow	AP-20

Overpressurization (Differential Pressure Exceeds Red Arc)	AP-21
CAB ALT Light Illuminated or Cabin Altitude Exceeds 8,500 Feet	AP-21
To Return to Normal Pressurization Airflow	AP-23
Oxygen Duration	AP-24
FLIGHT CONTROLS	AP-26
MACH TRIM Light Illuminated in Flight	AP-26
PITCH TRIM Light Illuminated in Flight	AP-27
Stall Warning System Failure	AP-27
FUEL SYSTEM	AP-28
Crossflow Valve Fails to Open	AP-28
FUEL FILTER Light Illuminated	AP-28
Fuel Imbalance During Fuel Transfer	AP-29
Fuel Transfer Valve Fails to Close	AP-31
Fuel Valve Lights Illuminated	AP-31
LOW FUEL Light Illuminated	AP-31
Normal Fuel Transfer System Failure	AP-32
Standby Pump Fails to Shut Off— Aircraft SNs 31-037 and Subsequent and Prior Aircraft Incorporating SB 31-28-7	AP-32
HYDRAULIC SYSTEM FAILURE/ALTERNATE	AD 22
	AF-33
LO HYD PRESS LIGHT ILLUMINATED	AP-34
INSTRUMENTS/AVIONICS	AP-35
Single Air Data Computer (ADC)/ Airspeed or Altitude/Vertical Speed Indicator Failure	AP-35
Air Data Computer Comparator Warning	AP-36
Attitude Heading System (AHS) Malfunction	AP-36
AHS Light Illuminated	AP-38
Attitude or Heading Comparator Warning	AP-39
Electronic Flight Instrument System Failure	AP-40
Pitot-Static System Malfunction	AP-42

LANDING GEAR	AP-44
Alternate Gear Extension/Electrical Malfunction	AP-44
ANTI-SKID Light Illuminated— ANTI-SKID OFF Operation	AP-44
Nosewheel Steering Malfunction	AP-45
ABNORMAL LANDINGS	AP-47
Gear-Up Landing	AP-47
Hydraulic System Failure—Landing	AP-49
Jammed Stabilizer Landing	AP-50
One or Both Spoilers-Up Landing	AP-51
Partial Flaps Landing	AP-51
Single-Engine Landing	AP-52
Stabilizer Heat Failure—Landing	AP-53
Wing Heat Failure—Landing	AP-53
Wing and Stabilizer Heat Failure—Landing	AP-53
TURBULENT AIR PENETRATION	AP-53
OPERATION WITH ONE FUEL COMPUTER INOPERATIVE	AP-54
Starting Engines	AP-55
Before Taxi	AP-55
Taxi	AP-55
Takeoff	AP-56
Cruise	AP-56
Approach	AP-57
Go-Around	AP-57
OPERATION WITH NOSEWHEEL	
STEERING INOPERATIVE	AP-57
Taxi	AP-57
Runway Lineup	AP-57
Takeoff	AP-57

I

OPERATION WITH NOSEWHEEL STEERING NOT ARMED	AP-58
Aircraft SNs 31-055 and Subsequent and Prior Aircraft Incorporating SB 31-32-2	AP-58
OPERATION WITH SINGLE BATTERY	AP-59
Exterior Preflight	AP-59
Before Starting Engines	AP-59
Dual Generator Failure	AP-59
Airstart	AP-60

ILLUSTRATIONS

Figure	Title	Page
AP-1	Airstart Envelope	AP-13
AP-2	Oxygen Duration in Minutes for a Fully Charged System—Aircraft with Scott ATO MC 10-15-01	AP-24
AP-3	Oxygen Duration in Minutes for a Fully Charged System—Aircraft with 6600214 Series Crew Masks	AP-25

TABLE

Table	Title	Page
AP-1	Partial Flaps Landing Data	 AP-52

ABNORMAL PROCEDURES

INTRODUCTION

The procedures presented here have been developed by Learjet, Inc. for certification of this aircraft. This chapter contains those operating procedures using special systems and/or alternate use of regular systems which, if followed, will maintain an acceptable level of airworthiness or reduce operational risk resulting from a failure condition. Procedures in this chapter emphasized by a shaded are memory items and should be accomplished without reference to the checklist.

The procedures located in this section supplement Normal Procedures when a failure condition exists. Use of Normal Procedures should be continued when applicable. Sound judgement as well as thorough knowledge of the aircraft, its characteristics, and the flight manual procedures are essential in the handling of any failure condition.

OVERRIDING CONSIDERATIONS

In all emergencies, the overriding consideration must be to:

- Maintain Airplane Control
- Analyze the Situation
- Take Proper Action

TERMINOLOGY

Some abnormal procedures require that a landing be made as soon as practical, as some emergencies require more urgency in landing the aircraft. The degree of urgency required varies with the emergency; therefore, the terms "land as soon as possible" and "land as soon as practical" are employed. These terms are defined as follows:

Land as Soon as Possible—A landing should be accomplished at the nearest suitable airfield considering the severity of the emergency, weather conditions, field facilities, ambient lighting, and aircraft gross weight.

Land as Soon as Practical—Emergency conditions are less urgent, and although the mission is to be terminated, the degree of the emergency is such that an immediate landing at the nearest adequate airfield may not be necessary.

ANTI-ICING

ALC LOW LIGHT ILLUMINATED

Illumination of the amber ALC LOW light indicates the alcohol level in the windshield/radome alcohol anti-ice reservoir is low.

- 1. Fly out of icing conditions as soon as possible.
- 2. ALCOHOL Switch..... OFF

Switch to OFF when alcohol stops flowing.

3. After landing, assure alcohol reservoir is properly replenished.

ENGINE ICE INGESTION

Engine ice ingestion can result in fan damage and abnormal engine operation. Engine ice ingestion can be suspected whenever ice is shed from the wing, fuselage, windshield, or nacelle. This may occur when anti-ice systems are energized after significant ice accumulation has occurred on the above surfaces. Ice ingestion may be evident by a change in engine sound or frequency, audible report, sharp rise in turbine temperature (ITT), or rpm hang-up.

Experience to date has shown that, if proper procedures are observed, there is a very high probability of satisfactory engine operation after experiencing foreign object damage from ice in the engine fan. Such damage can reduce the compressor stall margin so that the engine could become more sensitive to rapid thrust lever movements, inlet pressure profile variation due to maneuvering, and high rpm operation. Some compressor stalls will result in engine flameout.

1. IGNITION Switches...... ON

Leave ON for the duration of the condition.

- 2. Thrust lever movements should be slow and cautious.
- 3. Engine rpm SET

Set rpm as low as possible (60% fan speed or higher as required to maintain the WING TEMP indicator pointer in the green segment).

4. Avoid any abrupt changes in pitch, yaw, or roll.

- 5. To determine extent of engine damage due to ice ingestion, proceed as follows:
 - a. Thrust Levers (one at a time)...... RETARD TO FLIGHT IDLE

Then cautiously advance and check for any vibration or abnormal noise on each engine.

NOTE

If compressor stall is encountered, retard thrust lever until smooth operation is obtained. (If any of the fan blades have been damaged, the noise level and frequency will increase with an increase of rpm.)

- b. If either engine flames out, airstart in accordance with ENGINE AIRSTART procedure, this section. After restart, repeat step 5, but stay below engine speed at which engine flamed out.
- c. If ice damage has been experienced, land as soon as practical and stay within the operating limitations of engine as defined by this procedure.

NOTE

Inspect engine for damage any time inadvertent icing conditions have been encountered.

INADVERTENT ICING ENCOUNTER

If icing is inadvertently encountered:

1. All Anti-ice systems ACTIVATE IMMEDIATELY

Immediate action precludes ice accumulation.

If approach and landing must be made with any amount of ice on the airframe:

- a. Do not extend flaps beyond 20°.
- b. Use landing procedure for a wing and stabilizer heat failure. Refer to ABNORMAL LANDINGS, this section.

WARNING

Even *small* accumulations of ice on the wing leading edge can cause an increase in stall speed and possibly a degradation in stall characteristics.

NOTE

Ice accumulation on the stabilizer can cause deterioration in trim speeds, elevator buffeting, changes in elevator forces, and control column oscillations/pulsing. During flight tests, control column oscillations and pulsing tended to increase in intensity with increases in power. Low speed flight should be approached with care so that detection of abnormal flying qualities can be obtained.

If heavy ice accumulation has occurred, proceed as follows:

If enroute and destination temperatures remain below freezing, consideration should be given to landing with ice on the wings.

If landing with ice on the wings:

1.	WING HT Circuit Breaker (R ANTI-ICE Group) PULL
	The WING TEMP indicator will be inoperative.
2.	STAB WING HEAT Switch STAB WING HEAT
	This will provide stabilizer heat without activating wing heat.
3.	Use landing procedure for a wing heat failure. Refer to Abnormal Landings, this section.
If a	ttempting to remove ice accumulation:
1.	IGNITION Switches ON
2.	Engine rpm SET

Set as low as possible (60% fan speed minimum)

3. NAC HEAT switch (for one engine)..... ON

Wait until satisfactory engine operation is apparent, then:

Opposite engine NAC HEAT switch ON

Observe Turbine Temperature (ITT) rise and check that the L and R NAC HT lights are out for operation of engine anti-ice.

4. After satisfactory engine operation is apparent:

STAB WING HEAT switch ON

5. After satisfactory engine operation is apparent, energize remaining anti-ice systems, one system at a time, waiting for satisfactory engine operation between energizing each system.

NAC HT LIGHT ILLUMINATED

A failure of the nacelle heat system (bleed air) is indicated by illumination of the amber L or R NAC HT light. Two types of failures are annunciated with these lights:

- Uncommanded application of nacelle heat
- Failure of nacelle heat to activate when commanded

Affected Engine:

1. NAC HT Circuit Breaker (ANTI-ICE group) PULL AND/OR RESET

If light remains illuminated:

2. • If associated NAC HEAT switch is OFF:

Engine RPM REDUCE TO MIN REQUIRED

• If associated NAC HEAT switch is ON:

Engine RPM INCREASE TO IMPROVE AIRFLOW

Fly out of icing conditions if possible

PITOT HT LIGHT ILLUMINATED

Illumination of the amber PITOT HT light indicates that one or more of the pitot-static mast heaters are inoperative or one or both PITOT HEAT switches are OFF.

- 1. PITOT HEAT Switches CHECK/ON
- 2. L PITOT HT and R PITOT HT Circuit Breakers (ANTI-ICE Group)...... CHECK/IN

If PITOT HT light remains illuminated:

- a. Fly out of icing conditions as soon as possible.
- 3. Cross-check the dual pitot-static systems.

STAB HT LIGHT ILLUMINATED

With the STAB WING HEAT switch ON, a failure of the stabilizer heating blanket parting element is indicated by illumination of the amber STAB HT light while in flight. The remaining elements will continue to operate.

1. STAB HT Circuit Breaker (R ANTI-ICE Group)...... CHECK

Reset if necessary.

- 2. If STAB HT cannot be restored:
 - a. Fly out of icing conditions, if possible.
 - b. Do not extend flaps beyond 20°.

Ice accumulation on the stabilizer may cause deterioration in trim speeds, elevator buffeting, changes in elevator forces, and control column oscillations/pulsing. During flight tests, control column oscillations and pulsing tended to increase in intensity with increases in power. Low speed flight should be approached with care so that detection of abnormal flying qualities can be obtained.

For landing procedure with a stabilizer heat failure, refer to Stabilizer Heat Failure - Landing procedure, this section.

WING HEAT FAILURE

With the STAB WING HEAT switch ON, a failure is indicated by the WING TEMP indicator remaining in the blue (below $40^{\circ}F [4^{\circ}C]$) range and/or visual indications of ice accumulation.

WARNING

Even *small* accumulations of ice on the wing leading edge can cause an increase in stall speed and, possibly, a degradation in stall characteristics.

1. WING HT Circuit Breaker (R ANTI-ICE Group)...... CHECK

Reset if necessary.

2. Engine RPM ADJUST AS REQUIRED

Maintain WING TEMP indicator in the green band.

3. If WING TEMP indicator remains in the blue range and/or visual indications of ice accumulation remain, fly out of icing conditions.

If approach and landing must be made with any ice (or suspected ice during night operations) on the wing leading edge, refer to Wing Heat Failure—Landing procedure, this section.

WINDSHIELD HEAT FAILURE

With the WSHLD HEAT system activated, a failure is indicated by the formation of ice on the heated portion of the windshield.

1.	WSHLD HT Circuit Breaker (ANTI-ICE Group) Check
	Reset if necessary
2.	WSHLD HEAT Switch WSHLD HEAT (FULL AIRFLOW)
3.	Engine RPM INCREASE AS REQUIRED
	Increase to improve airflow.

If system fails to anti-ice the windshield:

4.	ALCOHOL Switch		WS/RAD
		IF R	EQUIRED

This will anti-ice the radome and windshield with alcohol flow for approximately 45 minutes.

5. ALCOHOL Switch..... OFF

Place switch to OFF when alcohol is depleted or when out of icing conditions.

WS DEFOG LIGHT ILLUMINATED

NOTE

Any illumination (including momentary flashes) of the L or R WS DEFOG light, other than upon initial activation, should be considered a malfunction. A momentary flash indicates cycling of the overtemperature protection circuit and is not normal.

Illumination of the amber L or R WS DEFOG light indicates an overtemperature condition, undertemperature condition, or loss of AC or DC power. Illumination of the WS DEFOG lights, upon initial activation when the windshield temperature is below 80°F (27°C), does not indicate a malfunction. Determination of an overheat or underheat condition can be made by feeling the indicated windshield near the crewmember's head. If an undertemperature condition occurs, deactivation of the system is not required. In the event an overheat condition persisting for more than 10 minutes, it is desirable to deactivate the windshield defog system.

To deactivate the affected windshield defog system:

1.	L or R WSHLD/DEFOG	
	Circuit Breaker	
	(ANTI-ICE Group)	PULL

2. Check that affected windshield does not continue to heat.

If descending with an inoperative defog system into conditions, requiring defogging:

1.	WSHLD HEAT Switch	ON
2.	Cockpit Shoulder and Ankle Outlets C	LOSE

- 3. AUX HT Switch..... CREW
- 4. At FL 350:
 - a. COOL Switch...... COOL

NOTE

On aircraft 31-191 and subsequent, to aid in windshield defog, turn CREW FAN control to highest setting and close pilot and copilot overhead gasper outlets to ensure all of the air delivered from the evaporator will be directed to evebrow outlets above windshield.

- b. AUTO–MAN Switch MAN
- c. COLD-HOT Knob..... AS REQUIRED
- 5. Leave CAB AIR and WSHLD HEAT on until shutdown.

ELECTRICAL

ELEC PWR LIGHT ILLUMINATED

Illumination of the amber ELEC PWR light indicates that one or more electrical system parameter is at or approaching its limit. Illumination of the ELEC PWR light will be accompanied by an amber or red light on the electrical power monitor and flashing of the affected display. This indicates one or more of the following:

- AC voltage is above or below limits.
- DC voltage is above or below limits.
- Generator load is high and may be in excess of generator limits.
- 1. Electric Power Monitor..... CHECK
- 2. If a VAC display is flashing:
 - a. Refer to AC Bus Failure procedure, Emergency Procedures chapter.
 - If the VDC display is flashing and voltage is low:
 - a. Reduce electrical load.
 - If the VDC display is flashing and voltage is high:
 - a. L START-GEN Switch..... OFF

Check DC voltage.

- If voltage is still high:
- b. L START– GEN Switch..... GEN R START–GEN Switch OFF

Check DC voltage.

• If voltage is still high:

c. Both START-GEN Switches..... OFF

Refer to Dual Generator Failure procedure, Emergency Procedures chapter.

• If an AMP display is flashing:

a. Electrical Load..... CHECK

Reduce, if required, to observe generator limits.

SINGLE GENERATOR FAILURE— L OR R GEN LIGHT ILLUMINATED

GEN	START-GEN Switch	1.
CHECK, IN	IGN–START and GEN Circuit Breakers	2.
	Electrical Load	3.

OBSERVE GENERATOR LIMITS

NOTE

On aircraft 31-191 and subsequent, during single generator operations in flight, the air-conditioning system is automatically deactivated. To ensure air-conditioning system is deactivated, COOL Switch—OFF.

4.	GEN RESET SWITCH	DEPRESS
		MOMENTARILY

If generator does not reset:

AP-10

- 6. START-GEN Switch OFF, THEN GEN

7.	GEN RESET Switch		DEPRESS
		MOM	ENTARILY

If generator does not reset:

8. START-GEN Switch OFF

ENGINES

ABNORMAL ENGINE OPERATION

Fan Speed (N_1) or Turbine Speed (N_2) Decreasing or Inappropriate for Thrust Lever Position

Affected engine:

1.	Thrust Lever IDLE
2.	FUEL CMPTR Switch MAN
3. •	If engine characteristics appear normal:
	a. Continue flight with fuel computer in MAN mode.
•	If engine characteristics remain abnormal:
	a. FUEL CMPTR Switch OFF
	b. If engine characteristics do not improve:
	FUEL CMPTR Switch MAN
	c. Continue flight with fuel computer switch in selected position.

4. Refer to FUEL CMPTR LIGHT ILLUMINATED procedure, this section.

AIRSTART

WARNING

Do not attempt an airstart following an engine failure which was accompanied by indications of internal engine damage or fire.

- **Do not** attempt an airstart without an indication of fan rotation.
- If turbine temperature (ITT) is approaching the limit and rising rapidly, immediately place thrust lever in CUTOFF position and abort start.
- At least one inverter must be operating to energize oil pressure indicator. If oil pressure is not indicated within 10 seconds, abort start.
- If the malfunction is isolated to the fuel computer, airstart engine with fuel computer in the manual mode and remain in the manual mode for remainder of the flight.

Affected engine:

- 1. Assure that aircraft is within appropriate airstart envelope as shown in Figure AP-1 if conditions permit.
- 2. FUEL CMPTR Switch...... ON OR MAN AS APPLICABLE

CAUTION

The OFF position of the FUEL CMPTR switch should only be used when MAN and ON operation is not available.

3.	Thrust Lever CUTOFF
	Wait 10 seconds to allow fuel to drain from engine.
4.	Fuel Supply CHECK
	a. Fuel available from wing tank
	b. ENG FIRE PULL T-handle CHECK IN
5.	Fuel Panel Switches AS FOLLOWS

FlightSafety

- FUEL COMPUTER ON AIRSTARTS MAY BE MADE AT ANY ALTITUDE UP TO 30,000 FEET.
- MAINTAINING AN AIRSPEED WITHIN THE WINDMILLING AIRSTART ENVELOPE
 WILL ENHANCE AIRSTART.
- STARTER-ASSIST AIRSTARTS $\it MUST BE$ USED WHEN TURBINE SPEED (N_2) IS BELOW 15%.
- FUEL COMPUTER MAN AIRSTARTS SHOULD ONLY BE ATTEMPTED WHEN FUEL COMPUTER ON OPERATION IS NOT AVAILABLE. FUEL COMPUTER OFF AIRSTARTS SHOULD ONLY BE ATTEMPTED WHEN FUEL COMPUTER ON OR MAN OPERATION IS NOT AVAILABLE. *DO NOT* ATTEMPT FUEL COMPUTER OFF OR MAN AIRSTART ABOVE 20,000 FEET.

Figure AP-1. Airstart Envelope

	a. • Fuel Computer ON:	
	JET PUMP Switch	CHECK/ON
	• Fuel Computer MAN or OFF:	
	JET PUMP Switch	OFF
	b. STANDBY PUMP Switch	ON
	c. CROSSFLOW Switch	CLOSE
	d. FUS TANK XFR-FILL Switch	OFF
	e. GRAV XFR Switch	CLOSE
6.	Electrical Load	REDUCE
7.	BLEED AIR Switch	OFF
8.	• Starter Assisted Airstart:	
	START-GEN Switch	START
	Starter Engaged light will illuminate.	
	• Windmilling Airstart:	
	IGNITION Switch	ON
9.	• Starter Assisted Airstart:	
	Thrust Lever (At Minimum 10% Turbine Speed [N ₂])	IDLE
	• Windmilling Airstart:	
	Thrust Lever (At Minimum 15% Turbine Speed [N ₂])	IDLE
10.	IGNITION Light and FUEL FLOW	CHECK
11.	Turbine Temperature (ITT):	
	East Commenter ON: Charle size within 5 seconds. If lis	1.4 .ff 1

• *Fuel Computer ON:* Check rise within 5 seconds. If light-off has not occurred within 5 seconds after the thrust lever is placed in IDLE position; energize SPR switch, then release at 300–400° turbine temperature (ITT). Check rise within 5 seconds.

• *Fuel Computer MAN or OFF:* Check rise within 10 seconds. If light-off has not occurred within 10 seconds after thrust lever is placed in IDLE, abort start.

CAUTION

If engine accelerates above 80% fan speed (N $_1)$ with thrust lever in IDLE, abort start.

12. At 45% Turbine Speed (N₂):

	a. START-GEN Switch	GEN
	Check starter engaged light is out.	
	b. IGNITION Switch	OFF
	Check IGNITION light goes out.	
13.	Engine Instruments	NORMAL
	<i>c</i>	INDICATIONS

CAUTION

If fuel computer is off, monitor engine instruments since fuel computer limiting functions are inoperative.

- 14. BLEED AIR Switch ON
- 15. JET PUMP and STANDBY PUMP Switches..... AS REQUIRED

If no indication of light off is obtained in 10 seconds:

16.	Thrust Lever CUTOFF
17.	START-GEN Switch OFF
18.	IGNITION Switch OFF
19.	STANDBY PUMP Switches OFF
20.	Repeat airstart procedure.

CAUTION

No more than three consecutive starter-assist airstarts should be attempted to prevent severe battery drain and generator burnout.

If engine will not restart:

21. Perform Engine Shutdown in Flight procedure, this section.

FUEL CMPTR LIGHT ILLUMINATED

Illumination of an amber FUEL CMPTR light indicates that the corresponding fuel computer has failed. Automatic fuel regulation functions of the affected engine are lost and engine operation reverts to fuel computer manual mode. Engine instruments must be monitored to ensure limits are maintained.

Engine thrust may tend to increase or decrease depending on ambient temperature and flight conditions.

WARNING

Engine acceleration with fuel computer inoperative is much slower than with fuel computer on.

Affected Engine:

1.	FUEL CMPTR Circuit Breaker
	(ENGINES-FUEL Group) CHECK AND
	NECESSARY
2.	FUEL CMPTR Switch SET TO OFF THEN ON
	If fuel computer does not come back on line:
	FUEL CMPTR Switch MAN
3.	CROSSFLOW Switch CLOSE

4. FUS TANK Switches as follows:

	a. XFR-FILL Switch	FF
	b. GRAV XFR Switch CLO	SE
5.	STANDBY PUMP Switch C)N
6.	JET PUMP Switch O	FF

NOTE

Use of the standby pump as the primary pump on the engine with the inoperative fuel computer will prevent fuel control pneumatic circuit icing by recirculating fuel within the fuel control.

7. To crossflow or transfer fuel, refer to Operation with One Fuel Computer Inoperative (Cruise) procedure, this section.

ENGINE CHIP LIGHT ILLUMINATED

Illumination of either the amber LH or RH ENG CHIP light indicates the presence of metallic particles in the engine oil.

Engine Instruments	MONITOR FOR
6	INDICATION OF
	MALFUNCTION
	Engine Instruments

2. Investigate cause at earliest possible maintenance.

ENGINE OVERSPEED

Affected engine:

1. Thrust Lever..... RETARD

CAUTION

Do not set affected engine FUEL CMPTR switch OFF. The fuel computer provides additional overspeed protection which may be beneficial.

2. If engine does not respond to thrust lever movement, shut down engine. Refer to Engine Shutdown in Flight procedure, this section.

ENGINE SHUTDOWN IN FLIGHT

Affected engine:

- 1. ENG SYNC Switch..... OFF
- 2. Thrust Lever CUTOFF

CAUTION

The engine fuel and hydraulic pumps will continue to operate with a windmilling engine. Prolonged operation without fluid available to the pumps may cause damage. Therefore, the ENG FIRE PULL T-Handle should not be pulled unless a fuel or hydraulic leak is suspected.

3.	Rudder Trim AS REQUIRED
4.	Yaw Damper AS DESIRED
5.	IGNITION Switch OFF
6.	START-GEN Switch OFF
7.	Electrical Load REDUCE, AS REQUIRED TO PREVENT OVERLOADING THE OPERATING GENERATOR
8.	BLEED AIR Switch OFF
9.	CROSSFLOW Switch OPEN

Monitor fuel balance. Crossflow is required.

NOTE

During single-engine operation, maintain slip indicator ball centered.

10. Refer to Airstart or Single-Engine Landing procedure, this section.

STARTER ENGAGED LIGHT REMAINS ILLUMINATED AFTER START

Ground Start

1. Affected START-GEN Switch..... GEN

If starter engaged light remains illuminated, the start contactor is still engaged.

- 2. Shut down affected engine.
- 3. Turn off all electrical power.
- 4. Do not dispatch until trouble has been corrected.

Starter-Assist Airstart

- 1. Complete AIRSTART procedure.
- 2. Affected START-GEN Switch..... GEN

If starter engaged light remains illuminated, the start contactor is still engaged.

3. Continue flight.

NOTE

A speed sensor, in the starter–generator, automatically switches the starter–generator to the generator mode at 45 to 50% turbine speed (N₂). The generator will operate normally for the remainder of the flight (may be necessary to reset the generator). At shutdown, set BATTERY switches to OFF to disengage the starter.

4. Correct trouble before next flight.

ENVIRONMENTAL

FAILURE TO DEPRESSURIZE ON THE GROUND

1.	CAB AIR Switch	OFF
2.	Both BLEED AIR Switches	OFF

INADVERTENT ACTIVATION OF EMERGENCY AIRFLOW

- 1. Retard power to 90% rpm or below if practical.
- 2. Reset L EMER PRESS circuit breaker (L ENVIRONMENT group) or R EMER PRESS circuit breaker (R ENVIRONMENT group) if tripped.

NOTE

Emergency airflow is activated with the loss of electrical power.

If emergency airflow continues:

3.	One BLEED AIR Switch	OFF
	If emergency flow stops:	
	Continue with BLEED AIR Switch	OFF
If eme	rgency airflow continues:	
4.	BLEED AIR Switch	. ON
	Other BLEED AIR Switch	OFF

OVERPRESSURIZATION (DIFFERENTIAL PRESSURE EXCEEDS RED ARC)

1.	AUTO–MAN Switch	MAN

2. UP-DN Manual Control (red)..... UP

Position UP or as required to maintain satisfactory pressurization.

If unable to regulate the overpressurization in manual mode:

- 3. One BLEED AIR Switch OFF
- 4. Adjust power on opposite engine to control cabin pressurization.

CAB ALT LIGHT ILLUMINATED OR CABIN ALTITUDE EXCEEDS 8,500 FEET

1.	Crew Oxygen Masks I	DON

Select 100% oxygen.

NOTE

Whenever cabin altitude exceeds $8,750 (\pm 250)$ feet, the amber CAB ALT light illuminates and control pressure to the outflow valve is trapped. This deactivates the Automatic Mode and stops cabin altitude from rising higher if failure is in automatic control system.

2. If aircraft is climbing, stop climbing and level off at (or descend to) the nearest appropriate altitude.

3.	Pilot and Copilot MIC SELECT Switches OXY
4.	CAB AIR Switch ON
5.	L and R BLEED AIR Switches ON
6.	Cabin Altitude CHECK
7.	• If cabin altitude continues to climb:
	a. AUTO-MAN Switch MAN

b. UP-DN Manual Control (red) UP OR DN

Position as required to maintain satisfactory pressurization.

If cabin altitude continues to climb:

c. L and R BLEED AIR Switches..... EMER

NOTE

- Windshield and wing bleed air anti-ice are not available with both left and right bleed-air systems in the emergency pressurization mode. Nacelle Heat and Windshield/Radome alcohol anti-ice will be available.
- The emergency pressurization valves will automatically reposition to the emergency mode and route full bleed air into the cabin at 9,500 (+ 250) feet cabin altitude with the BLEED AIR switches in the ON position and the EMER PRESS switches in the NORMAL position.

• If cabin altitude stabilizes at a safe altitude:

- a. Continue flight. Continued use of the oxygen system is at the crew's discretion.
- b. If cabin temperature becomes hot from the use of EMER BLEED AIR:
 - (1) Turn one BLEED AIR Switch OFF

Ensure cabin pressure is maintained. It is recommended that the left BLEED AIR Switch be set to OFF first because the RH air distribution system delivers air more evenly to the crew compartment and cabin, and is required for internal defog of the windshield.

(2) If temperature is still too high, reduce power on engine supplying bleed air.

TO RETURN TO NORMAL PRESSURIZATION AIRFLOW

NOTE

If cabin altitude exceeds $8,750 (\pm 250)$ feet, the automatic pressurization mode is deactivated and the amber CAB ALT light will illuminate. Automatic mode operation will not be available until the cabin altitude is decreased to extinguish the CAB ALT light.

If normal operation is assured and the CAB ALT light is out, the following procedure accomplishes resetting emergency pressurization valves and reactivation of automatic pressurization mode.

1.	CAB AIR Switch ON
2.	AUTO–MAN Switch MAN
3.	UP-DN Manual Control (red) UP OR DN
	Position as required to maintain cabin altitude below 7,200 feet.
4.	One BLEED AIR Switch OFF THEN ON
5.	Other BLEED AIR Switch OFF THEN ON
6.	UP-DN Manual Control (red) UP OR DN

Position as required to maintain cabin altitude appropriate for flight altitude.

Return to automatic mode if desired:

7.	CABIN CONTROLLER SET
	Set appropriate cabin altitude for flight altitude (at or below 7,200 feet).
8.	UP-DN Manual Control (red) UP OR DN
	Position as required to obtain cabin altitude selected on CABIN CONTROLLER.
9.	AUTO-MAN Switch AUTO

OXYGEN DURATION

Figures AP-2 and AP-3 (Figures 4-2 and 4-3 in Section IV of the *AFM*) show oxygen supply duration of a fully charged system as a function of cabin altitude and number of occupants using the system. Passenger durations above 30,000 feet cabin altitude are provided for information only. Prior to extended overwater flights, plan oxygen requirements to provide sufficient oxygen for all occupants in the event of a pressurization failure. Additional oxygen may be required to assure that both oxygen duration and range (fuel) requirements are satisfied.

ь		2 CREW —	2 CREW 2 PASS	2 CREW 4 PASS	2 CREW 6 PASS	2 CREW 8 PASS	2 CREW 9 PASS	2 CREW 11 PASS
00 FEE	40	261 251	82 79	50 48	36 35	28 27	26 25	22 21
- 1,00	35	192 182	75 71	47 45	35 33	28 26	25 24	22 20
TUDE	30	145 135	68 64	45 42	34 32	27 26	25 24	22 20
N ALT	25	153 105	70 56	46 39	34 30	28 25	25 24	22 20
CABI	20	203 84	78 50	49 36	37 29	29 24	27 23	23 20
ILIZED	15	261 67	86 45	53 34	39 28	32 24	29 23	25 20
. STAB	10	253 54						
FINAL	8	153 50		PASSE	INGER UNTG		UKED	
	7	148 48						

- BOLD FACE NUMBERS (XXX) INDICATE 100% OXYGEN.
- LIGHT FACE NUMBERS (XXX) INDICATE DILUTER DEMAND.
- CREW AND PASSENGER OXYGEN MASKS ARE NOT APPROVED FOR USE ABOVE 40,000 FEET CABIN ALTITUDE. PASSENGER DURATIONS ABOVE 30,000 FEET CABIN ALTITUDE ARE PROVIDED FOR INFORMATION ONLY. PASSENGER MASKS WILL NOT PROVIDE SUFFICIENT OXYGEN FOR PROLONGED OPERATION ABOVE 34,000 FEET CABIN ALTITUDE. PROLONGED OPERATION ABOVE 25,000 FEET CABIN ALTITUDE WITH PASSENGERS ON BOARD IS NOT RECOMMENDED.
- PRIOR TO OVERWATER FLIGHTS, PLAN OXYGEN REQUIREMENTS TO PROVIDE SUFFICIENT OXYGEN FOR ALL OCCUPANTS IN THE EVENT OF A PRESSURIZATION FAILURE. ADDITIONAL OXYGEN MAY BE REQUIRED TO ASSURE THAT BOTH OXYGEN DURATION AND RANGE (FUEL) REQUIREMENTS ARE SATISFIED.
- FOR CABIN ALTITUDES OF 10,000 FEET AND ABOVE, THE OXYGEN DURATION TIMES INCLUDE
 CABIN ALTITUDE ASCENT TIME FROM 8,000 FEET TO FINAL STABILIZED CABIN ALTITUDE.
- TO CALCULATE OXYGEN DURATION FOR A LESS THAN FULLY CHARGED SYSTEM THE FOLLOWING FORMULA MAY BE USED:

DURATION = DURATION FROM CHART X (SYSTEM PRESSURE ÷ 1,850)

Figure AP-2. Oxygen Duration in Minutes for a Fully Charged System—Aircraft with Scott ATO MC 10-15-01

ь.		2 CREW —	2 CREW 2 PASS	2 CREW 4 PASS	2 CREW 6 PASS	2 CREW 8 PASS	2 CREW 9 PASS	2 CREW 11 PASS
DO FEE	40	267 251	84 79	51 47	36 34	29 27	26 24	22 21
1,0	35	195 182	76 71	48 45	35 33	28 26	26 24	22 21
ITUDE	30	219 135	79 64	49 42	36 32	29 26	26 23	22 20
IN ALT	25	252 105	83 56	50 39	37 30	29 25	26 23	22 20
D CAB	20	228 84	81 50	51 37	37 29	30 25	27 23	24 20
BILIZE	15	192 67	77 45	50 34	37 28	31 24	28 23	24 20
L STAI	10	163 54		DACCO				
FINA	8	153 50		PASSE			UIKED	
	7	148 48						

- BOLD FACE NUMBERS (XXX) INDICATE 100% OXYGEN.
- LIGHT FACE NUMBERS (XXX) INDICATE DILUTER DEMAND.
- CREW AND PASSENGER OXYGEN MASKS ARE NOT APPROVED FOR USE ABOVE 40,000 FEET CABIN ALTITUDE. PASSENGER DURATIONS ABOVE 30,000 FEET CABIN ALTITUDE ARE PROVIDED FOR INFORMATION ONLY. PASSENGER MASKS WILL NOT PROVIDE SUFFICIENT OXYGEN FOR PROLONGED OPERATION ABOVE 34,000 FEET CABIN ALTITUDE. PROLONGED OPERATION ABOVE 25,000 FEET CABIN ALTITUDE WITH PASSENGERS ON BOARD IS NOT RECOMMENDED.
- PRIOR TO OVERWATER FLIGHTS, PLAN OXYGEN REQUIREMENTS TO PROVIDE SUFFICIENT OXYGEN FOR ALL OCCUPANTS IN THE EVENT OF A PRESSURIZATION FAILURE. ADDITIONAL OXYGEN MAY BE REQUIRED TO ASSURE THAT BOTH OXYGEN DURATION AND RANGE (FUEL) REQUIREMENTS ARE SATISFIED.
- FOR CABIN ALTITUDES OF 10,000 FEET AND ABOVE, THE OXYGEN DURATION TIMES INCLUDE CABIN ALTITUDE ASCENT TIME FROM 8,000 FEET TO FINAL STABILIZED CABIN ALTITUDE.
- TO CALCULATE OXYGEN DURATION FOR A LESS THAN FULLY CHARGED SYSTEM THE FOLLOWING FORMULA MAY BE USED:

DURATION = DURATION FROM CHART X (SYSTEM PRESSURE + 1,850)

Figure AP-3. Oxygen Duration in Minutes for a Fully Charged System—Aircraft with 6600214 Series Crew Masks

FLIGHT CONTROLS

MACH TRIM LIGHT ILLUMINATED IN FLIGHT

A Mach trim malfunction will be indicated by illumination of the amber MACH TRIM light and, if above $0.78 M_I$ with autopilot not engaged, the overspeed warning horn will sound.

1.	Airspeed BELOW 0.78 M _I
2.	Check that primary pitch trim is available:
	a. PITCH TRIM Switch PRI
	b. PRI PITCH TRIM Circuit Breaker (L TRIM-FLT CONT Group) CLOSED
3.	MACH TRIM Circuit Breaker (L AFCS Group) CHECK
	• If the MACH TRIM Circuit Breaker is open:
	a. MACH TRIM Circuit Breaker RESET
	b. SYSTEM TEST Selector Switch ROTATE TO MACH TRIM
	c. TEST Button DEPRESS, THEN RELEASE

Depressing and releasing the TEST button resynchronizes the system.

d. If the MACH TRIM circuit breaker opens again, leave it open.

• If the MACH TRIM Circuit Breaker is closed:

The MACH TRIM monitor has deactivated the system.

a. If desired, reset the MACH TRIM Monitor as follows:

(1)	SYSTEM TEST	
	Selector Switch	ROTATE TO
		MACH TRIM

(2) TEST Button..... DEPRESS, THEN RELEASE

Depressing and releasing the TEST button resynchronizes the system.

b. If MACH TRIM light continues to illuminate:

MACH TRIM Circuit Breaker PULL

NOTE

With the Mach trim system inoperative, flight above $0.78 M_I$ is permitted when the autopilot is engaged.

PITCH TRIM LIGHT ILLUMINATED IN FLIGHT

Illumination of the amber PITCH TRIM light in flight indicates the trim speed monitor has detected a trim speed fault allowing high trim rates with the flaps up or that the trim monitor has detected a fault that would allow a trim runaway if an additional fault were to occur.

NOTE

The PITCH TRIM light will illuminate whenever either control wheel master switch (MSW) is depressed.

1.	PITCH TRIM Switch (Pedestal)		SEC
2.	NOSE DN–OFF–NOSE UP Switch (Pedestal)	OPER	ATE

Operate as required to maintain trim.

STALL WARNING SYSTEM FAILURE

If both left and right stall warning systems fail, the angle-of-attack indicators will also be inoperative and stalls may be avoided by reference to the airspeed indicator only. In this event:

- 1. Maintain airspeed at least 30 knots above stall speeds shown in Section V of the *AFM*. Normal landing approach speed may be maintained on final approach in the landing configuration.
- 2. Limit bank angles to 30° maximum.

FUEL SYSTEM

CROSSFLOW VALVE FAILS TO OPEN

- 1. Maintain wing fuel balance by adjusting power setting.
- 2. Use gravity transfer procedure in "Normal Procedures" chapter to transfer fuselage tank fuel.
 - a. Monitor individual wing fuel indications to ensure fuel balance.
 - b. If right wing becomes heavy during gravity transfer:

(1) FUS TANK XFR-FILL Switch	XFR
(2) When wing tanks are balanced:	
FUS TANK XFR–FILL Switch	OFF
• If left wing becomes heavy during gr	avity transfer:
(1) GRAV XFR Switch	CLOSE
(2) L JET PUMP–XFRVAL Circuit Breaker(L ENGINES FUEL Group)	PULL
(3) GRAV XFR Switch	OPEN
(4) When wing tanks are balanced:	
L JET PUMP–XFR VAL Circuit Breaker	RESET

FUEL FILTER LIGHT ILLUMINATED

Aircraft Not Equipped with Fuel Heaters

On aircraft with replaceable paper fuel filter elements: This is an indication that a filter element is clogging. Fuel filter elements should be replaced prior to the next flight.

On aircraft with cleanable metal fuel filter elements: This is an indication that a primary filter element is clogged and is being bypassed; however, the secondary element is still filtering fuel. The fuel filter elements should be cleaned prior to the next flight.

1.	STANDBY PUMP Switches	ON, WHEN
		POSSIBLE

Aircraft Equipped with Fuel Heaters

Ground operations: Illumination of the FUEL FILTER light during ground operations indicates that either an engine (primary) fuel filter or aircraft (secondary) fuel filter is clogging. The affected filter elements should be replaced prior to flight.

Flight operations: Illumination of the FUEL FILTER light during flight indicates that an engine (primary) filter is clogging or may be icing due to a fuel heater failure. Prior to the next flight, the affected filter elements should be inspected and replaced if necessary. If filter elements are clean, check fuel heater per the *Engine Maintenance Manual*.

1.	STANDBY PUMP Switches	ON, WHEN
		POSSIBLE

FUEL IMBALANCE DURING FUEL TRANSFER

1.	FUS TANK XFR-FILL Switch OFF
2.	GRAV XFR Switch CLOSE
3.	STANDBY PUMP Switch (Heavy Wing) ON
4.	STANDBY PUMP Switch (Light Wing) OFF
5.	CROSSFLOW Switch OPEN
6.	Monitor fuel balance.
7. •	If fuel load balances:
	a. CROSSFLOW Switch CLOSE
	b. Both STANDBY PUMP Switches OFF
	c. Monitor fuel balance when transferring fuselage fuel.
•	• If fuel load does not balance:
	a. STBY–SCAV PUMP CB (Light Wing) PULL
	b. STANDBY PUMP Switch (Heavy Wing) CHECK, ON

- c. CROSSFLOW Switch CHECK, OPEN
- d. Monitor fuel balance.
- e. If fuel load balances:
 - (1) CROSSFLOW Switch CLOSE
 - (2) Both STANDBY PUMP Switches OFF

NOTE

The problem is a system failure allowing the standby pump to run whenever the circuit breaker is in. In this event, the following conditions will exist:

- Fuselage fuel transfer may be used while the affected STBY-SCAV PUMP circuit breaker is pulled.
- STBY-SCAV PUMP circuit breaker must be reset for conditions requiring the use of the standby pump (i.e., airstarts and loss of fuel pressure).
- STBY-SCAV PUMP circuit breaker must be reset to transfer fuel from the affected wing (crossflow).
- Scavenge pump, on affected side, will be disabled while STBY-SCAV PUMP circuit breaker is pulled. If LOW FUEL light illuminates, discontinue fuel transfer, close crossflow valve, and reset STBY-SCAV PUMP circuit breaker.
- If fuel load still **does not** balance:
- (1) CROSSFLOW Switch CLOSE
- (2) Both STANDBY PUMP Switches OFF
- (3) STBY–SCAV PUMP CB (Affected Side)..... RESET

NOTE

- Fuel cannot be transferred to the affected wing and fuselage fuel transfer will aggravate the fuel imbalance. Plan flight accordingly.
- Unequal power settings may be used to balance fuel load.

FUEL TRANSFER VALVE FAILS TO CLOSE

Failure of a fuselage fuel transfer valve does not affect operation of the crossflow valve. If a fuel transfer valve fails to close at the completion of fuel transfer, the crossflow valve will close normally and operation of the corresponding standby pump will transfer fuel back into the fuselage tank.

- 1. Fuel crossflow operations should be conducted with caution as standby pump operation will transfer fuel back into the fuselage tank.
- 2. Periodically transfer fuel back into wings.

NOTE

Since continuous operation of a standby pump may not be possible, a descent to 25,000 feet or below will be required if a jet pump should fail.

FUEL VALVE LIGHTS ILLUMINATED

Steady illumination of any of the amber fuel valve lights on the fuel control panel indicates the corresponding valve is not in the position selected or a loss of power. Momentary illumination while the corresponding valve is in transit after switching modes indicates proper operation.

LOW FUEL LIGHT ILLUMINATED

The amber LOW FUEL light on the glareshield annunciator panel will illuminate when the fuel level in either wing tank is approximately 350 pounds (158.7 kilograms) and the aircraft is in level flight.

1. Fuel Quantities CHECK

Correct fuel distribution, if required:

- a. Balance wing fuel. Refer to FUEL CROSSFLOW procedure, "Normal Procedures" chapter.
- b. Transfer fuselage fuel to the wings. Refer to Fuselage Tank to Wing Fuel Transfer procedure, "Normal Procedures" chapter.
- 2. Replan flight if necessary.

NORMAL FUEL TRANSFER SYSTEM FAILURE

1.	FUS TANK XFR-FILL Switch	. OFF
2.	GRAV XFR Switch	OPEN

NOTE

Depending upon flight attitude, 150–300 pounds (68–136 kilograms) of fuselage fuel will be unusable using this fuel transfer method.

2. GRAV XFR Switch..... CLOSE

Position to CLOSE when gravity transfer is complete, or prior to approach.

STANDBY PUMP FAILS TO SHUT OFF

AIRCRAFT SNS 31-037 AND SUBSEQUENT AND PRIOR AIRCRAFT INCORPORATING SB 31-28-7

Operation of the electric standby fuel pumps is indicated by illumination of the corresponding white standby pump light. The pumps are turned on manually with the corresponding STANDBY PUMPS switch and automatically during starter-assisted engine starts and during fuselage tank FILL.

If standby pump light does not extinguish when pump is selected off:

1.	Corresponding STANDBY	
	PUMP Switch	CYCLE

If standby pump light does not extinguish:

2. Corresponding STBY–SCAV PUMP CB (ENGINES FUEL Group)...... PULL

HYDRAULIC SYSTEM FAILURE/ALTERNATE GEAR EXTENSION

Either engine-driven hydraulic pump will supply sufficient pressure to operate all hydraulic systems.

Hydraulic system failure is indicated by a loss of hydraulic pressure. Landing gear, flap, spoiler, and wheel brake systems will be affected. If hydraulic pressure is not regained, spoilers will not be available and emergency brakes will be required after landing.

1. SPOILER Switch RET

On Approach:

2.	Airspeed V_{LO} OR LESS (V_{REF} + 30 RECOMMENDED)
3.	LANDING GEAR Switch DN
4.	GEAR Circuit Breaker (R HYDRAULICS group) PULL
5.	FLAP Switch
6.	Extend Landing Gear as follows:
	a. EMER GEAR Lever (Right Side of Pedestal)PUSH FULL DOWN TO LATCHED POSITION
	b. Three Green DOWN and Two Red (Main Gear) UNSAFE Lights CHECK

Check that the lights are illuminated.

CAUTION

Do not attempt to retract landing gear once emergency gear extension has been selected. To do so may cause excessive air pressure to be introduced into the hydraulic return lines, thereby rupturing the reservoir.

NOTE

The two red UNSAFE lights will be illuminated after emergency gear extension because the inboard gear doors remain open.

c. After gear is down and locked:

EMER GEAR Lever RETURN TO FULL UP

Return to the FULL UP (latched) position. This is accomplished by lifting the ratchet release (small metal tab accessible through hole forward of emergency gear extension handle) and then pulling the lever to the FULL UP (latched) position.

The EMER GEAR lever must be returned to the UP position or air pressure for emergency braking will not be available in the event there is a leak in the air line.

- d. *If any gear is not down and locked*, refer to Gear Up Landing procedure, this section.
- e. Refer to Hydraulic System Failure-Landing procedure, this section.

LO HYD PRESS LIGHT ILLUMINATED

The LO HYD PRESS light will illuminate when system pressure drops below approximately 1,000 psi (6.9Mpa).

Either engine-driven hydraulic pump will supply sufficient pressure to operate all hydraulic systems. However, the LO HYD PRESS light may illuminate during single hydraulic pump operation.

If hydraulic pressure is not regained, landing gear, flaps, spoilers, brakes, and thrust reversers (if installed) may be affected. Landing distance with no flaps, no spoilers, and no antiskid will be greatly increased. Refer to HYDRAULIC SYSTEM FAILURE - LANDING procedure (this section) for landing distance increase.

In Flight:

- 1. HYD PRESS Gage..... CHECK
- 2. *If pressure is normal*, continue to monitor.

- If pressure is low:
 - a. Assume spoilers inoperative, limit altitude to 41,000 feet.
 - b. Refer to Hydraulic System Failure/Alternate Gear Extension procedure and Hydraulic System Failure—Landing procedure, this section.

INSTRUMENTS/AVIONICS

SINGLE AIR DATA COMPUTER (ADC)/AIRSPEED OR ALTITUDE/VERTICAL SPEED INDICATOR FAILURE

A single ADC failure is indicated by flags and loss of valid air data on pilot's or copilot's air data instruments. A flashing "Er" in a digital display indicates loss of data.

NOTE

Resetting the altitude preselect or baro setting may correct the fault.

Failure of an airspeed or altitude/vertical speed indicator is indicated by a fail flag on the instrument, "FAIL" in the digital display or a complete loss of data.

- 1. Cross-check airspeed and altitude indications with the standby instruments.

CROSS-SIDE ADC

NOTE

- There may be momentary data loss during ADC transfer.
- If ADC 1 fails and ADC 2 cannot be transferred to the pilot's side, Mach trim will be inoperative. Some failures of either ADC 1 or ADC 2 may cause the Mach trim to be inoperative. Do not exceed M_{MO} (0.78 M_I).

If time and conditions permit:

3.	Applicable ADC, A/S or	
	ALTM VSI Circuit Breaker	
	(INSTRUMENTS Group)	PULL AND/OR RESET
4.	ADC Switch on Failed Side	RESELECT
		ON-SIDE ADC

- 5. Cross-check airspeed and altitude indications with the standby instruments.
- 6. If air data computer is not recovered:
 - a. ADC Switch on Failed Side SELECT CROSS-SIDE ADC
 - b. The following systems and instruments may malfunction or be inoperative:
 - (1) On-side stall warning system altitude bias
 - (2) Mach trim

• If the indicator failure remains:

a. ADC Switch on Failed Side..... CHECK ON-SIDE ADC SELECTED

AIR DATA COMPUTER COMPARATOR WARNING

A flashing "C" in the airspeed or altitude/vertical speed indicator indicates a mismatch between the pilot's and copilot's airspeed or altitude data.

NOTE

Resetting the altitude preselect or baro setting may correct the fault.

1. Refer to the standby altimeter and airspeed indicator to determine the correct indications.

ATTITUDE HEADING SYSTEM (AHS) MALFUNCTION

A system malfunction is indicated by a red "ATT" on the EADI and/or "HDG" on the EHSI.

- 1. Maintain aircraft control with reference to the standby attitude gyro and cross-side instruments.

CROSS-SIDE AHS

NOTE

- The amber attitude ("ATT") and heading
 - ("HDG") comparator flags will be displayed.

4.

- The autopilot will disengage and will not reengage. Flight director and yaw damper will be operative after selection of a valid AHS on the failed side.
- Standby HSI heading data and weather radar antenna stabilization functions are only provided by AHS 2 and cannot be assumed by AHS 1.
- 3. Compare indications with the standby attitude gyro and magnetic compass.

If time and conditions permit, recover failed AHS:

NOTE

Recovery of a failed AHS may be possible but should only be attempted when flight situation permits operation without one attitude display and straight and level flight for approximately 90 seconds.

Establish aircraft in straight and level, unaccelerated flight.

5.	EMER BAT 2 Switch	OFF
6.	Failed AHS DC and AC Circuit Breakers (INSTRUMENTS Group)	PULL AND RESET BOTH
7.	EMER BAT 2 Switch	ON
8.	AHS Switch on Failed Side	RESELECT ON-SIDE AHS

Reselect on-side AHS on the failed side to monitor AHS initialization. Maintain aircraft attitude by monitoring the operating side EADI and the standby attitude gyro. Initialization should occur within approximately 90 seconds. Successful initialization is indicated by attitude display on the EADI with no flags and heading on the EHSI with no flags.

NOTE

• Attitude and heading may differ slightly (less than 5° pitch or roll) from the nonfailed side, but should gradually agree. These small heading splits may be quickly cleared by cycling the HEADING SLAVE-FREE switch to FREE and then back to SLAVE while the aircraft is not turning or accelerating.

- Verify proper attitude and heading information before utilizing displays.
- 9. If initialization does not occur within approximately 90 seconds as indicated by no attitude or heading information, red ATT or HDG flags, or excessive differences in attitude (greater than 5° pitch or roll):

AHS Switch on Failed Side		SELECT
	CROSS-S	IDE AHS

AHS LIGHT ILLUMINATED

Illumination of an amber AHS light indicates a fault in the attitude heading system.

• Prior to Takeoff:

Dispatch is not permitted with an amber AHS light illuminated.

- 1. Refer problem to maintenance personnel for correction prior to dispatch.
- In Flight:
- 1. Continue using the displays verifying the data with alternate instruments.

NOTE

If associated with a red "ATT" on the EADI and/or "HDG" on the EHSI, refer to Attitude Heading System (AHS) Malfunction procedure this section.

ATTITUDE OR HEADING COMPARATOR WARNING

A mismatch of pilot's and copilot's attitude or heading data is indicated by an amber "ATT" on the EADI and/or "HDG" on the EHSI.

1. Compare indications with the standby attitude gyro and/or magnetic compass to determine faulty system.

2. • If "ATT" flag is displayed:

CROSS-SIDE AHS

NOTE

- Attitude comparator flags will remain displayed.
- The autopilot will disengage and will not reengage. Flight director and yaw damper will be operative after selection of a valid AHS on the failed side.

• If "HDG" flag is displayed:

- a. Establish aircraft in straight and level, unaccelerated flight.
- b. If single system is in error:

Associated HEADING	
SLAVE-FREE Switch	FREE, THEN
	SLAVE

• If heading cannot be determined:

Both HEADING	
SLAVE-FREE Switches	FREE, THEN
	SLAVE

c. If heading split cannot be corrected:

AHS Switch (EFIS Control	
panel) on Failed Side	SELECT
1	CDOSS SIDE AUS

CROSS-SIDE AHS

NOTE

Heading comparator flags will remain displayed.

ELECTRONIC FLIGHT INSTRUMENT SYSTEM FAILURE EADI Display Failure

Tube failure is indicated by a malfunction of the EADI only (EHSI not affected) and no "SG" failure flags to indicate a symbol generator failure.

Perform one of the following:

 EADI Down Switch (Failed Side) DEPRESS

NOTE

- On the copilot's side, EADI down mode may only be used in conjunction with the composite mode.
- EADI will be displayed on the lower tube. *On the pilot's side*, EHSI will be displayed on the multifunction display (MFD).
- CMPST/DSPL
 Switch (Failed Side)
 DEPRESS

NOTE

The combined EADI and EHSI information will both be displayed on the lower tube.

2. Failed EADI Circuit Breaker (INSTRUMENTS Group) PULL

EHSI Display Failure

Tube failure is indicated by a malfunction of the EHSI only (EADI not affected) and no "SG" failure flags to indicate a symbol generator failure.

1. Perform one of the following:

MFD Controls	SELECT EHSI
	FOR DISPLAY
	ON THE MFD

or

CMPST/DSPL
 Switch (Failed Side)
 DEPRESS

NOTE

The combined EADI and EHSI information will both be displayed on the upper tube.

2. Failed EHSI Circuit Breaker (INSTRUMENTS Group)...... PULL

Display Unit "DU" Fan Failure

Display unit fan failure is indicated by a boxed amber "DU" in the lower left area of the affected display. The display will continue to operate for a minimum of 30 minutes under normal temperature conditions.

NOTE

To extend operating time, reduce the display data and the brightness on the affected display.

Symbol Generator "SG" Failure

A small "SG" enclosed in a red box or a large red "SG" enclosed in a black box on the EADI and/or EHSI indicates a symbol generator failure affecting the display unit annunciating the failure.

If either red "SG" flag is displayed:

1. SG Switch (Failed Side) SELECT SG 3

NOTE

The EADI and EHSI will be driven by symbol generator 3.

- 2. Compare indications with functioning side and standby instruments.
- Failed SG EADI and SG EHSI Circuit Breakers (INSTRUMENTS Group) PULL

4. If SG3 is selected on both the pilot's and copilot's side:

Copilot's Autopilot/Flight Director Modes..... DESELECT

Do not use copilot's autopilot.

A yellow "SG" flag indicates a failure of the symbol generator cooling fan. The symbol generator will continue to operate for a minimum of 30 minutes under normal temperature conditions.

If a yellow "SG" flag is displayed:

1. Continue using the displays verifying the data with alternate instruments.

NOTE

To extend operating time, reduce the display data and the brightness on the affected display.

PITOT-STATIC SYSTEM MALFUNCTION

Static pressure for the pilot's air data computer is supplied by a static port on each (L and R) pitot-static probe. Static pressure for the copilot's air data computer and standby instruments is supplied by another static port on each of the pitot-static probes. Either or both pitot-static probes can be selected to supply static pressure to the pilot's and copilot's air data computer and standby instruments through the STATIC SOURCE switch. Normally the switch is in the BOTH position.

If pitot-static source malfunction is known or suspected:

- 1. Maintain aircraft control with safe attitude and thrust setting.
- Compare pilot's, copilot's and standby instruments pitot-static data. The standby instruments and copilot's instruments are driven from the same pitot-static source. A pitot pressure malfunction will affect airspeed and Mach indications. A static pressure malfunction will affect airspeed, Mach, altitude, and vertical speed indications.
- 3. Pitot Heat:

AP-42

a.	PITOT HEAT Switches	CHECK, ON
b.	L and R PITOT HT Circuit Breakers	CHECK, IN

- 4. Determine malfunctioning system:
 - a. Cross-check angle-of-attack indicators.
 - b. Compare indications with estimated performance for existing conditions (attitude, thrust setting, weight, temperature, and altitude).
 - c. Compare data from other available sources.

NOTE

The overspeed warning horn will sound if either the pilot's or copilot's airspeed indicator needle is above the V_{MO}/M_{MO} "barber pole" pointer.

Speed data may be obtained from the following:

- FMS 1 and SAT/TAS systems (if installed) provide a source for true airspeed from the ADC selected on the pilot's pitot-static system.
- DME systems and ground based radar provide a source for groundspeed. By applying the winds to the groundspeed, the aircraft's airspeed may be calculated.

If static pressure malfunction is known or suspected:

5.	Autopilot	DISENGAGE
6.	STATIC SOURCE Switch	L OR R AS APPLICABLE
7.	Autopilot	AS DESIRED

NOTE

Selecting L or R static source does not affect airspeed calibrations or altitude position corrections as presented in Section V of the *AFM*.

LANDING GEAR

ALTERNATE GEAR EXTENSION/ELECTRICAL MALFUNCTION

1.	Airspeed V _{LO} OR LESS
2.	LANDING GEAR Switch DN
3.	GEAR Circuit Breaker (R HYDRAULICS Group) PULL
4.	Extend landing gear as follows:
	a. EMER GEAR Lever (Right Side of Pedestal) PUSH
	Push full down to latched position.
	b. Three Green DOWN and Two Red (Main Gear) UNSAFE Lights CHECK
	Check that the lights are illuminated.

CAUTION

Do not attempt to retract landing gear once emergency gear extension has been selected. To do so may cause excessive air pressure to be introduced into the hydraulic return lines, thereby rupturing the reservoir.

NOTE

The two red UNSAFE lights will be illuminated after emergency gear extension because the inboard gear doors remain open.

c. *If any gear is not down and locked*, refer to GEAR UP LANDING procedure, this section.

ANTI-SKID LIGHT ILLUMINATED— ANTI-SKID OFF OPERATION

Illumination of any red ANTI-SKID light indicates an anti-skid problem with the associated wheel. If ANTI-SKID switch is OFF, all four ANTI-SKID lights will illuminate. When anti-skid (for any wheel) is inoperative, care must

be used during brake application and stopping distances will be increased. Refer to Section V of the *AFM* for increased stopping distances for takeoff and landing.

1. ANTI-SKID Switch OFF, THEN ON

This should clear the system.

If any ANTI-SKID light(s) remain illuminated:

a. ANTI-SKID Switch OFF

Refer to Section V of the *AFM* for increased stopping distances for takeoff and landing.

b. Cautiously apply brakes as required.

CAUTION

With anti-skid inoperative, heavy brake pressures may skid the tires and cause tire blowout. During flight tests, it was determined that modulating toebrake pressures will produce improved feel and reduce the probability of tire skid.

c. Be prepared to use EMERGENCY BRAKING procedure, "Emergency Procedures" chapter, if necessary.

NOSEWHEEL STEERING MALFUNCTION

Aircraft SNs 31-035 through SNs 31-054 Not Incorporating SB 31-32-2

A nosewheel steering malfunction is indicated by an unwanted swerve in either direction. In the event of a nosewheel steering malfunction:

NOTE

- If STEER LOCK switch was used to engage nosewheel steering, depressing and then releasing the control wheel master switch (MSW) will disengage steering.
- If control wheel master switch (MSW) was used to engage nosewheel steering, releasing MSW will disengage steering.

At Normal Taxi Speeds

1.	Nosewheel Steering	DISENGAGE (USE MSW)
2.	Thrust Levers	IDLE
3.	Brake to a stop.	
4.	Taxi using differential braking and thrust.	

During Takeoff

Nosewheel Steering	DISENGAGE
C	IMMEDIATELY
	(USE MSW)
	Nosewheel Steering

2. Continue takeoff using rudder and/or brakes for directional control.

Aircraft SNs 31-055 and Subsequent and Prior Aircraft Incorporating SB 31-32-2

In the event the nosewheel steering system malfunctions, internal monitors should disconnect the system and a disconnect tone will sound. A nosewheel steering malfunction may be accompanied by an unwanted swerve in either direction.

NOTE

- If nosewheel steering fails to disconnect during a malfunction, depressing and then releasing the control wheel master switch (MSW) or depressing the NOSE STEER switch will disengage the system.
- If the control wheel master switch (MSW) was used to engage nosewheel steering, releasing MSW will disengage steering.

At Normal Taxi Speeds:

1.	Nosewheel Steering	DISENGAGE
		(USE MSW)

- 2. Thrust Levers IDLE
- 3. Brake to a stop.
- 4. Taxi using differential braking and thrust.

During Takeoff Or Landing:

- 1. Nosewheel Steering DISENGAGE IMMEDIATELY (USE MSW)
- 2. Continue takeoff or landing using rudder and/or brakes for directional control.

ABNORMAL LANDINGS

GEAR-UP LANDING

If a gear-up landing must be made, select a long, wide runway with as little crosswind as possible. If time and conditions permit, plan the descent to ensure minimum fuel remaining on the aircraft. Ensure sufficient fuel for controlled, power-on approach.

CAUTION

If emergency gear extension has been selected, *do not* attempt to retract the landing gear. To do so may cause excessive air pressure to be introduced into the hydraulic system return lines, thereby rupturing the reservoir.

- 1. Notify controlling agency of the emergency.
- 2. Brief passengers as required:

	a. Location and operation of emergency exits
	b. All Loose Items SECURE
	c. Shoulder Harness and Seat Belts SECURE
	d. Emergency landing brace position
3.	NO SMOKING FASTEN SEAT BELT Switch ON
4.	CAB AIR Switch OFF
	The aircraft should be depressurized prior to landing.
5.	Flaps DN

CAUTION

The landing gear warning will sound and will not be mutable with any landing gear not down and the flaps fulldown.

- 6. EMER BAT Switches..... OFF
- 7. *If no gear have extended*, touch down slightly nose high.
 - If the nose gear fails to extend:
 - a. Relocate passengers aft to obtain aft CG, if possible.
 - b. HYD PUMP Switch ON
 - c. Hold the nose off the runway as long as elevator control is available. If hydraulic pressure is available, normal braking may be available. Use rudder and/or brakes for directional control. Be prepared, to use EMER BRAKE. Refer to Emergency Braking, "Emergency Procedures" chapter.
 - If a main gear fails to extend, land on the same side of the runway as the extended gear.

a.	HYD PUMP Switch	ON
b.	ANTI-SKID Switch	OFF

- c. Hold the applicable wing up as long as possible. Maintain directional control with rudder and nosewheel steering. If hydraulic pressure is available, braking (anti-skid off) may be available. Refer to Anti-Skid Off Operation, this section. Be prepared to use EMER BRAKE, Refer to Emergency Braking, "Emergency Procedures" chapter.
- 8. Perform normal power-on approach at V_{REF} and touch down at the lowest possible airspeed with minimum sink rate. Do not decelerate below shaker speed.

9.	Thrust Levers	CUTOFF AT TOUCHDOWN
10.	ENG FIRE PULL T-Handles	PULL
11.	After aircraft stops, battery switches	OFF

12. Evacuate the aircraft:

a.	Cabin Entry Door OP	EN AND EXIT AIRCRAFT
	The upper door is openable with the landir	ng gear retracted.
b.	Emergency Exit Window	. OPEN AND EXIT USING THE WING STEP AREA

HYDRAULIC SYSTEM FAILURE—LANDING

1.	HYD PUMP Switch ON			
If auxi	liary hydraulic pressure is available:			
2.	FLAP Switch DN			
3.	HYD PUMP Switch OFF, WHEN MAXIMUM FLAP ANGLE IS OBTAINED			
4.	Final Approach Speed—As appropriate for flap deflection:			
	Flaps UP, V _{REF} + 20			
	Flaps			
	Flaps			
	Flaps DN, V _{REF}			
5.	Landing Distance MULTIPLY BY 3.15			
6.	Crew Approach Briefing COMPLETE			
7.	EMER BRAKE Handle PULL OUT OF RECESS			
Just pr	ior to landing:			
8.	HYD PUMP Switch ON			
After to	After touchdown:			
9.	• If hydraulic pressure is being maintained:			
	a. Spoiler SwitchEXT AFTER LANDING			
	b. Brakes AS REQUIRED AFTER LANDING			

- If hydraulic pressure is not being maintained:
- a. EMER BRAKE Handle—Push down slowly to apply brake pressure (handle must be pushed downward approximately two inches [five centimeters] before braking action begins). Apply brakes smoothly with small movements to produce improved feel and reduce the probability of tire skid. Do *not* pump the brake handle.
- b. Rudder and/or nosewheel steering AS REQUIRED

NOTE

Use of drag chute or thrust reversers (if installed) is recommended.

JAMMED STABILIZER LANDING

If elevator pull force is encountered—*Stabilizer jammed in nosedown trim position (aircraft in climb or cruise configuration):*

WARNING

Control pressure will be heavy. Copilot assistance with this procedure is recommended. Anticipate highest pull forces at landing flare.

- 1. Move CG aft if possible. Transfer fuel to the fuselage tank if possible. Do *not* reengage autopilot.
- 2. Land as soon as practical to minimize forward CG movement.

3.	Final Approach Configuration GEAR— FLAPS-	-DN —8°
4.	Final Approach Speed V _{REF}	+ 40
5.	Landing Distance MULTIPLY BY	1.50

If elevator push force is encountered—*Stabilizer jammed in noseup trim position (aircraft in landing configuration):*

1. Move CG forward if possible. Transfer fuel to the wing tanks if possible. Do *not* reengage autopilot.

2.	Final Approach Configuration	GEAR-	-DN
		FLAPS-	-DN

3. Final Approach Speed...... V_{REF}

ONE OR BOTH SPOILERS-UP LANDING

1.	Final Approach Configuration	GEAR—DN FLAPS—UP
2.	Final Approach Speed	V _{REF} + 30
3.	Yaw Damper	OFF PRIOR TO LANDING
4.	Landing Distance MUI	TIPLY BY 1.60

NOTE

- Aerodynamic braking at higher speeds will cause the aircraft to become airborne even with the spoilers extended.
- Use of drag chute or thrust reversers (if installed) is recommended.

PARTIAL FLAPS LANDING

1.	Final Approach Configuration GEAR—DN
2.	Final Approach Speed AS APPROPRIATE FOR FLAP DEFLECTION
	Use the final approach speed for the lesser flap deflection for flap settings between those listed.
3.	Yaw Damper OFF PRIOR TO LANDING
4.	Landing Distance AS APPROPRIATE FOR FLAP DEFLECTION

NOTE

Use of drag chute or thrust reversers (if installed) is recommended.

NOTE

See Table AP-1 for Partial Flaps Landing Data, next page.

Table AP-1.	PARTIAL	FLAPS	LANDING	DATA

FLAP SETTING	FINAL APPROACH SPEED	MULTIPLY DISTANCE BY
UP	V _{REF} + 20	1.60
8°	V _{REF} + 15	1.20
20°	V _{REF} + 10	1.10

SINGLE-ENGINE LANDING

1.	Final Landing Configuration	GEAR—DN, FLAPS—20°
2.	Approach Speeds	V _{REF} + 10
3.	Landing Distance MULT	IPLY BY 1.10

NOTE

Idle reverse thrust (if installed) is available on operative engine.

STABILIZER HEAT FAILURE—LANDING

1.	Final Approach Configuration	GEAR—DN, FLAPS—20°
2.	Final Approach Speed	V _{REF} + 10
3.	Landing Distance	TIPLY BY 1.10

WING HEAT FAILURE—LANDING

1.	Final Approach Configuration	GEAR—DN, FLAPS—DN
2.	Final Approach Speed	V _{REF} + 15
3.	Touchdown SpeedABC	15 KNOTS IVE NORMAL
4.	Landing Distance MULT	TPLY BY 1.30

WING AND STABILIZER HEAT FAILURE—LANDING

1.	Final Approach Configuration	GEAR—DN, FLAPS—20°
2.	Final Approach Speed	V _{REF} + 25
3.	Touchdown Speed	ABOVE NORMAL
4.	Landing Distance	MULTIPLY BY 1.35

TURBULENT AIR PENETRATION

Flight through severe turbulence should be avoided, if possible. When flying at 30,000 feet or higher, it is not advisable to avoid a turbulent area by climbing over it unless it is obvious that it can be overflown well in the clear. For turbulence of the same intensity, greater buffet margins are achieved by flying the recommended speeds at reduced altitude.

1. Airspeed 250 KIAS OR 0.73 M_I, WHICHEVER IS LESS

Severe turbulence will cause large and often rapid variations in indicated

airspeed. Do not chase the airspeed.

2. Thrust: IGNITION Switches ON

Make an initial thrust setting for the target airspeed. Change thrust only in the case of extreme airspeed variation.

3. Attitude...... MAINTAIN WINGS LEVEL AND DESIRED PITCH ATTITUDE

Use attitude indicator as the primary instrument. In extreme drafts, large altitude changes may occur. *Do not use sudden large control movements.*

4. StabilizerMAINTAIN CONTROL OF THE AIRPLANE WITH THE ELEVATORS

After establishing the trim setting for penetration speed, *do not change the stabilizer trim*.

5. Altitude...... ALLOW THE ALTITUDE TO VARY

Large altitude variations are possible in severe turbulence. Sacrifice altitude in order to maintain the desired attitude and airspeed. *Do not chase altitude*.

- 6. Autopilot and Yaw Damper:
 - Yaw Damper..... ENGAGED
 - If severe turbulence is penetrated with autopilot ON, use attitude hold mode with SOFT RIDE mode engaged.

OPERATION WITH ONE FUEL COMPUTER INOPERATIVE

The following text (operation with one fuel computer inoperative) is applicable to ferry flight only per applicable regulations.

In the event the electronic fuel computer becomes inoperative, the engine will be controlled manually. The protection offered by the electronic fuel computer (except overspeed protection in manual mode) will not be available when in the fuel computer manual mode of operation or if the fuel computer is inoperative. Therefore, to complete a flight mission, the following procedures should be adhered to and extra caution must be exercised to ensure that engine limits are not exceeded.

Engine acceleration with the fuel computer in manual mode or inoperative is considerably slower than with the fuel computer on.

CAUTION

As overspeed protection is retained in the MAN mode, fuel computer OFF operation should only be used if MAN or ON operation is not available.

STARTING ENGINES

Follow the procedure for a normal engine start as outlined under Starting Engines in "Normal Procedures" chapter, except for the following:

1. Affected Engine FUEL CMPTR Switch MAN

Note FUEL CMPTR light is illuminated.

2. SPR is a fuel computer function and will be inoperative during fuel computer manual mode.

BEFORE TAXI

Refer to Before Taxi checklist in "Normal Procedures" chapter and accomplish the fuel control governor check on appropriate engine.

ΤΑΧΙ

Taxi operations are conducted as described in "Normal Procedures" chapter, except as follows:

1.	STANDBY PUMP Switch (Affected Engine)	ON
2.	JET PUMP Switch (Affected Engine)	OFF

NOTE

By using the standby pump as the primary pump on the engine with the inoperative fuel computer, fuel control pneumatic circuit icing is prevented by recirculating fuel within the fuel control.

TAKEOFF

A takeoff using one engine with an inoperative fuel computer is accomplished in the same manner as a normal two-engine takeoff; however, takeoff should be made from a standing start.

Do not dispatch if the required takeoff fan speed (N_1) setting cannot be obtained.

NOTE

- Thrust lever mismatch may occur with both engines operating at takeoff power.
- Monitor engine instruments to ensure engine limits are not exceeded.

CRUISE

Cruise operations with one fuel computer inoperative are conducted as described in "Normal Procedures" chapter, except for fuel transfer. Normal fuel transfers may be accomplished at cruise power settings with one fuel computer inoperative as follows:

NOTE

Monitor turbine speed (N_2) and fan speed (N_1) during fuel transfer. Before switching JET PUMP switch to ON, ensure steady engine operation at 80% N_1 or above.

1.	JET PUMP Switch (Affected Engine) ON	1
2.	STANDBY PUMP Switch (Affected Engine) OFF	7
3.	Crossflow or Transfer Fuel AS REQUIRED)
4.	STANDBY PUMP Switch (Affected Engine) ON	1
5.	JET PUMP Switch (Affected Engine) OFF	7

APPROACH

Refer to "Normal Procedures" chapter for Approach checklist. If required, accomplish fuel balance in accordance with fuel transfer procedures under Cruise above.

GO-AROUND

A go-around with one fuel computer inoperative is flown as described in "Normal Procedures" chapter.

WARNING

Engine acceleration is considerably slower with the fuel computer inoperative.

NOTE

Monitor engine instruments while advancing thrust levers.

OPERATION WITH NOSEWHEEL STEERING INOPERATIVE

Aircraft SNs 31-035 through 31-054 not incorporating SB 31-32-2 may be operated with the nosewheel steering inoperative provided DC power is available to supply nosewheel shimmy damping.

Aircraft SNs 31-055 and subsequent and prior aircraft incorporating SB 31-32-2 may be operated with the nosewheel steering inoperative.

ΤΑΧΙ

Taxi operations are relatively easy using differential braking and power. Avoid sharp turns, if possible.

NOTE

When taxiing without the nosewheel steering system engaged, it is possible to cause the nose wheel to turn 180° from the desired straight ahead position as the nose wheel free castors when the electric steering system is not engaged. If takeoff is performed with the nose wheel in this position, the uplock will not engage.

RUNWAY LINEUP

Visually ensure nose gear uplock is forward.

TAKEOFF

For takeoff, taxi on runway centerline for a short distance to ensure the nosewheel is straight, before applying takeoff power.

OPERATION WITH NOSEWHEEL STEERING NOT ARMED

AIRCRAFT SNS 31-055 AND SUBSEQUENT AND PRIOR AIRCRAFT INCORPORATING SB 31-32-2

In order for the nosewheel steering to "ARM," DC and AC power must be available, the nose gear must be in the down-and-locked position, and the system must be fault-free as determined by the system monitor. In some instances, even though the system will not "ARM," it may be possible to operate the nosewheel steering with full authority by depressing and holding the control wheel master switch (MSW). Limited authority nosewheel steering will be available if power is removed from the rudder boost system or a fault is detected in the rudder force sensors.

Use the following procedure to operate nosewheel steering:

1.	Pilot or Copilot Control	
	Wheel Master Switch (MSW)	DEPRESS
	А	ND HOLD

- 2. Taxi slowly to determine the amount of steering authority.
 - If full authority is available, taxi normally.
 - If limited authority is available, taxi using rudder pedal movement for control. Differential braking will assist in turns; however, the minimum turn radius will increase approximately two times. Avoid sharp turns, if possible.
- 3. STEER ON Light...... MONITOR

NOTE

In the event of a malfunction, the nosewheel steering internal monitors should disconnect the system. When the system disconnects, the STEER ON light will extinguish; however, the disconnect tone will not sound.

OPERATION WITH SINGLE BATTERY

In the event a battery becomes inoperative, the following procedures should be followed. These procedures supplement existing procedures in the areas listed.

EXTERIOR PREFLIGHT

1. The operative battery must be installed in the Number 1 battery position (left side). Both battery power quick-disconnects must be connected or the left battery quick-disconnect connected and the right battery quick-disconnect disconnected and secured.

BEFORE STARTING ENGINES

NOTE

Use of GPU (if available) is recommended.

1. BATTERY 1 Switch..... ON

Check for proper voltage.

2. BATTERY 2 Switch OFF

DUAL GENERATOR FAILURE

NOTE

- With the EMER BUS switch in the EMER BUS position, the auxiliary hydraulic pump will be inoperative.
- Electrical power will be supplied by the ship's battery (EMER BUS) and the emergency power supplies. Only red colored circuit breakers will be powered. A fully charged ship's battery should power the minimum electrical equipment for night instrument flight for a minimum of 0.54 hours with EM BUS TIE closed.

AIRSTART

NOTE

Use windmilling airstart procedure at night or in instrument meteorological conditions. If a starterassist airstart must be used, the EADIs, EHSIs and air data displays may blank or momentarily lose data.

Page

LEARJET 31A PILOT TRAINING MANUAL

EMERGENCY PROCEDURES CONTENTS

INTRODUCTION	EP-1
Overriding Considerations	EP-1
Terminology	EP-1
ELECTRICAL	EP-2
WING OV HT LIGHT Illuminated	EP-2
WSHLD OV HT LIGHT Illuminated	EP-2
AC Bus Failure	EP-2
Battery Overheat (Aircraft with Nickel-Cadmium Batteries)	EP-5
Current Limiter Failure/CUR LIM Light Illuminated in Flight	EP-6
DC Bus Failure	EP-7
Dual Generator Failure	EP-13
ENGINE	EP-19
Engine Failure during Takeoff	EP-19
Engine Failure in Flight	EP-19
Engine Failure during Approach	EP-20
Engine Fire—Shutdown	EP-21
Immediate Engine Airstart	EP-22
OIL PRESS Light Illuminated	EP-23
BLEED AIR Light Illuminated	EP-24
DOOR LIGHT ILLUMINATED	EP-24
CABIN ALTITUDE WARNING HORN ACTIVATES, OR CABIN ALTITUDE EXCEEDS 10,000 FEET, OR CAB ALT HI LIGHT ILLUMINATES (IF APPLICABLE)	
(EMERGENCY DESCENT)	EP-25
CABIN/COCKPIT FIRE, SMOKE, OR FUMES	EP-27
CONTROL SYSTEM JAM	EP-32
Aileron Jam	EP-32
Elevator Jam	EP-32

I

LEARJET 31A PILOT TRAINING MANUAL

Rudder Jam	EP-33
OVERSPEED RECOVERY–OVERSPEED WARNING HORN ACTIVATES	EP-34
Pitch Axis Malfunction	EP-35
Roll or Yaw Axis Malfunction	EP-38
Fuel Press Light Illuminated	EP-39
Dual Air Data Computer (ADC) Failure	EP-40
DITCHING	EP-41
EMERGENCY BRAKING	EP-43
EMERGENCY EVACUATION	EP-44
FORCED LANDING—	
BOTH ENGINES INOPERATIVE	EP-44
STALL WARNING ACTIVATES	EP-45
ABORTED TAKEOFF	EP-46
TAKEOFF WARNING HORN ACTIVATES	EP-46

TABLES

Table Title Page EP-1 Conditions—Generators Not Resetting EP-15 EP-2 Equipment and Operating Time EP-17 EP-3 Conditions—Batteries Depleted EP-17 Copilot Circuit Breakers EP-30 EP-4 EP-5 Pilot Circuit Breakers..... EP-31

EMERGENCY PROCEDURES

INTRODUCTION

The procedures presented here have been developed by Learjet, Inc. for certification of this aircraft. This chapter contains those operating procedures using special systems and/or regular systems in order to protect the occupants and the aircraft from harm during a critical situation requiring immediate response. Procedures or parts of procedures in this chapter emphasized by a shaded box are memory items and should be accomplished without reference to the checklist.

The procedures located in this section supplement the Normal Procedures when an emergency condition exists. Use of Normal Procedures should be continued when applicable. Sound judgement as well as thorough knowledge of the aircraft, its characteristics, and the flight manual procedures are essential in the handling of any emergency situation.

OVERRIDING CONSIDERATIONS

In all emergencies, the overriding consideration must be to:

- Maintain Airplane Control
- Analyze the Situation
- Take Proper Action

TERMINOLOGY

Many emergencies require some urgency in landing the aircraft. The degree of urgency required varies with the emergency; therefore, the terms "land as soon as possible" and "land as soon as practical" are employed. These terms are defined as follows:

Land as Soon as Possible—A landing should be accomplished at the nearest suitable airfield considering the severity of the emergency, weather conditions, field facilities, ambient lighting, and aircraft gross weight.

Land as Soon as Practical—Emergency conditions are less urgent, and although the mission is to be terminated, the degree of the emergency is such that an immediate landing at the nearest adequate airfield may not be necessary.

ELECTRICAL

WING OV HT LIGHT ILLUMINATED

The red WING OV HT light will illuminate in the event that the wing structure heats to 215° F (102° C).

- 1. WING TEMP Indicator..... CHECK
- 2. If WING TEMP Indicator is approaching or in the red band, a wing overheat condition exists:
 - a. STAB WING HEAT Switch OFF
 - b. WING HT Circuit Breaker (R ANTI-ICE group)...... PULL

The WING TEMP indicator will be inoperative.

c. STAB WING HEAT Switch STAB WING HEAT.

This will provide stabilizer heat without activating the wing heat.

d. Fly out of icing conditions.

WARNING

Even **small** accumulations of ice on the wing leading edge can cause an increase in stall speed and possibly a degradation in stall characterstics.

If approach and landing must be made with any ice (or suspected ice during night operations) on the wing leading edge, refer to WING HEAT FAIL-URE—LANDING procedure, "Abnormal Procedures" chapter.

WSHLD OV HT LIGHT ILLUMINATED

Illumination of the red WSHLD OV HT light indicates the bleed-air temperature in the windshield nozzles has exceeded the system limits. Airflow should automatically shut off when the WSHLD OV HT light illuminates.

If airflow did not shut off when WSHLD OV HT light illuminated:

1. WSHLD HEAT Switch OFF

AC BUS FAILURE

Each AC bus is intended to be powered by only one inverter. Therefore, the AC BUS TIE Switch (copilot's circuit breaker panel) is normally in the OPEN

(down) position isolating the pilot's and copilot's AC buses. The AC BUS TIE Switch should only be closed after setting one of the INVERTER Switches to OFF. Also, the auxiliary inverter (if installed) should only be switched into an AC bus after setting the applicable INVERTER Switch to OFF.

An AC bus failure is indicated by illumination of the amber ELEC PWR annunciator, an amber or red light on the electric power monitor and flashing of the associated VAC display. The most likely cause is either an inverter failure or open AC bus feeder circuit breaker (AC BUS or 115 VAC).

1.	Affected INVERTER Switch(es) OFF
2.	AC BUS TIE Switch OPEN
	Ensure switch is in the down position.
3.	Affected INV Circuit Breakers PULL AND/OR RESET
4.	Affected AC BUS or 115 VAC (if applicable) Circuit Breaker
5.	Reduce AC Load on affected bus(es) REFER TO TABLE
6.	Affected INVERTER Switch(es) ON

If AC power is not regained:

NOTE

A failure on either AC bus may cause partial loss of windshield defog capability.

- 7. Affected INVERTER Switch(es) OFF
- 8. Aircraft with auxiliary inverter AUX INV Switch..... L OR R AS APPLICABLE

NOTE

Malfunction of the auxiliary inverter system, after being connected to the failed AC bus, indicates a fault on the AC bus.

9. If only one inverter is operational and it is desired to power loads on the failed bus:

- a. *Aircraft 31-035 through 31-065 except 31-061*, reduce load on both AC buses. Refer to table.
- b. AC BUS TIE Switch—Switch to closed(up) position. Both AC uses will be powered by the operating inverter. If the BUS TIE switch opens, leave it open.

NOTE

The following circuit breaker listings do not include circuit breakers added as a result of optional equipment installations.

AC buses and their associated loads are:

• 31-035 through 31-065 except 31-061 (NORMAL MODE)

L AC BUS	L 163 VAC	R AC BUS	R 163 VAC
- ELECTRICAL - L26 VAC - AFCS - AP 1 MON MACH TRIM - INSTRUMENTS - AHS 1 - LIGHTS - FLOOD LTS LELLTS - TRIM-FLT CONT - NOSE STEER - ENGINE INSTR - L OIL PRESS - AVIONICS - NOSE FAN	- ANTI-ICE - * L WSHLD DEFOG	- ELECTRICAL - R 26 VAC - AFCS - AP 2 MON - INSTRUMENTS - AHS 2 STBY HSI - LIGHTS - R ELLTS - ENGINE INSTR - R OIL PRESS - AVIONICS - RADAR	- ANTI-ICE - * R WSHLD DEFOG

• 31-061, 31-066 and Subsequent (NORMAL MODE)

L 115 VAC BUS	L 26 VAC BUS	R 115 VAC BUS	R 26 VAC BUS
- AFCS - AP 1 MON MACH TRIM - LIGHTS - FLOOD LTS LELLTS - TRIM-FLT CONT - NOSE STEER - AVIONICS - NOSE FAN	- INSTRUMENTS - AHS 1 - ENGINE INSTR - L OIL PRESS	- AFCS - AP 2 MON - LIGHTS - R EL LTS	- INSTRUMENTS - AHS 2 STBY HSI - ENGINE INSTR - R OIL PRESS - AVIONICS - RADAR

L 163 VAC	R 163 VAC
- ANTI-ICE -	- ANTI-ICE -
* L WSHLD DEFOG	* R WSHLD DEFOG

AC circuit breakers are denoted as follows:

- Aircraft 31-035 through 31-065 except 31-061, white rings on the overlay denote AC circuit breakers.
- Aircraft 31-061, 31-066 and subsequent, white rings on the overlay denote AC circuit breakers not on the EMER BUS.

* DC circuit breaker

All (EMER BUS MODE)

L AC EMER BUS	R AC EMER BUS
- ELECTRICAL - L 26 VAC - LIGHTS - FLOOD LTS	- INSTRUMENTS - AHS 2 STBY HSI

EMER BUS circuit breakers are denoted as follows:

- *Aircraft 31-035 through 31-065 except 31-061*, red collars are installed on the circuit-breaker stem.
- *Aircraft 31-061, 31-066 and subsequent,* segmented red/white rings on the overlay denote AC EMER BUS circuit breakers.

NOTE

If a total AC power failure occurs, the equipment in the preceding tables will be inoperative with the following exceptions:

- AHS attitude and heading data displayed on the EFIS will be valid.
- Heading data (AHS 2), on the standby HSI, will be invalid. Navigational data will remain valid.
- The AHS AC circuit breakers provide power for systems requiring analog attitude and heading data.

BATTERY OVERHEAT (AIRCRAFT WITH NICKEL-CADMIUM BATTERIES)

NOTE

If either red BAT 140 or BAT 160 light illuminates during flight, both batteries must be checked per Chapter 12 of the *Maintenance Manual* after landing.

BAT 140 Light Illuminated

1.	BAT TEMP Indicator	MONITOR TO
		DETERMINE
		AFFECTED
		BATTERY

- 2. Affected BATTERY Switch OFF
- 3. Land as soon as practical.

BAT 160 Light Illuminated

1.	BAT TEMP Indicator	MONITOR TO
		DETERMINE
		AFFECTED
		BATTERY
•		0.55

- 2. Affected BATTERY Switch OFF
- 3. Land as soon as possible.

CURRENT LIMITER FAILURE/ CUR LIM LIGHT ILLUMINATED IN FLIGHT

A battery charging bus current limiter (275-amp) failure is evidenced by illumination of the red CUR LIM light. Should a battery charging bus current limiter fail:

NOTE

Generator loading may not read equally ..

1. Electric Power Monitor.....CHECK

Failure of both 275-amp current limiters is indicated if VDC reading (battery Voltage) is 25 VDC or less and/or AMP readings (generator load) do not increase when COOL, AUX HT or STAB HEAT is momentarily energized.

- 2. If one 275-amp current limiter has failed:
 - a. Electrical Load REDUCE IF REQUIRED

Reduce load to observe generator limits.

b. Continue flight but monitor electrical loads.

• If both 275-amp current limiters have failed:

a.	COOL Switch	OFF
b.	STAB HEAT Circuit Breaker (R Anti-ice Group) I	PULL
c.	RECOG Light Switch	OFF
d.	AUX HT Switch	OFF
e.	AUX INV Switch (if installed)	OFF

NOTE

Electrical power to the battery charging bus is being supplied by the ship's batteries. If the batteries should become depleted, primary pitch trim system will be inoperative.

3. After landing, replace failed 275-amp current limiter(s) prior to next flight.

DC BUS FAILURE

The DC BUS TIE switches (copilot's circuit-breaker panel) are normally in the open (down) position isolating the pilot's and copilot's DC buses.

The EMER BUSES are powered from the respective DC BUS 1 during normal operation. Upon the loss of a DC BUS 1 bus, the corresponding EMER BUS will lose power. The EM BUS TIE (copilot's circuit-breaker panel) is only functional when the EMER BUS switch is positioned to EMER BUS.

NOTE

The circuit breaker tables in this procedure do not include circuit breakers added as a result of optional equipment installation.

If a L or R DC BUS 1, 2, or 3 circuit breaker opens in flight:

1. Affected BUS TIE Switch..... CHECK

Ensure switch is in the open (down) position.

- 2. Electrical Load on Affected Bus..... REDUCE, REFER TO TABLE
- 3. Affected DC BUS Circuit Breaker RESET

NOTE

Wait at least one minute cooling time before attempting to reset DC BUS circuit breakers.

- 4. If DC BUS circuit breaker holds after being reset, add loads only as necessary for safe operation.
- 5. If DC BUS circuit breaker (DC BUS 1, DC BUS 2, or DC BUS 3) will not stay closed and it is desired to operate a load connected to that bus:
 - a. Reduce load on both affected DC buses to a minimum.
 - b. Affected BUS TIE Switch SWITCH TO CLOSED (UP) POSITION

If the BUS TIE circuit breaker opens, leave it open.

NOTE

The following circuit breaker listings do not include circuit breakers added as a result of optional equipment installations.

If both L or R DC BUS 1 circuit breakers open in flight:

1.	DC BUS 1 TIE Switch	ENSURE SWITCH IS IN THE OPEN (DOWN) POSITION
2.	Electrical load on L and R DC BUS	REDUCE. REFER TO TABLE

3. L and R DC BUS Circuit Breakers RESET, ONE AT A TIME

NOTE

Wait at least one minute cooling time before attempting to reset circuit breakers.

- 4. If either or both DC BUS 1 circuit breaker(s) hold after being reset:
 - a. Add loads only as necessary for safe operation.
 - b. Land as soon as practical.
 - If neither DC BUS 1 circuit breaker(s) hold after being reset:
 - a. EMER BAT Switches CHECK ON
 - b. EMER BUS Switch EMER BUS

NOTE

- The generators will provide electrical service to DC BUS 2 and 3. The ship's batteries will provide electrical service to those circuits denoted by either a red collar on the circuit breaker stem or a red ring on the circuit breaker overlays. Fully charged ship's batteries should power the minimum electrical equipment for night instrument flight for at least 1.1 hour.
- The ship's batteries will not be charged while operating in EMER BUS mode. Occasionally switching back to NORMAL will allow the batteries to be charged, but results in the loss of service to all DC BUS 1 loads.

c.	Airspeed	0.78 M _I OR BELOW
d	If there is fuel in the fuselage tank	

FUS TANK GRAV XFR Switch...... OPEN

NOTE

With GRAV XFR selected, 150 to 300 pounds (68 to 136 kilograms) (depending upon flight attitude) of fuselage fuel will be unusable.

- e. Land as soon as practical.
- f. Before landing, FUS TANK GRAV XFR Switch CLOSE

If both L and R DC Bus 2 circuit breakers open in flight:

- 1. DC BUS 2 TIE Switch ENSURE SWITCH IS IN THE OPEN (DOWN) POSITION
- 2. Electrical load on L and R DC BUS 2 REDUCE. REFER TO TABLE
- 3. L and R DC BUS 2 Circuit Breakers RESET, ONE AT A TIME

NOTE

Wait at least one minute cooling time before attempting to reset circuit breakers.

- 4. If either or both DC BUS 2 circuit breaker(s) holds after being reset:
 - a. Add loads only as necessary for safe operation.
 - b. Land as soon as practical.

- If neither DC BUS 2 circuit breaker holds after being reset:
- a. Land as soon as practical.

If both L and R DC Bus 3 circuit breakers open in flight:

- 1. DC BUS 3 TIE Switch ENSURE SWITCH IS IN THE OPEN (DOWN) POSITION
- 2. Electrical load on L and R DC BUS 3 REDUCE. REFER TO TABLE
- 3. L and R DC BUS 3 Circuit Breakers RESET, ONE AT A TIME

NOTE

Wait at least one minute cooling time before attempting to reset circuit breakers.

- 4. If either or both DC BUS 3 circuit breaker(s) holds after being reset:
 - a. Add loads only as necessary for safe operation.
 - b. Land as soon as practical.
 - If neither DC BUS 3 circuit breaker holds after being reset:
 - a. Land as soon as practical.

DC buses and their associated loads on the pilot's circuit breaker panel are:

L EMER BUS	L DC BUS 1	L DC BUS 2	L DC BUS 3
- ELECTRICAL - EL PWR MON LINV EMER BAT 1 - ENGINES-FUEL - LFIRE DET LFIRE DET LFIRE EXT LIGN LFW SOV LJET PUMP-XFR VAL - INSTRUMENTS - PILOT A/S PILOT A/S - CONT - PRI PITCH TRIM L STALL WARN WHEEL MASTER - ENGINE INSTR - LITT - ANTI-ICE - L PITCT HT - ENVIROMENT - L BLEED AIR L EMER PRESS - AVIONICS - L AUDIO COMM 1 NAV 1 ADF 1 ATC 1	- ELECTRICAL - EL PWR MON L INV EMER BAT 1 - ENGINES-FUEL - L FIRE DET L FIRE DET L FIRE EXT N L FW SOV L JET PUMP-XFR VAL - INSTRUMENTS - PILOT A/S PILOT A/S PILOT ALTM VSI EADI 1 EHSI 1 SG 1 EADI SG 1 EAD	- ENGINES-FUEL - L FUEL CMPTR - INSTRUMENTS - STATIC SOURCE L CLOCK - LIGHTS - NAV LTS L LDG-TAXI LTS - TRIM-FLT CONT - ROLL TRIM YAW TRIM SQUAT SW NOSE STEER - ENGINE INSTR - LN1 L N2 - ANTI-ICE - WSHLD HT L STALL VANE HT L NAC HT - AVIONICS - DME 1 RADIO ALT	-AFCS - AP 1 FLT DIR 1 RUDDER BOOST SYSTEM TEST - ENGINES-FUEL - L IGN-START L STBY-SCAV PUMP FUS XFR PUMP - INSTRUMENTS - SAT-TAS SG 3 EADI SG 3 EASI - LIGHTS - L INSTR LTS - ENGINE INSTR - L OIL TEMP - ANTI-ICE - L WSHLD DEFOG L ICE DET - ENVIROMENT - OXY VALVE FREON (① CABIN AIR AUX CREW HT - AVIONICS - L AV MASTER

① Applicable to aircraft 31-035 through 31-190.

2 Applicable to aircraft 31-191 and subsequent.

EMER BUS circuit breakers are denoted as follows:

- *Aircraft 31-035 through 31-065 except 31-061*, red collars are installed on the circuit-breaker stem.
- Aircraft 31-061, 31-066 and subsequent, solid red rings on the overlay denote DC EMER BUS circuit breakers.
DC buses and their associated loads on the copilot's circuit breaker panel are:

R EMER BUS	R DC BUS 1	R DC BUS 2	R DC BUS 3
- ELECTRICAL - EMER BAT 2 - ENGINES-FUEL - R FIRE DET R FIRE EXT R IGN R FW SOV R JET PUMP-XFR VAL XFLO VALVE FUEL QTY - INSTRUMENTS - AHS 2 STBY HSI - LIGHTS - WARN LTS - TRIM-FLT CONT - SEC PITCH TRIM FLAPS SPOILER R STALL WARN TRIM-FLAP IND WARN HORNS - HYDRAULICS - GEAR - ENGINE INSTR - R ITT - ANTI-ICE - R PITOT HT - ENVIROMENT - R BLEED AIR R EMER PRESS - AVIONICS - R AUDIO	- ELECTRICAL - R INV EMER BAT 2 - ENGINES-FUEL - R FIRE DET R FIRE EXT R IGN R FW SOV R JET PUMP-XFR VAL XFLO VALVE FUEL QTY - INSTRUMENTS - CP A/S CP ALTM VSI EADI 2 EHSI 2 SG 2 EADI SG	 ENGINES-FUEL - AUX INV -AFCS - AP FAN ENGINES-FUEL - R FUEL CMPTR INSTR FANS - LIGHTS - WING INSP LT - HYDRAULICS - HYD PRESS IND - ANTH-ICE - R STALL VANE HT R N₂ - ANTH-ICE - R STALL VANE HT R NAC HT - ENVIRONMENT - PRESS CONT CAB TEMP & CONT IND - CABIN - PASS SPKR - AVIONICS - COMM 2 NAV 2 RADAR ATC 2 	-AFCS - AP 2 FLT DIR 2 - ENGINES-FUEL - R IGN-START R STBY-SCAV PUMP - INSTR UMENTS - BCN LTS BCN LTS R INSTR LTS R INSTR LTS RECOG LT R LDG-TAXI LTS - HYDRAULICS - ANTI SKID - ENGINE INSTR - R OIL TEMP - ANTI-ICE - R WSHLD DEFOG STAB HT R ICE DET WING HT ALC SYS - AVIONICS - R AV MASTER HR METER

* If installed

(1) Applicable to AC 31-191 & subsequent

EMER BUS circuit breakers are denoted as follows:

- *Aircraft 31-035 through 31-065 except 31-061*, red collars are installed on the circuit-breaker stem.
- Aircraft 31-061, 31-066, and subsequent, solid red rings on the overlay denote DC EMER BUS circuit breakers.

DUAL GENERATOR FAILURE

1.	START-GEN Switches CHECK, GEN
2.	L and R IGN–START and GEN Circuit Breakers CHECK, IN
3.	Electrical Load REDUCE
	a. COOL Switch OFF
	b. AUX HEAT Switch OFF
	c. WSHLD DEFOG Switch OFF
4.	GEN RESET Switches

If generators do not reset:

5.	Turbine Speed (N ₂)	80% RPM
	• • 2	OR ABOVE
6.	START-GEN Switches	OFF, THEN GEN
7.	GEN RESET Switches	RESET MOMENTARILY

If generators do not rest:

8.	START-GEN Switches	OFF
9.	JET PUMP Switches	CHECK, ON
10.	Both FUEL CMPTR Switches	MAN, ONE AT A TIME

Control engines manually.

CAUTION

- Engine response will be much slower with the fuel computers in MAN mode.
- Monitor Fan Speed (N₁) indicators. If an engine accelerates uncontrolled, immediately set applicable FUEL CMPTR switch(es)—ON. If this occurs, it may be necessary to shed electrical loads manually rather than switching to EMER BUS.

11. If there is fuel in the fuselage tank:

FUS TANK GRAV XFR Switch..... OPEN

NOTE

When using GRAV XFR, 150 to 300 pounds (68-136 Kg) (depending upon flight attitude) of fuselage fuel will be unusable.

12.	Floodlights ON, FOR OPE	NIGHT RATION
13.	EMER BAT Switches CHE	CK, ON
14.	EMER BUS Switch EM	ER BUS
15.	Aircraft 31-035 through 31-065 except 31-061 EM BUS TIE Switch C (UP) PC	LOSED SITION

16.	Aircraft 31-055 and subsequent and prior aircraft	
	incorporating SB 31-32-2	
	RUDDER BOOST Switch	OFF

NOTE

- Electrical power will be supplied by the ship's batteries (EMER BUS) and the emergency power supplies. Only red colored circuit breakers will be powered. Fully charged ship's batteries (standard lead-acid) and the emergency power supply should power the minimum electrical equipment for night instrument flight for a minimum of 1.1 hours from the time both generators are off.
- EMER BUS switch may be returned to the NORMAL position if it is desired to restore electrical power to all systems. The ship's batteries will discharge at a faster rate under this condition.
- 17. Table EP-1 lists conditions that will exist.
- 18. Land as soon as practical.

Before landing:

a.	EMER BUS Switch	NORMAL
b.	FUS TANK	

GRAV XFR Switch CLOSE

Table EP-1. CONDITIONS—GENERATORS NOT RESETTING

SYSTEM	CONDITION
Anti loo	
Nacelle Heat	Nacelle heat (bleed air) will be on regardless of NAC
	HEAT switch position.
Pitot Heat	Operative
All Other Systems	Inoperative. Avoid incing conditions.
Antiskid	Inoperative
Autopilot/Yaw Damper	Inoperative
Aux Hyd Pump	Operative
Avionics	
ADF	ADF 1 operative; ADF 2 (if installed) inoperative.
COM	COM 1 operative; COM 2 inoperative.
NAV	NAV 1 operative; NAV 2 inoperative; NAV capability
ATC	through standby HSI.
ATC Audio Bonolo	Roth operative
	inoperative
Fuel Computers	Inoperative
Engine Fire	
Detection	Operative
Extinguishing	Operative
Firewall Shutoff Valves	Operative
Flaps	Operative
Fuel	
Electric Pumps	Inoperative
Jet Pumps	Operative
XFLO Valve	Operative
Gravity XFR	Operative
Ignition	Operative

Table Continued Next Page

If aircraft's batteries are depleted (See Table EP-3):

NOTE

If the aircraft's batteries are depleted, the only electrical power available will be from the emergency battery.

- 19. Land as soon as possible. Nosewheel steering, anti-skid, flaps, and spoiler will be inoperative for landing. Use $V_{REF} + 20$ as the final approach speed. Landing distance will be approximately 315% (multiplied by 3.15) of actual landing distance for anti-skid ON shown in Section V of the *AFM*.
- 20. Table EP-3 lists conditions that will exist.

Table EP-1. CONDITIONS—GENERATORS NOT RESETTING (Cont)

SYSTEM	CONDITION
Indicators	
N ₁	Operative
ITT	Operative
Fuel Quantity	Operative
Flap Position	Operative
Elect Power Monitor	Operative
N ₂	Inoperative
Oil Pressure	Inoperative
Oil Temp	Inoperative
SAT-TAS	Inoperative
	Inoperative
Fuel Counter	
Wing Temp	Inoperative
Instruments	
Airspeed/Mach	Both operative
Altimeter/VSI	Both operative
EFIS Displays	
Standby HSI	Operative
Standby Airspeed & Altimeter	Operative
Landing Gear	Operative; DOWN and UNSAFE lights operative
Lighting—Cockpit	
Floodlights	Operative
Instruments	Lighting for standby gyro, N ₁ indicators, standby
	airspeed indicator, standby altimeter, standby HSI
	and magnetic compass will be operative.
	For hight operations, a flashlight may be necessary
Lighting—Exterior	Inoperative
Pressurization	
Auto Mode	Operative
Manual Mode	Inoperative
Spoilers	Operative
Trim	
Mach	Inoperative. Do not exceed MMO (0.78 MI).
Primary and Secondary Pitch	Operative
Aileron	Inoperative; Will remain at last setting
Rudder	Inoperative; Will remain at last setting
Warning System	
Lights	Operative
Horns	Operative
Trim-in-Motion	Operative
Stall Warning	Operative

Table EP-2. EQUIPMENT AND OPERATING TIME

POWER SUPPLY	THIRD ATTITUDE GYRO	FAN SPEED (N ₁) INDICATOR	GEAR INDICATOR LIGHTS	INSTRUMENT LIGHTING	TOTAL OPERATING TIME
BAT 1	•	•	•	•	2.2 Hours

* Operating time is from the time of the dual generator failure.

Table EP-3. CONDITIONS—BATTERIES DEPLETED

SYSTEM	CONDITION
Anti-Ice	All systems are inoperative except for nacelle heat. Nacelle heat (bleed air) will be on regardless of NAC HEAT switch position. Avoid icing conditions.
Antiskid	Inoperative
Autopilot/Yaw Damper	Inoperative
Aux Hyd Pump	Inoperative
Avionics	All avionics inoperative
Engines Fuel Computers	Inoperative
Engine Fire	
Detection	Inoperative
Extinguishing	Inoperative
Flaps	Inoperative
Fuel	
Electric Pumps	Inoperative
System Valves	Will remain in their last position.
Ignition	Inoperative

Table Continued Next Page

Table EP-3. CONDITIONS—BATTERIES DEPLETED (Cont)

SYSTEM	CONDITION
Indicators	
N ₁	Operative
ITT	Inoperative
Fuel Quantity	Inoperative
Flap Position	Inoperative
N ₂	Inoperative
Oil Pressure	Inoperative
Oil Temp	Inoperative
SAT-TAS	Inoperative
Fuel Flow	Inoperative
Fuel Counter	Inoperative
Wing Temp	Inoperative
Instruments	
Airspeed/Mach	Both inoperative
Altimeter/VSI	Both inoperative
EFIS Displays	Inoperative. Use standby gryo.
Standby Airapaad & Altimator	Operative
Standby Airspeed & Altimeter	Operative
Londing Coor	
Landing Gear	ELECTRICAL MALEUNCTION procedure in
	Section IV of the AEM DOWN and UNSAFE lights
	will be operative
Lighting—Cocknit	
Eloodlights	Inonerative
Instruments	Lighting for standby gyro N ₄ indicators standby
	airspeed indicator, standby altimeter, standby HSI.
	and magnetic compass will be operative. For night
	operations, a flashlight may be necessary to see
	certain instruments.
Lighting—Exterior	Inoperative
Pressurization	Will revert to the emergency mode
Spoilers	Inoperative. Do not exceed 41,000 feet.
Trim	
Pitch, Roll, and Yaw	Inoperative; Will remain at last setting
Mach	Inoperative. Do not exceed M _{MO} (0.78MI).
Warning System	
Lights	Inoperative
Horns	Inoperative
Trim-in-Motion	Inoperative
Stall Warning	Inoperative. Maintain adequate margin above stall
	speed by reference to airspeed indicator.

ENGINE ENGINE FAILURE During Takeoff Below V₁ Speed

1.	Thrust Levers IDLE
2.	Wheel Brakes APPLY
3.	Spoilers EXT

4. Drag Chute or Thrust Reversers (if installed) DEPLOY, IF NECESSARY

Above V₁ Speed

1.	Rudder and Ailerons AS REQUIRED, FOR DIRECTIONAL CONTROL
2.	Accelerate to V _R .
	NOTE
	Directional control is improved if the nosewheel is kept on the runway until V_R .
3.	Rotate at V_R ; Climb at V_2 .
4.	GEAR UP
	Position gear UP when positive rate of climb is established.
5.	When clear of obstacles, accelerate to V_2 +20 and retract flaps.

 Refer to ENGINE FAILURE IN FLIGHT procedure, "Abnormal Procedures" chapter or ENGINE FIRE—SHUTDOWN procedures in this section.

In Flight

1. Control Wheel Master Switch (MSW)..... DEPRESS. YAW DAMPER AND AUTOPILOT WILL DISENGAGE

2.	Rudder and Ailerons AS REQUIRED, FOR DIRECTIONAL CONTROL
3.	Thrust Lever (operative engine) INCREASE AS REQUIRED
4.	ENG SYNC Switch OFF
5.	Rudder Trim AS REQUIRED
6.	Yaw Damper AS DESIRED
7.	Autopilot AS DESIRED
8.	Refer to ENGINE SHUTDOWN IN FLIGHT procedure, "Abnormal Procedures" chapter.

During Approach

1.	Control Wheel Master Switch (MSW) DEPRESS
	Yaw damper and autopilot will disengage.
2.	Thrust Lever (Operative Engine) INCREASE AS REQUIRED
3.	Flaps
	NOTE
	If aircraft is configured with landing flaps (DN) when engine failure occurs, thrust increase (on op- erative engine) and flap retraction to 20° should be near simultaneous actions
4.	Airspeed $V_{REF} + 10$

5. Rudder Trim AS REQUIRED

NOTE

During a coupled approach, full rudder trim may be required with an actual engine failure. Use rudder pedal force as necessary to maintain slip indicator ball centered.

- 6. Yaw Damper AS DESIRED
- 7. Autopilot..... AS DESIRED
- 8. Refer to either of the following as applicable:
 - SINGLE-ENGINE LANDING PROCEDURE, "Abnormal Procedures" chapter.
 - GO-AROUND procedure, "Normal Procedures" chapter, and ENGINE SHUTDOWN IN FLIGHT procedure, "Abnormal Procedures" chapter.

ENGINE FIRE—SHUTDOWN

An engine fire is usually accompanied by other indications, such as: excessive Turbine Temperature (ITT), erratic or rough engine operation, fluctuating engine indications, or smoke in the cabin.

Affected Engine:

1.	Thrust Lever IDLE Unless a critical thrust situation exists.
2.	• If fire continues more than 15 seconds or there are other indications of fire:
	a. Thrust Lever CUTOFF
	b. ENG FIRE PULL T-Handle PULL
	NOTE
	Pulling the ENG FIRE PULL T-Handle stops the flow of fuel and hydraulic fluid to the engine, shuts off bleed air from the engine and arms the fire-extinguishing system.
	c. ENG EXT ARMED Light DEPRESS ONE

d. • If fire continues:

- (1) Depress remaining ENG EXT ARMED light.
- (2) Land as soon as possible.
- (3) Go to step e.

• If fire extinguishes:

- (1) Land as soon as practical.
- (2) Go to step e.

e.	IGNITION Switch OFF
f.	Yaw Damper OFF, RETRIM AS DESIRED; THEN YAW DAMPER, AS DESIRED
g.	ENG SYNC Switch OFF
h.	JET PUMP Switch OFF STANDBY PUMP Switch OFF
i.	START-GEN Switch OFF
j.	Electrical Load REDUCE, IF REQUIRED TO MAINTAIN GENERATOR LOAD LIMITS

k. CROSSFLOW Switch OPEN Monitor fuel balance. Crossflow as required.

NOTE

During single-engine operation, maintain slip indicator ball centered.

- 1. Refer to SINGLE-ENGINE LANDING, "Abnormal Procedures" chapter.
 - If fire extinguishes in less than 15 seconds:
 - a. Leave thrust lever at IDLE, unless a critical thrust situation exists.
 - b. Yaw Damper..... OFF, RETRIM AS DESIRED; THEN YAW DAMPER – AS DESIRED
 - c. ENG SYNC Switch OFF
 - d. Monitor fuel balance. Crossflow as required.
 - e. Land as soon as practical.
 - f. Refer to SINGLE-ENGINE LANDING, "Abnormal Procedures" chapter.

IMMEDIATE ENGINE AIRSTART

WARNING

Do not attempt an airstart following an engine failure which was accompanied by indications of internal engine damage or fire.

An immediate airstart may be attempted before engine decelerates.

Affected Engine:

1.	Thrust Lever II	DLE
2.	IGNITION Switch	ON
3.	STANDBY PUMP Switch	ON

CAUTION

If ITT is approaching the limit and rising rapidly, immediately retard thrust lever to CUTOFF.

After airstart is complete:

4.	Thrust Lever	ADVANCE
5.	IGNITION Switch	OFF
6.	STANDBY PUMP Switch	OFF
If no i	ndication of light-off is obtained within 10 seconds:	
7.	Thrust Lever	CUTOFF
8.	START-GEN Switch	OFF
9.	STANDBY PUMP Switch	OFF
10.	IGNITION Switch	OFF
11.	Perform ENGINE SHUTDOWN IN FLIGHT procedu Procedures" chapter.	re, "Abnormal

OIL PRESS LIGHT ILLUMINATED

Illumination of a red OIL PRESS light indicates that oil pressure for the respective engine is below 25 psi. In the event a low OIL PRESS light illuminates in flight:

Affected Engine:

1. OIL PRESS and OIL TEMP Indicators..... CHECK TO DETERMINE OIL PRESSURE AND OIL TEMPERATURE

2. • Oil pressure is less than 25 psi:

If flight conditions permit, a precautionary engine shutdown is advised. Refer to ENGINE SHUTDOWN IN FLIGHT procedure, "Abnormal Procedures" chapter.

• Oil pressure is between 25 and 38 psi, or oil temperature is high:

If flight conditions permit, reduce power to maintain oil temperature limits.

• Oil pressure and oil temperature are normal:

Continue to monitor engine operation.

BLEED AIR LIGHT ILLUMINATED

If either red BLEED AIR L or BLEED AIR R light illuminates, an overheat sensor in the bleed-air ducting or pylon structure has tripped the light.

1. Corresponding BLEED AIR SwitchOFF

DOOR LIGHT ILLUMINATED

Illumination of the red DOOR light indicates that one or more of the cabin entry door locking pins may not be fully engaged, or the cabin entry door actuator hook(s) are still engaged. During flight, the door should not be approached if the red DOOR light is illuminated; however, while on the ground, door latch pin engagement may be visually verified. The cabin entry door has 10 latch pins. On aircraft with a 36-inch cargo door, the six pins on the upper portion can be viewed through a port in the door upholstery. On aircraft with 24-inch cargo door, only one of the six pins on the upper portion can be viewed through a port in the door upholstery. Two pins in the lower portion may be viewed by opening the inspection doors on the step to reveal the pin mechanism. Assure that white lines on the door structure align with white lines on latch pins. Two latch pins, located at the upper/lower door interface, are visible through an upholstery gap at the interface and do not have white lines. If all latch pins are fully engaged and door actuator hook(s) are disengaged, the most probable cause of the illuminated DOOR light is a latch pin switch malfunction.

If light was accompanied by evidence of door failure:

Door failure may be indicated by loud noise, pressurization leak, or rumble emanating from door area. *Do not approach door.*

- 1. FASTEN SEAT BELT Switch ON
- 2. Cabin Altitude.....UP TO MAXIMUM POSSIBLE

NOTE

Increasing cabin altitude to 9,000 feet will reduce differential pressure while avoiding actuation of the emergency pressurization system. The amber CAB ALT light will illuminate.

- 3. Airspeed...... REDUCE
- 4. Establish descent.
- 5. Land as soon as practical.

If light was not accompanied by evidence of door failure:

WARNING

Do not approach door.

- 1. FASTEN SEAT BELT Switch ON
- 2. Continue flight. The most probable cause is a latch pin switch malfunction.

CABIN ALTITUDE WARNING HORN ACTIVATES, OR CABIN ALTITUDE EXCEEDS 10,000 FEET, OR CAB ALT HI LIGHT ILLUMINATES (IF APPLICABLE) (EMERGENCY DESCENT)

NOTE

CAB ALT HI light installed only on aircraft 31-240 and subsequent and prior aircraft modified by SB 31-31-5.

1.	Crew Oxygen Masks DON
	Select 100% oxygen.
2.	Thrust Levers IDLE
3.	Autopilot DISENGAGE
4.	SPOILER Switch EXT
5.	Descend AT M_{MO}/V_{MO} as appropriate, but <i>not</i> below minimum safe altitude.
6.	PASSENGER OXYGEN Valve DEPLOY

If aircraft structural failure is evident, limit speeds and maneuvering loads as much as possible in descent.

NOTE

- Descent from 51,000 feet to 15,000 feet requires approximately 4 minutes 30 seconds.
- Hats and "ear-muff" tuype headsets must be removed prior to donning crew oxygen masks.
- The thrust lever MUTE button will mute the cabin altitude warning horn for 60 seconds.
- 7. Pilot and Copilot MIC SELECT Switches..... OXY

NOTE

With the switches in this position, both cockpit speakers, phone and interphone function will be activated, enabling the crew to communicate via the interphone.

If time and conditions permit:

- 8. Transponder EMERGENCY 7700
- 9. Notify controlling agency.
- 10. Check condition of passengers and provide assistance if conditions permit.

NOTE

Communication with passengers can be accomplished by using PASS SPKR function of the AUDIO CON-TROL panel.

CABIN/COCKPIT FIRE, SMOKE, OR FUMES

1. Crew Oxygen Masks E	DON
Select 100% oxygen.	
2. Smoke Goggles D	DON
3. Pilot and Copilot MIC SELECT Switches	OXY

NOTE

It may be necessary to select EMERGENCY on the crew oxygen mask regulator if mask does not seal properly.

Whether or not smoke has dissipated, if it cannot be visibly verified that the fire has been extinguished:

- 4. Cockpit Door/Curtain..... OPEN
- 5. Land as soon as possible.

6. If source is known:

a. Extinguish fire using hand held extinguisher or eliminate the source of smoke or fumes.

NOTE

Crew exposure to high levels of Halon fire extinguisher vapors may result in dizziness, impaired coordination and reduced mental alertness.

- b. If fire is not extinguighed:
 - (1) Land as soon as possible.
 - (2) This checklist is complete.
 - If fire has been extinguished and can be visibly verified:
 - (1) Land as soon as practical. At the crew's discretion, the oxygen system may be returned to normal.
 - (2) This checklist is complete.

If smoke or fumes continue:

I	7.	One or Both BLEED AIR Switches EMER
		EMER until smoke or fumes are eliminated. Advancing thrust levers will increase airflow.
I	8.	Pressurization AUTO-MAN Switch MAN
I	9.	UP-DN Manual Control (red) UP; MAXIMUM 13,000 FEET

If time and conditions permit:

10. Isolate source of smoke or fumes.

• If bleed-air system is suspected source:

R BLEED AIR Switch OFF
If smoke is reduced, continue operation with switch OFF. If smoke is not reduced:
R BLEED AIR Switch ON
and
L BLEED AIR Switch OFF
If smoke is reduced, continue operation with switch OFF

• If smoke or fume source is electrical:

a.	Floodlights ON, FOR NIGHT OPERATION	Г N
b.	EMER BAT Switches CHECK, ON	1
c.	EMER BUS Switch EMER BUS	5
d.	Both START-GEN Switches OFI	F

e. Use standby attitude gyro and standby HSI for attitude and directional reference.

f. Cross-check pilot's altimeter and airspeed indicator with standby instruments.

NOTE

All nonessential equipment is now off. Allow time for smoke and fumes to dissipate.

11. • If smoke or fumes continue:

The malfunctioning system is connected to the EMER BUS or the EMER BAT supplies. In this event, proceed as follows:

a.	Both START-GEN Switches	GEN
b.	EMER BUS Switch	NORMAL
c.	EMER BAT Switches	OFF
d.	Circuit Breakers	PULL ALL EMER BUS DC AND AC CIRCUIT BREAKERS

For a listing of circuit breakers, refer to DC Bus Failure and AC Bus Failure procedures, this section. EMER BUS circuit breakers are denoted with red marking either on the circuit breaker stem or overlay.

NOTE

Electrical power to all equipment on EMER BUS is now off.

- e. Reset EMER BUS circuit breakers one at a time. Pause after resetting each circuit breaker to determine defective system. Whenever high electrical loads and/or smoke and fumes occur, pull last circuit breaker reset.
- f. EMER BAT Switches ON, ONE AT A TIME

If smoke and fumes recur:

EMER BAT Switches OFF

• If smoke and fumes cleared when EMER BUS was selected:

The malfunctioning system is connected to the normal electrical system. In this event, it may be necessary to isolate the malfunctioning system as follows:

a. Copilot's Circuit-Breaker Panel:

BUS TIE Switches (AC and DC)..... OPEN (DOWN)

NOTE

If smoke or fume source is positively identified on the pilot's side, proceed with step e. below.

b. Copilot's Circuit-Breaker Panel PULL

The copilot circuit breakers shown in Table EP-4 must be pulled.

Table EP-4. COPILOT CIRCUIT BREAKERS

BUS CBs	ADDITIONAL CBs
R AC BUS (31-035 THROUGH 31-065, EXCEPT 31-061) R 115 VAC (31-061, 31-066 AND SUB) R AUX AC BUS [*] R 26 VAC R DC BUS 1 R DC BUS 2 R DC BUS 3 CABIN PWR BUS	R EMER BUS CONT R GEN DOOR MOTOR (31-035 THROUGH 31-065, EXCEPT 31-061)

*If installed

NOTE

All electrical power from the copilot's circuit-breaker panel is now off. Allow time for smoke and fumes to dissipate.

- c. Both START-GEN Switches GEN
- d. EMER BUS Switch NORMAL
- e. If smoke and fumes do not recur, the source of the smoke and fumes is on the copilot's circuit-breaker panel. Proceed to step f. below to isolate malfunctioning system.

• If smoke and fumes recur or the pilot's side has been positively identified as the source of smoke and fumes, proceed as follows:

(1)	EMER BUS Switch	EMER
(2)	Both START-GEN Switches	OFF

- (3) Copilot Circuit Breakers RESET ALL
- (4) Pilot's Circuit Breaker Panel PULL

The pilot's circuit breakers shown in Table EP-5 must be pulled.

Table EP-5. PILOT CIRCUIT BREAKERS

BUS CBs	ADDITIONAL CBs
L AC BUS (31-035 THROUGH 31-065 31-065, EXCEPT 31-061) L 115 VAC (31-061, 31-066 AND SUB) L AUX AC BUS [*] L 26 VAC L DC BUS 1 L DC BUS 2 L DC BUS 3	ENTRY LTS L EMER BUS CONT L GEN AUX CAB HT DOOR MOTOR (31-061, 31-066 AND SUB)

*If installed

NOTE

All electrical power from the pilot's circuit-breaker panel is now off. Allow time for smoke or fumes to dissipate.

- (5) Both START-GEN Switches GEN
- (6) EMER BUS Switch NORMAL
- f. To determine the affected system (pilot's or copilot's circuitbreaker panel), it will be necessary to pull all the remaining circuit breakers on the affected panel and then proceed as follows:
 - (1) One BUS (AC or DC) Circuit Breaker RESET

Then, one at a time, reset circuit breakers powered by that BUS circuit breaker. Pause after resetting each circuit breaker to determine defective system. Whenever high electrical loads and/or smoke and fumes occur, pull last circuit-breaker reset. For a listing of circuit breakers refer to DC Bus Failure and AC Bus Failure procedures, this section.

(2) Repeat procedure for each bus on affected panel.

CONTROL SYSTEM JAM

Perform Pitch Axis Malfunction or Roll or Yaw Axis Malfunction procedure in this section as applicable to attempt to clear difficulty. If problem is not corrected, attempt to overpower jam. If jam can be overpowered, make a normal landing.

NOTE

For landing with a control jam, fly a long straight-in approach and establish final aircraft configuration at a safe altitude, well before landing.

AILERON JAM

NOTE

For landing, a wide runway with minimum turbulence and crosswind is recommended.

1. Rudder AS REQUIRED TO CONTROL ROLL AND TRACK

NOTE

- Yaw damper should be on to minimize roll oscillations.
- For prolonged flight in sideslip, set CROSSFLOW switch to OPEN and both STANDBY PUMP switches to ON.
- 2. Final Approach ConfigurationGEAR-DN, FLAPS-20°
- 3. Final Approach SpeedV_{REF} + 10
- 4. Maintain power to touchdown and do not flare.

ELEVATOR JAM

1.	Primary Pitch Trim	AS R FOR PITCH	EQUIRED CONTROL
2.	Final Approach Configuration	GEAR—DN, FL	APS—20°
3.	Final Approach Speed		$V_{REF} + 10$

NOTE

Fly a long straight-in approach to minimize pitch changes and establish final aircraft configuration at a safe altitude, well before landing.

4. Maintain power to touchdown and do not flare.

RUDDER JAM

NOTE

For landing, a wide runway with minimum turbulence and crosswind is recommended.

1. Aileron..... AS REQUIRED TO CONTROL TRACK

2. Use asymmetric power, if required, to minimize sideslip.

NOTE

For prolonged flight in sideslip, set CROSSFLOW switch to OPEN and both STANDBY PUMP switches to ON.

3.	Final Approach Configuration	GEAR-DN, FLAPS-20°

ARM light off prior to touchdown.

- 5. Final Approach Speed V_{REF} + 10
- 6. Maintain power to touchdown and do not flare.
- 7. After landing, maintain directional control with differential braking.

NOTE

If asymmetric power is used, do not retard power until directional control is established.

OVERSPEED RECOVERY—OVERSPEED WARNING HORN ACTIVATES

If V_{MO} or M_{MO} is inadvertently exceeded:		
1.	Thrust Levers IDLE	
2.	Autopilot DISENGAGE	
3.	Identify aircraft pitch and roll attitude.	
	NOTE	
• In any aircraft, attitude (particularly roll attitude) may be difficult to identify from visual and instrument references in an extreme nosedown condition.		
• Do not apply elevator force until bank angle is reduced to less than 90°. A pull elevator force when the bank angle is greater than 90° will increase the nose-down attitude.		
4.	Level Wings.	
5.	Elevator and Pitch Trim AS REQUIRED TO RAISE THE NOSE	
	WARNING	
On speed excursions beyond M_{MO} , the elevator control should be smoothly and steadily applied to prevent encountering aileron activity.		

If Mach or airspeed is severe or if pitch and/or roll attitude is extreme or unknown: LANDING GEAR Switch..... 6 DOWN Lowering the landing gear at high speed will increase drag and cause a moderate nose-up pitching moment which is easily controllable, but should be anticipated. Extending the landing gear has been flight tested to $0.85 M_I$ and 320KIAS. Analysis of flight test data indicates that this procedure is applicable at higher speeds. CAUTION Minor damage to the landing gear doors may be experienced when the gear is lowered at very high speed. *Do not retract landing gear for remainder of flight.* After landing, a thorough inspection of the landing gear and doors for condition must be made.

PITCH AXIS MALFUNCTION

A nose-up pitch axis malfunction or nose-up pitch trim system runaway can result in high pitch attitudes, heavy airframe buffet, and required control forces of 75 pounds for recovery.

A nose-down pitch axis malfunction, nose-down pitch trim system runaway, or nose-down overspeed can result in high airspeeds and require control forces in excess of 75 pounds for recovery.

A binding elevator is evidenced by difficulty in moving the control column when making manual pitch changes.

On speed excursions well beyond M_{MO} , the elevator control should be smoothly and steadily applied to prevent encountering aileron activity.

NOTE

Control pressures may be heavy. Copilot assistance is recommended with this procedure.

1.	Control Wheel Master Switch (MSW) DEPRESS AND HOLD
	NOTE
•	Yaw damper and autopilot will disengage.
•	• Stabilizer trim actuator (PRI and SEC pitch trim) will be inoperative while the switch is held.
2.	Attitude Control AS REQUIRED TO MAINTAIN AIRCRAFT CONTROL
	• If in nose-up attitude, roll into bank or maintain existing bank until the aircraft nose passes through the horizon.
	• If in nose-down attitude, do not apply elevator force until bank angle is reduced to less than 90°. A pull elevator force when the bank angle is greater than 90° will increase the nose-down attitude.
3.	Thrust Levers AS REQUIRED
	• If in high-speed nose-down attitude, immediately reduce thrust levers to IDLE position.
	• If near stall, advance thrust levers as required to accelerate out of stall regime.
4.	PITCH TRIM Switch (pedestal) OFF
5.	AP 1 and AP 2 Circuit Breakers (AFCS group) PULL
6.	Control Wheel Master Switch (MSW) RELEASE

If flight conditions permit, isolate malfunction as follows:

NOTE

A trim system malfunction, with the flaps up, will be accompanied by the audio clicker; however, the autopilot system also runs pitch trim.

7. PITCH TRIM Switch (pedestal)..... OPERATE

Operate to PRI then SEC to isolate malfunctioning trim system.

EP-36

• If malfunction recurs in PRI pitch trim:

a.	PITCH TRIM Switch (pedestal)	SEC
b.	NOSE DN–NOSE UP Switch (pedestal)	OPERATE

Operate to retrim aircraft as required.

c.	PRI PITCH TRIM Circuit	
	Breaker (L TRIM-FLT CONT group)	PULL

NOTE

Mach trim will be inoperative. If autopilot is not engaged, *do not exceed* M_{MO} (0.78 M_I)

• If malfunction recurs in SEC pitch trim:

a.	PITCH TRIM Switch (pedestal)		PRI
b.	Control Wheel Trim Switch	OPER	ATE

Operate to retrim aircraft as required.

c. SEC PITCH TRIM Circuit Breaker (R TRIM–FLT CONT group)...... PULL

NOTE

Autopilot trim will be inoperative.

• If malfunction does not recur:

a.	PITCH TRIM	
	Switch (pedestal)	PRI OR SEC
		AS DESIRED

b. Maintain aircraft trim with selected trim system.

NOTE

Probable cause of malfunction was autopilot (if autopilot was engaged). Do not engage autopilot.

- If neither PRI nor SEC pitch trim can be restored, refer to Jammed Stabilizer Landing, "Abnormal Procedures" chapter.
- 8. If malfunction has not been isolated to autopilot:

	a. AP 1 and AP 2 Circuit Breakers (AFCS Group)	RESET
	b. Autopilot	. AS DESIRED
9.	Yaw Damper	. AS DESIRED

ROLL OR YAW AXIS MALFUNCTION

1.	Control Wheel Master Switch (MSW) DEPRESS AND HOLD
	Yaw damper and autopilot will disengage and rudder boost will be interrupted correcting the malfunction if any of these was the cause.
2.	Attitude Control AS REQUIRED TO MAINTAIN AIRCRAFT CONTROL
If con	trol force continues:
3.	Airspeed REDUCE TO MINIMIZE FORCE
4.	ROLL TRIM or YAW TRIM Circuit Breaker (L TRIM–FLT CONT Group) PULL AFFECTED AXIS
5.	RUDDER BOOST Switch OFF

6. Control Wheel Master Switch (MSW) RELEASE

7. • If malfunction was isolated to yaw damper:

a. AP 1 and AP 2 Circuit Breakers (AFCS group)...... PULL Autopilot and yaw damper will be inoperative.

• If malfunction was isolated to autopilot:

- a. Do not engage autopilot.
- b. Yaw damper..... AS DESIRED
 If malfunction was isolated to rudder boost system:
 a. RUDDER BOOST Switch LEAVE OFF
 b. RUDDER BOOST Circuit Breaker (L AFCS group) PULL
 c. Autopilot AS DESIRED
 d. Yaw Damper.... AS DESIRED

• If malfunction was isolated to roll or yaw trim system:

- a. Use asymmetric thrust and fuel imbalance as required to minimize mistrim.
- b. Land as soon as practical.

NOTE

- A normal approach and landing can be made with only light control forces to overcome full roll or yaw trim.
- On aircraft 31-055 and subsequent and prior aircraft incorporating SB 31-32-2, nosewheel steering will not arm with the RUDDER BOOST circuit breaker pulled. Refer to Section IV Abnormal Procedures, Operation with Nosewheel Steering not Armed.

FUEL PRESS LIGHT ILLUMINATED

Illumination of a red FUEL PRESS light is an indication of loss of fuel pressure to the engine. Probable cause is a jet pump failure.

Affected Engine:

1.	Thrust Lever RETARD
2.	STANDBY PUMP Switch ON
3.	IGNITION Switch ON
4.	CROSSFLOW Switch CLOSE
5.	FUS TANK XFR-FILL Switch OFF

NOTE

Fuselage fuel transfer deactivates the wing standby pumps. The fuel in the fuselage tank will not be available above 25,000 feet. Below 25,000 feet, the enginedriven fuel pump will suction feed sufficient fuel to supply the engine and fuselage fuel transfer can be accomplished. Replan flight accordingly.

6.	GRAV XFR Switch	CLOSE

7. JET PUMP Switch OFF

If FUEL PRESS light does not extinguish:

8. Flight can be continued at altitude if engines are operating properly.

NOTE

The altitude at which the engine-driven fuel pump will suction feed sufficient fuel to supply the engine will vary depending upon fuel temperature and type.

DUAL AIR DATA COMPUTER (ADC) FAILURE

A dual ADC failure is indicated by flags and loss of valid air data on both pilot's and copilot's air data instruments.

1. Maintain aircraft control with reference to the standby instruments.

NOTE

Mach trim will be inoperative. Do not exceed M_{MO} (0.78 $M_{\rm I}).$

- 2. ADC 1 and ADC 2 Circuit Breakers (INSTRUMENTS group)...... CHECK AND RESET
- 3. The following systems and instruments may malfunction or be inoperative:
 - a. Pilot's and copilot's air data instruments
 - b. SAT/TAS/TAT indicator
 - c. Altitude alerter
 - d. Mach trim
 - e. Overspeed warning
 - f. Left and right stall warning systems altitude bias

- g. Landing gear horn altitude and airspeed bias
- h. Autopilot/flight director modes requiring ADC input

NOTE

Pitch attitude hold and lateral modes can be engaged.

- i. Yaw damper
- j. Certain functions of the FMS system requiring airspeed and altitude data
- k. Encoded altitude function of the transponders

NOTE

The attitude heading systems will revert to basic mode with the loss of air data. Attitude and heading data will be valid.

DITCHING

This aircraft has not been certified for ditching under all the applicable provisions of FAR 25. However, a successful ditching has been conducted in a similar model Learjet. The following procedure will enhance the probability of a successful ditching.

Plan the descent to ensure minimum fuel remaining and improve buoyancy. Ensure sufficient fuel for controlled, power-on approach. This aircraft exhibits good buoyancy properties, floating near level or slightly tail low. After ditching, the airplane may remain afloat for some time if it does not sustain serious damage on landing.

- 1. If time and conditions permit:
 - a. Head toward nearest land or vessel.
 - b. Notify controlling agency.

c.	Transponder EMERGENCY 7	7700
d.	ELT Switch (if installed)	ON
e.	Life Vests	ON

NOTE

Inform passengers *not* to inflate life vests while inside aircraft.

f. Brief passengers as required.

- (1) Use of available flotation equipment
- (2) Location and operation of emergency exits: *Do not* open lower half of cabin door at any time.
- (3) All Loose Items...... SECURE
- (4) Emergency landing brace position.
- (5) Several impacts may be felt, depending on the sea conditions. *Do not* release seat belts after first impact is felt.
- g. NO SMOKING/FASTEN SEAT BELTS Switch ON
 h. Seat Belts ON
 Leave ON until aircraft comes to a complete stop.
- LANDING GEAR Switch...... UP
 Flaps DN

NOTE

The landing gear warning horn will sound with landing gear up and flaps down.

4.	CAB AIR Switch	OFF
5.	EMER BAT Switches	OFF

6. Perform normal power-on approach at V_{REF} .

NOTE

Plan landing direction as follows:

a.	Calm Sea	INTO WIND
b.	Moderate Swells	PARALLEL TO SWELLS
c.	High Winds	INTO WIND

Land into wind, attempting to land on upwind (far) side of swell.

7.	Thrust Levers CUTOFF AT TOUCHDOWN
8.	ENG FIRE PULL T-handles PULL
9.	BATTERY Switches OFF
10.	Emergency Exit(s) OPEN

Open after airplane comes to a complete stop.

Do not open lower half of cabin door at any time.

EMERGENCY BRAKING

In the event of failure of a normal brake system, emergency brakes can be used to stop the airplane. When using emergency braking, anti-skid protection is not available, and the anti-skid OFF corrections presented in Section V of the *AFM* will be applicable.

- 1. Pull EMER BRAKE handle out of recess.
- 2. Push downward on handle to apply pressure.

NOTE

- The EMER BRAKE handle must be pushed down approximately 2 inches (5 centimeters) before braking action begins. To realize the optimum benefit from the emergency braking system, the following technique should be employed:
 - a. Apply the brakes smoothly with small movements to produce improved feel and reduce the probability of tire skid. Do not pump the brake handle.
 - b. Avoid taxiing if sufficient brake pressure is not available.
- An emergency air bottle charged to the lower end of the green segment (1,800 psi) will provide for landing gear extension using the abnormal procedure and approximately 10 brake applications.
- 3. Rudder and/or Nosewheel Steering...... AS REQUIRED FOR DIRECTIONAL CONTROL

FOR TRAINING PURPOSES ONLY

EMERGENCY EVACUATION

1.	Stop the aircraft.
2.	PARKING BRAKE SET
3.	Thrust Levers CUTOFF
4.	 If an engine fire is suspected: a. Applicable ENG FIRE PULL T-Handle PULL b. Either ENG EXT ARMED Light DEPRESS c. Other ENG FIRE PULL T-Handle PULL If engine fire is not suspected: a. Both ENG FIRE PULL T-Handles PULL
5.	Both BATTERY Switches OFF

6. Evacuate the aircraft:

a.	Cabin Entry Door	OPEN AND EXIT AIRCRAFT
	, TH	HE UPPER DOOR IS OPENABLE
	WITH THE I	LANDING GEAR RETRACTED.

b.	Aft Cabin Emergency Exit	OPEN AND EXIT
	2 7	USING THE WING
		STEP AREA

FORCED LANDING—BOTH ENGINES INOPERATIVE

The recommended airplane best glide speed is V_{REF} + 50 with the gear and flaps up. The still-air gliding distance is approximately 2.0 nm per 1,000 feet of altitude.

- 1. If time permits:
 - a. Transponder..... Emergency 7700
 - b. Advise controlling agency.

c. Prepare passengers for emergency landing.

d. NO SMOKING/FASTEN SEAT BELTS Sign ON

2.	HYD PUMP Switch	ON
3.	LANDING GEAR Switch	DN
4.	Flaps	DN

5. ENG FIRE PULL T-handles..... PULL

NOTE

Pulling the ENG FIRE PULL T-handles stops the flow of fuel and hydraulic fluid to the engines, shuts off bleed air from the engines, and arms the engine fire extinguisher systems.

6.	START-GEN Switches OFF
7.	BATTERY Switches OFF
8.	EMER BAT Switches OFF PRIOR TO TOUCHDOWN
9.	Touchdown in normal landing attitude.
10.	After touchdown:
	Cabin Door and

Emergency Exit OPEN

STALL WARNING ACTIVATES

The stall warning system has sensed a limit angle-of-attack. The red L and/or R STALL lights will flash, the control column stick shaker will activate, and the angle-of-attack indication will be in the yellow approaching the red.

1.	Lower the pitch attitude to reduce angle-of-attack.
2.	Thrust Levers SET TO TAKEOFF POWER
3.	Level the wings.
4.	Accelerate out of the stall condition.

ABORTED TAKEOFF

1.	Thrust Levers IDLE
2.	Wheel Brakes APPLY
3.	Spoilers EXT

4. Drag Chute or Thrust Reversers (if installed) DEPLOY IF NECESSARY

TAKEOFF WARNING HORN ACTIVATES

The takeoff monitor aural warning will sound during ground operations when the right thrust lever is advanced above the 82% N_1 position and one or more of the following conditions exist:

- Flaps not set for takeoff
- Spoilers not retracted
- Pitch trim not in a safe position for takeoff
- Parking brake not released
- Thrust reverser unlocked (if applicable)

NOTE

On aircraft 31-035 through 31-103 equipped with thrust reversers, not incorporating SB 31-31-4; a thrust reverser unlocked condition may not trigger the takeoff monitor aural warning during cockpit low-light conditions. However, a thrust reverser unlock condition will be annunciated by a flashing DEPLOY light.

1.	Thrust Levers	IDLE
2.	Wheel Brakes	APPLY

3. After stopping, check takeoff configuration.

Page

LEARJET 31A PILOT TRAINING MANUAL

LIMITATIONS CONTENTS

GENERAL	LIM-1
Certification Status	LIM-1
Type of Operation	LIM-1
Performance Configuration	LIM-1
Minimum Flight Crew	LIM-1
WEIGHT AND CG LIMITS	LIM-1
Maximum Ramp Weight	LIM-1
Maximum Certified Takeoff Weight	LIM-2
Maximum Zero Fuel Weight	LIM-2
Maximum Allowable Takeoff Weight	LIM-2
Maximum Certified Landing Weight	LIM-2
Maximum Allowable Landing Weight	LIM-2
Center-of-Gravity	LIM-3
AIRSPEED/MACH LIMITS	
Maximum Operating Speed V _{MO} /M _{MO}	LIM-3
Maneuvering Speed V _A	LIM-8
Maximum Landing Gear Operating Speed V _{LO}	LIM-8
Maximum Landing Gear Extended Speed V _{LE}	LIM-8
Maximum Flap Extended Speed V _{FE}	LIM-8
Minimum Control Speed, Air V _{MCA}	LIM-8
Minimum Control Speed, Ground V _{MCG}	LIM-9
Critical Engine Failure Speed V ₁	LIM-9
Rotation Speed V _R	LIM-9
Takeoff Safety Speed V ₂	LIM-9
OPERATIONAL LIMITS/REQUIREMENTS	
Takeoff	LIM-9
Enroute	LIM-11
Landing	LIM-12

Flight Load Acceleration Limits	. LIM-12
Demonstrated Crosswind	. LIM-12
Maneuvers	. LIM-12
Seat Belts and Shoulder Harnesses	. LIM-12
SYSTEM LIMITS	. LIM-13
Air Data System	. LIM-13
Attitude Heading Reference System	. LIM-13
Autopilot/Flight Director	. LIM-13
Cabin Pressurization	. LIM-13
Electronic Flight Instrument System (EFIS)	. LIM-14
Engine Synchronizer	. LIM-14
External Power	. LIM-14
Cooling System	. LIM-14
Generator Limits	. LIM-14
Hydraulic System	. LIM-15
Nose Wheel Steering	. LIM-15
Oxygen System	. LIM-15
Rudder Boost System	. LIM-16
Single-Point Refuel System (if installed)	. LIM-16
Spoilers	. LIM-16
Stall Warning System	. LIM-16
Thrust Reversers (if installed)	. LIM-16
Tires	. LIM-16
Trim Systems	. LIM-17
VHF Comm/VHF Nav	. LIM-17
Windshield Alcohol Anti-ice	. LIM-17
POWERPLANT LIMITS	. LIM-18
Engine Type	. LIM-18
Engine Speed	. LIM-18
Engine Operating Temperatures	. LIM-18
Airstart Envelope	. LIM-18

OIL LIMITS	LIM-20
Oil Temperature Limits	LIM-20
Oil Pressure Limits	LIM-20
Approved Oils	LIM-20
FUEL LIMITS	LIM-21
Fuel Load/Balance	LIM-21
Unusable Fuel	LIM-21
Fuel Temperature	LIM-21
Digital Electronic Engine Control (DEEC) Specific Gravity	LIM-21
Approved Fuels	LIM-22
Aviation Gasoline	LIM-22
Anti-icing Additive	LIM-22
Biocide Additive	LIM-23
INSTRUMENT MARKINGS	LIM-24
Pilot and Copilot Airspeed/Mach Indicators	LIM-24
Standby Airspeed/Mach Indicator	LIM-24
Cabin Altimeter/Differential Pressure	LIM-24
Oil Pressure	LIM-24
Turbine Speed (N ₂)	LIM-25
Turbine Temperature (ITT)	LIM-25
Fan Speed (N ₁)	LIM-25
Oil Temperature	LIM-25
Pitch Trim	LIM-26
Electric Power Monitor	LIM-26
Oxygen Pressure	LIM-27
Hydraulic Pressure	LIM-27
Emergency Air	LIM-27

ILLUSTRATIONS

Figure	Title	Page
LIM-1	Center-of-Gravity Envelope— Standard 15,500 lb (7,031 kg) Takeoff Weight	LIM-4
LIM-2	Center-of-Gravity Envelope— Optional 16,500 lb (7,484 kg) Takeoff Weight	LIM-5
LIM-3	Center-of-Gravity Envelope— Optional 17,000 lb (7,711 kg) Takeoff Weight	LIM-6
LIM-4	Airspeed/Mach Limits	LIM-7
LIM-5	Ambient Temperature Limits I	-IM-10
LIM-6	Turbine Temperature Limits I	-IM-19

TABLE

Table	Title	Page
LIM-1	Engine Speed Limits	LIM-18

LIMITATIONS

GENERAL

CERTIFICATION STATUS

This airplane is certified in accordance with FAR 25.

TYPE OF OPERATION

This airplane is approved for:

- VFR (Visual)
- IFR (Instrument)
- Day
- Night
- Icing conditions

This airplane is not approved for ditching under FAR 25.801.

PERFORMANCE CONFIGURATION

The airplane configuration must be as presented under Standard Performance Conditions in Section V of the AFM.

MINIMUM FLIGHT CREW

The minimum flight crew shall consist of pilot and copilot.

WEIGHT AND CG LIMITS

MAXIMUM RAMP WEIGHT

Standard	15,750 lb/7,144 kg
Optional	16,750 lb/7,598 kg
Optional	17,200 lb/7,802 kg

MAXIMUM CERTIFIED TAKEOFF WEIGHT

Standard	15,500 lb/7,031 kg
Optional	16,500 lb/7,484 kg
Optional	17,000 lb/7,711 kg

NOTE

Refer to Takeoff Weight Limit placard installed on the airplane instrument panel.

MAXIMUM ZERO FUEL WEIGHT

Maximum Zero Fuel Weight 13,500 lb/6,123 kg

NOTE

All weights in excess of Maximum Zero Fuel Weight must consist of fuel.

MAXIMUM ALLOWABLE TAKEOFF WEIGHT

The takeoff weight is limited by the most restrictive of the following requirements:

- Maximum Certified Takeoff Weight
- Maximum Takeoff Weight (Climb or Brake Energy Limited) for altitude and temperature as determined from the applicable figure entitled "Takeoff Weight Limits" in Section V of the *AFM*
- Maximum Takeoff Weight for the runway and ambient conditions as determined from the applicable figure entitled "Takeoff Distance" in Section V of the AFM
- Maximum Takeoff Weight for obstacle clearance as determined from the applicable "Takeoff Flight Path" and "Climb Gradient" figures in Section V of the *AFM*, if required

MAXIMUM CERTIFIED LANDING WEIGHT

Aircraft 31-035 through 31-190, and 31-192 not modified by SB 31-8-1 15,300 lb/6,940 kg Aircraft 31-191, 31-193, and subsequent, and prior

aircraft modified by SB 31-8-1 16,000 lb/7,258 kg

MAXIMUM ALLOWABLE LANDING WEIGHT

The landing weight is limited by the most restrictive of the following requirements:

• Maximum Certified Landing Weight

LIM-2

NOTE

Perform Hard or Overweight Landing Inspection (Chapter 5, *Learjet 31/31A Maintenance Manual*) if Maximum Certified Landing Weight is exceeded.

- Maximum Landing Weight for the runway and ambient conditions as determined from the ACTUAL LANDING DISTANCE and FACTORED LANDING DISTANCE (if applicable) charts in Section V of the AFM.
- Maximum Landing Weight (Approach Climb or Brake Energy Limited), for altitude and temperature as determined from the applicable figure entitled Landing Weight Limits in Section V of the *AFM*.

CENTER-OF-GRAVITY

The airplane center of gravity, as loaded for flight, must be maintained within the Center-of-Gravity Envelope defined in Figures LIM-1, LIM-2 or LIM-3 as applicable.

AIRSPEED/MACH LIMITS

NOTE

All Airspeed/Mach Limits are expressed in terms of indicated values unless otherwise stated. Instrument error is assumed to be zero.

MAXIMUM OPERATING SPEED V_{MO}/M_{MO}

 V_{MO}/M_{MO} may not be deliberately exceeded in any regime of flight (climb, cruise, or descent) unless a higher speed is authorized for flight test or pilot training.

V _{MO}	
M _{MO} •Up to 43,000 feet	0.81 M _I
•43,000 to 46,000 feet	0.81 to 0.80 M _I
•46,000 to 47,000 feet	0.80 to 0.79 M _I
•47,000 feet and above	0.79 M _I
•With both the Mach Trim inoper-	ative
and Autopilot disengaged	0.78 M _I
•With any missing Boundary Lay	er Energizers 0.77 M _I

NOTE

The M_{MQ} limits expressed above are based upon compressibility effects. Refer to Recovery From Inadvertent Overspeed procedure in "Emergency Procedures" chapter.

Refer to Figure LIM-4.

FORWARD FLIGHT LIMIT—FS 368.29 (4.0%MAC) FOR ALL WEIGHTS UP TO AND INCLUDING 12,000 POUNDS (5,443 KG) AND TAPERS THROUGH FS 376.00 (13.63% MAC) AT 15,500 POUNDS (7,031 KG) TO FS 376.55 (14.32%MAC) AT 15,750 POUNDS (7,144 KG).

AFT FLIGHT LIMIT—FS 381.11 (20.0%MAC) FOR ALL WEIGHTS UP TO AND INCLUD-ING 9,000 POUNDS (4,082 KG), AND TAPERS TO FS 388.95 (29.8%MAC) AT 12,500 POUNDS (5,670 KG), AND REMAINS AT FS 388.95 (29.8%MAC) UP TO AND INCLUDING 15,750 POUNDS (7,144 KG).

Figure LIM-1. Center-of-Gravity Envelope—Standard 15,500 lb (7,031 kg) Takeoff Weight

FlightSafety

FORWARD FLIGHT LIMIT—FS 368.29 (4.0%MAC) FOR ALL WEIGHTS UP TO AND INCLUDING 12,000 POUNDS (5,443 KG) AND TAPERS THROUGH FS 378.21 (16.38% MAC) AT 16,500 POUNDS (7,484 KG) TO FS 378.76 (17.07%MAC) AT 16,750 POUNDS (7,598 KG).

AFT FLIGHT LIMIT—FS 381.11 (20.0%MAC) FOR ALL WEIGHTS UP TO AND INCLUD-ING 9,000 POUNDS (4,082 KG), AND TAPERS TO FS 388.95 (29.8%MAC) AT 12,500 POUNDS (5,670 KG), AND REMAINS AT FS 388.95 (29.8%MAC) UP TO AND INCLUDING 16,750 POUNDS (7,144 KG).

Figure LIM-2. Center-of-Gravity Envelope—Optional 16,500 lb (7,484 kg) Takeoff Weight

FORWARD FLIGHT LIMIT—FS 368.29 (4.0% MAC) FOR ALL WEIGHTS UP TO AND INCLUDING 12,000 POUNDS (5,443 KG) AND TAPERS THROUGH FS 379.31 (17.76% MAC) AT 17,000 POUNDS (7,711 KG) TO FS 379.75 (18.31% MAC) AT 17,200 POUNDS (7,802 KG).

AFT FLIGHT LIMIT—FS 381.11 (20.0% MAC) FOR ALL WEIGHTS UP TO AND INCLUD-ING 9,000 POUNDS (4,082 KG), AND TAPERS TO FS 388.95 (29.8% MAC) AT 12,500 POUNDS (5,670 KG), AND REMAINS AT FS 388.95 (29.8% MAC) UP TO AND INCLUDING 17,200 POUNDS (7,802 KG).

Figure LIM-3. Center-of-Gravity Envelope—Optional 17,000 lb (7,711 kg) Takeoff Weight

LIM-7

1000 FEET

Figure LIM-4. Airspeed/Mach Limits

LEARJET

31A

PILOT

TRAINING

MANUAL

MANEUVERING SPEED VA

 V_A is the highest speed that full aileron and rudder control can be applied without overstressing the aircraft, or the speed at which the aircraft will stall with a load factor of 3.0 g's at maximum gross weight, whichever is less. Therefore, maneuvers involving full control travel should be confined to speeds below this value.

Refer to Figure LIM-4. for V_A.

MAXIMUM LANDING GEAR OPERATING SPEED VLO

 $V_{\rm LO}$ is the maximum speed at which the landing gear can be safely extended or retracted.

V_{LO}...... 200 KIAS

MAXIMUM LANDING GEAR EXTENDED SPEED VLE

 $V_{\rm LE}$ is the maximum speed at which the aircraft can be safely flown with the landing gear extended.

MAXIMUM FLAP EXTENDED SPEED VFE

 V_{FE} is the maximum speed permissible with the wing flaps in a prescribed extended position:

•	Flaps 8°	250 KIAS
•	Flaps 20°	200 KIAS
•	Flaps 40°	150 KIAS

MINIMUM CONTROL SPEED AIR V_{MCA}

 V_{MCA} is a function of altitude and temperature. During flight tests, the aircraft was controllable down to stall speed. The speed shown is the critical minimum control speed which occurs at the maximum thrust point (Sea Level, 68°F [20°C]). Section V Performance Charts of the *AFM* account for the appropriate values.

V_{MCA} for the following flap positions are:

•	Flaps 8°	93 KIAS
•	Flaps 20°	87 KIAS

MINIMUM CONTROL SPEED GROUND V_{MCG}

 V_{MCG} is a function of altitude and temperature. The speed shown is a maximum, which occurs at the maximum thrust point (Sea Level, 68°F [20°C]). Section V Performance Charts of the *AFM* account for the appropriate values.

V _{MCG} (Rudder Boost System Off)	109 KIAS
V _{MCG} (Rudder Boost System On)	100 KIAS

CRITICAL ENGINE FAILURE SPEED V1

Refer to applicable figure entitled TAKEOFF SPEEDS in Section V of the AFM.

ROTATION SPEED V_R

Refer to applicable figure entitled TAKEOFF SPEEDS in Section V of the AFM.

TAKEOFF SAFETY SPEED V2

Refer to applicable figure entitled TAKEOFF SPEEDS in Section V of the AFM.

OPERATIONAL LIMITS/REQUIREMENTS

TAKEOFF

Maximum Pressure Altitude	10,000 ft
Ambient Temperature	Refer to Figure LIM-4
Tailwind Component	10 kts
Runway Conditions	
Takeoff is limited to paved runways.	
Runway water/slush accumulation	3/4 inch (19 mm)
Fuel Computers	ON ¹
Engine Sync	OFF
Trim	All axes set for takeoff
Fuel Load	Wings balanced within 200 lb

¹Both fuel computers must be ON and operative except for ferry flight as permitted by applicable regulations.

FOR TRAINING PURPOSES ONLY

FlightSafety

The following must be checked and operational:

- Trim Systems
- Standby Attitude Gyro
- Both ADC Systems
- Stall Warning System
- Rudder Boost²
- 3 Symbol Generators³
- Both EADIs and EHSIs
- Both AHS Systems

ENROUTE

Maximum Pressure Altitude

• With spoilers operative 51,000 ft
• With spoilers inoperative 41,000 ft
Ambient Temperature Refer to Figure LIM-4
On Aircraft 31-035 through 31-190, Cooling System OFF above FL 350
Fuel Load Wings balanced within 500 lb

¹Both fuel computers must be ON and operative except for ferry flight as permitted by applicable regulations.

²Required only if system is to be used.

 $^3\mathrm{Airplane}$ may dispatch with two symbol generators provided separate symbol generators are selected for pilot's and copilot's displays.

LANDING

Maximum Pressure Altitude 10,000 ft
Ambient Temperature Refer to Figure LIM-4
Tailwind Component 10 kts
Runway Conditions
Landing is limited to paved runways.
Runway water/slush accumulation 3/4 inch (19 mm)
Pressurization Cabin not pressurized
Engine Sync OFF
Fuel Load Wings balanced within 200 lb

FLIGHT LOAD ACCELERATION LIMITS

These acceleration values limit the bank angle in a level coordinated turn to 70° (flaps up) and 60° (flaps down). In addition, pullups and pushovers must be limited to these values:

•	Flaps Up	+3.0 to -1.0 g
•	Flaps Down	. +2.0 to 0.0 g

DEMONSTRATED CROSSWIND

Refer to Meteorological Definitions in Section V of the AFM Performance.

MANEUVERS

No aerobatic maneuvers, including spins, are approved.

Intentional stalls are prohibited above 18,000 feet with flaps and/or landing gear extended.

SEAT BELTS AND SHOULDER HARNESSES

Seat belts and shoulder harnesses must be worn during takeoff and landing.

SYSTEM LIMITS

AIR DATA SYSTEM

Both air data systems must be operative and the onside system selected (ADC 1 for pilot's side and ADC 2 for copilot's side) for takeoff.

All flags on airspeed/Machmeters and altitude/vertical speed indicators must be retracted for takeoff.

To assure proper air data system operation the BEFORE STARTING ENGINES air data system check must be accomplished in accordance with "Normal Procedures" chapter.

Reduced Vertical Separation Minimums (RVSM) (Aircraft 31-213, 31-222 & Subsequent and prior aircraft modified by SB 31-34-11) — This aircraft has been shown to meet the airworthiness requirements for operation in Reduced Vertical Separation Minimum (RVSM) airspace between 29,000 and 41,000 feet inclusive. This does not constitute an operational approval.

ATTITUDE HEADING REFERENCE SYSTEM

The onside attitude heading system must selected (i.e., AHS 1 for pilot's side and AHS 2 for copilot's side) for takeoff.

AUTOPILOT/FLIGHT DIRECTOR

The Bendix/King KFC 3100 Pilot's Guide (No. 006-08486-0000) must be immediately available to the flight crew.

The autopilot/flight director system is approved for category I ILS approaches.

When using autopilot, the pilot or copilot must be in their respective seat with their seat belt fastened.

Autopilot pitch and roll axes must not be used for takeoff and landing.

The minimum altitude for use of autopilot is:

 Approach (Configuration	200 ft AGL
--------------------------------	---------------	------------

CABIN PRESSURIZATION

Do not takeoff or land with the cabin pressurized.

Maximum Differential Pressure 10.0 psi

ELECTRONIC FLIGHT INSTRUMENT SYSTEM (EFIS)

The Bendix/King EFS 50 Electronic Flight Instrumentation System Pilot's Guide (No. 006-08485-0000) must be immediately available to the flight crew. The pilot's guide must be of a revision level compatible with the level of software installed.

Airplane performance and operation must not be predicated on the use of the multifunction display as the source of the required performance and operational data.

Whenever a symbol generator (SG) or EFIS control panel is removed and replaced, the reversionary modes must be verified prior to flight.

Both EADIs, both EHISs and the standby attitude gyro must be operational for takeoff.

A minimum of two symbol generators must be operational for takeoff. The pilot's and copilot's displays must be sourced by separate symbol generators.

On the copilot's side, the reversionary EADI down mode may only be used in conjunction with the composite (CMPST) mode.

ENGINE SYNCHRONIZER

Engine sync must be OFF for takeoff, landing, and single-engine operation.

EXTERNAL POWER

The maximum amperage from an external power source must be limited to 1,000 amps.

COOLING SYSTEM

Do not switch the cooling system ON or OFF during takeoff or landing.

On all aircraft 31-035 through 31-190, the cooling system must be OFF above FL350.

GENERATOR LIMITS

Generator output is limited as follows:

- 325 amps maximum for any altitude and turbine speed (N_2) except as noted below.
- 400 amps for:
 - SL-25,000 ft for turbine speed (N₂) of 80%. or above
 - 25,000 ft-41,000 ft for turbine speed (N_2) of 86% or above

• 41,000 ft-51,000 ft for turbine speed (N₂) of 93% or above

NOTE

For single generator operation on the ground, the generator output is limited to approximately 220 amps to protect the 275-amp current limiters. If more electrical load is applied, the current will be drawn from the aircraft batteries and will not be shown on the DC AMPS display. If this occurs, DC voltage will be reduced. A DC voltage of 26 volts or less indicates a heavy drain on the aircraft batteries.

HYDRAULIC SYSTEM

Do not exceed auxiliary hydraulic pump duty cycle of 3 minutes ON, then 20 minutes OFF.

Only hydraulic fluid conforming to MIL-H-5606 is approved.

NOSEWHEEL STEERING Aircraft 31-035 thru 21-054 not incorporating SB 31-32-2

Maximum Ground Speed		45 kts
----------------------	--	--------

Maximum Ground Speed with any two of the following three ANTI-SKID lights illuminated:

Left and right inboard and right outboard10 kts

OXYGEN SYSTEM

The following aircraft certification requirements are in addition to the requirements of applicable operating rules. The most restrictive requirements (certification or operating) must be observed.

Above FL250, crew masks must be in the quick-donning position which allows donning within 5 seconds.

On aircraft with inflatable crew masks, hats and "earmuff" type headsets must be removed prior to donning crew oxygen masks.

NOTE

Headsets and eyeglasses worn by crewmembers may interfere with quick-donning capabilities.

Crew and passenger oxygen masks are not approved for use above 40,000 feet **cabin** altitude.

- Passenger masks are intended for use during an emergency descent to an altitude not requiring supplement oxygen.
- Passenger masks will not provide sufficient oxygen for prolonged operation above 34,000 feet cabin altitude. Prolonged operation above 25,000 feet cabin altitude with passengers on board is not recommended.

RUDDER BOOST SYSTEM

If rudder boost is to be used, the Before Starting Engines rudder boost check must be accomplished in accordance with "Normal Procedures" chapter.

SINGLE-POINT REFUEL SYSTEM (IF INSTALLED)

Use of single-point refuel system is limited to aircraft equipped with fuel heaters.

SPOILERS

Do not extend spoilers with flaps extended while airborne.

If the spoilers are inoperative in flight, the maximum operating altitude is limited to 41,000 feet.

STALL WARNING SYSTEM

To assure proper stall warning system operation, the Before Starting Engines stall warning system operation checks in "Normal Procedures" chapter must be completed on each flight.

The angle-of-attack indicators may be used as a reference, but do not replace the airspeed indicators as primary instruments.

THRUST REVERSERS (IF INSTALLED)

When thrust reversers are installed, refer to the applicable Thrust Reverser Supplement for limitations, normal procedures, emergency procedures, abnormal procedures, and performance data.

TIRES

Main Tire Limiting Speed (Ground Speed) 182 kts

TRIM SYSTEMS

To assure proper trim systems operation, the Before Starting Engines trim systems checks in "Normal Procedures" chapter must be successfully completed before each flight.

The complete Trim Systems Operational check in "Normal Procedures" chapter shall be successfully completed a minimum of once every 10 hours of airplane flight operation.

Failure to conduct a pitch trim preflight check prior to each flight increases the probability of an undetected system failure. An additional single failure in the trim system could result in a trim runaway.

VHF COMM/VHF NAV

The use of VHF COMM frequency 119.00 MHz is prohibited whenever a VHF NAV frequency of 116.00 MHz is in use.

NOTE

If the above combination of frequencies is used, keying the COMM causes the NAV to flag.

WINDSHIELD ALCOHOL ANTI-ICE

Methyl alcohol (Methanol) per Federal Specification 0-M-232, Grade A, is required.

The alcohol reservoir shall be refilled after each use.

POWERPLANT LIMITS

ENGINE TYPE

The Learjet 31 aircraft are equipped with Garrett model TFE731-2-3B turbofan engine, part number 3073610-3 (with fuel heaters) or 3073610-1 (without fuel heaters)

ENGINE SPEED

The engine speed limits are listed in Table LIM-1.

CONDITION	LIMIT
OVERSPEED ¹	105% N ¹ or N ²
TRANSIENT ²	
5 SECONDS	103–105% N ¹ or N ²
1 MINUTE	100–103% N ¹ or N ²
TAKEOFF ³	Refer to Takeoff Thrust (N ¹) charts in Section V, <i>AFM</i>
MAXIMUM CONTINUOUS ³	Refer to Maximum Continuous Thrust (N ¹) tables in Section V, <i>AFM</i> .

Table LIM-1. ENGINE SPEED LIMITS

1. If engine overspeed limit is exceeded, contact nearest Garrett Field Service

Propulsion Engine representative prior to engine removal for overspeed inspection. 2. If limit is exceeded, reduce thrust to within limits and make necessary fuel control adjustment prior to next flight.

3. Thrust settings above performance chart values may exceed engine rated thrust.

ENGINE OPERATING TEMPERATURES

Refer to Figure LIM-6.

AIRSTART ENVELOPE

Refer to Figure 4-1 RELIGHT ENVELOPE in Section IV of the AFM for airstart envelope.

FlightSafety

START

• IF START ITT LIMIT IS EXCEEDED, ABORT START AND REFER TO ENGINE SERVICE MANUAL FOR CORRECTIVE ACTION.

TAKEOFF

- IF TAKEOFF LIMIT IS EXCEEDED, REDUCE THRUST SETTING TO WITHIN LIMITS AND RECORD BOTH TEMPERATURE AND DURATION IN EXCESS OF LIMIT IN ENGINE LOG. AN ITT OVERSHOOT RESULTING FROM APPLICATION OF TAKEOFF THRUST NOT EXCEEDING TAKEOFF TRANSIENT LIMIT IS ALLOWABLE AND DOES NOT REQUIRE AN ENGINE LOG ENTRY.
- IF TAKEOFF TRANSIENT LIMIT IS EXCEEDED, REDUCE THRUST SETTING TO WITHIN LIMITS AND MAKE ELECTRONIC COMPUTER N1 ADJUST-MENT BEFORE NEXT FLIGHT. OBSERVE TAKEOFF ITT LIMIT.
- IF A TAKEOFF ITT OF 870°C OR MORE IS ATTAINED FOR MORE THAN 10 SECONDS OR 930°C IS ATTAINED OR EXCEEDED, REFER TO ENGINE SERVICE MANUAL FOR CORRECTIVE ACTION.

MAXIMUM CONTINUOUS

 MAXIMUM CONTINUOUS LIMIT IS 832°C. HOWEVER, FOR GREATEST ENGINE LIFE, IT IS RECOMMENDED THAT, UNDER NORMAL CONDITIONS, ENGINE THRUST BE REDUCED TO AN ITT OF 795°C OR LESS AFTER 30 MINUTES OF MAXIMUM CONTINUOUS OPERATION.

Figure LIM-6. Turbine Temperature Limits

OIL LIMITS

OIL TEMPERATURE LIMITS

Sea Level to 30,000 feet	127°C
Above 30,000 feet	140°C
Transient (2 minutes maximum)	149°C

OIL PRESSURE LIMITS

Minimum	25 psi
Idle Range	25 to 46 psi
Normal Operating Range	38 to 46 psi
Maximum Transient (3 minutes maximum)	55 psi

APPROVED OILS

Oils conforming to Garrett specification EMS 53110, Type II are approved. Refer to Addendum II—Oil Servicing for a listing of approved oils.

FUEL LIMITS

FUEL LOAD/BALANCE

Do not takeoff or land with wing fuel unbalance greater than 200 pounds.

During flight, wing fuel balance must be maintained within 500 pounds.

UNUSABLE FUEL

The fuel remaining in the fuel tanks when the fuel quantity indicator reads zero is not usable in flight.

FUEL TEMPERATURE

If using JP-5, JP-8, JET A, JET A-1 or equivalent fuels, *do not* takeoff with fuel temperatures below -29° C (-20° F).

NOTE

Prolonged operation at ambient temperatures below the freezing point of the fuel used may result in a reduction in usable fuel because of fuel freezing if proper fuel management procedures are not used. Refer to Fuel Management procedures in "Normal Procedures" chapter.

DIGITAL ELECTRONIC ENGINE CONTROL (DEEC) SPECIFIC GRAVITY

WARNING

Engine surge may occur if the recommended specific gravity adjustment is not adhered to for the type of fuel being used. If surge is encountered, refer to the *Engine Maintenance Manual*.

CAUTION

A decrease in the specific gravity setting on the fuel computer, without a change in fuel specific gravity, results in higher turbine temperatures in start, acceleration, and deceleration.

The digital electronic engine control must be adjusted to the recommended specific gravity setting in the engine log book for the type of fuel being used. If no entry is made in the engine log book, the following settings must be observed:

• Jet A, Jet A-1, JP-5 and JP-8..... 5

APPROVED FUELS

The mixing of fuel types is allowed.

Jet-A, Jet-Al, JP-5 and JP-8 fuels conforming to Garrett Specifications EMS 53111, EMS 53112, and EMS 53116 are approved. Refer to Addendum I—Fuel Servicing for a listing of approved fuels.

AVIATION GASOLINE

The use of aviation gasoline is not approved.

ANTI-ICING ADDITIVE

On aircraft equipped with fuel heaters, anti-icing additive is not a requirement. However, for microbial protection, it is recommended that fuel containing either an approved biocide additive or an anti-icing additive conforming to MIL-I-27686 be used at least once a week for aircraft in regular use and whenever a fueled aircraft will be out of service for a week or more.

On aircraft not equipped with fuel heaters, anti-icing additive conforming to MIL-I-27686 or MIL-I-85470 is required. The additive concentration, by volume, shall be as follows:

ADDITIVE	CONCENTRATION BY VOLUME		
ТҮРЕ	MINIMUM	MAXIMUM	
MIL-I-27686	0.06%	0.15%	
MIL-I-85470	0.10%	0.15%	

NOTE

Anti-icing conforming to MIL-I-85470 does not inhibit microbial growth. For microbial protection, it is recommended that fuel containing either an approved biocide additive or an anti-icing additive conforming to MIL-I-27686 be used at least once a week for aircraft in regular use and whenever a fueled aircraft will be out of service for a week or more.

Refer to Addendum I—Fuel Servicing for additional information and the proper anti-icing additive blending procedure.

FlightSafety

LEARJET 31A PILOT TRAINING MANUAL

CAUTION

On aircraft not equipped with fuel heaters, lack of anti-icing additive may cause fuel filter icing and subsequent engine flameout.

BIOCIDE ADDITIVE

Biobor JF is approved for use as a biocide additive when premixed in the fuel supply facility. Additive concentration is not to exceed 270 ppm. Refer to Addendum I—Fuel Servicing for additional information.

INSTRUMENT MARKINGS

PILOT AND COPILOT AIRSPEED/MACH INDICATORS

Barber Pole	
Pick-Up at	V _{MO} /M _{MO}

STANDBY AIRSPEED/MACH INDICATOR

Red Line	325 KIAS
Barber Pole	0.78 M _I

CABIN ALTIMETER/ DIFFERENTIAL PRESSURE Green Arc 0 to 9.4 psi

Yellow Arc	. 9.4 to 9.7 psi
Red Line	9.7 to 10.0 psi

OIL PRESSURE

Red Line (MIN)		25 psi	
Yellow Arc	25 to	o 38 psi	
Green Arc	38 to	o 46 psi	
Yellow Arc	46 to	o 55 psi	
Red Line (3 Minutes MAX)		55 psi	

TURBINE SPEED (N₂)

Green Arc 48 to	100%
Yellow Arc 100 to (One minute	103% limit)
Red Line	103%

TURBINE TEMPERATURE (ITT)

Green Arc	230 to	832°C
Yellow Arc	832 to	860°C
Red Line)	860°C

FAN SPEED (N₁)

Green Arc 24	to 100%
Yellow Arc 100 (One-min	to 103% ute limit)
Red Line	103%

OIL TEMPERATURE

Green Segment	30 to	127°C

- Yellow Segment 127 to 140°C
- Red Line 140°C

NOTE

Do not exceed 127°C below 30,000 feet.

PITCH TRIM

Takeoff Range..... 5.75 to 8.75°

ELECTRIC POWER MONITOR

AC Voltage

- Amber Range 90 to 109 volts and 131 to 134 volts
- Red Range Below 90 volts and Above 135 volts

DC Voltage

Normal Range		22 to 29.5	volts
Amber Range		18 to 21.9	volts
	and 2	9.6 to 31.5	volts
Red Range		Below 18	volts

and Above 31.5 volts

DC Amperes

Normal Range	0 to	325	amps
--------------	------	-----	------

- Amber Range 326 to 400 amps
- Red Range..... Above 400 amps

OXYGEN PRESSURE

Green Segment 1	1,550 to 1,850 psi
Yellow Segment	0 to 300 psi
Red Line	2,000 psi

HYDRAULIC PRESSURE

Yellow Segment 0 to	1,000 psi
Green Segment 1,000 to	1,750 psi
Red Line	1,750 psi

EMERGENCY AIR

Yellow Segment 0 to	1,800 psi
Green Segment 1,800 to	3,000 psi
Red Line	3,000 psi

NOTE

If air bottle is serviced near the high end of yellow segment (slightly above 1,800 psi), pressure may drop during flight as the system cools; satisfactory gear extension and braking can still be expected.

MANEUVERS AND PROCEDURES CONTENTS

INTRODUCTION	MAP-1
GENERAL	MAP-1
ABBREVIATIONS	MAP-1
STANDARD OPERATING PROCEDURES	MAP-2
General	MAP-2
Responsibilities	MAP-2
Checklist Procedures	MAP-2
Briefing Guides	MAP-3
Takeoff Procedures	MAP-4
Climb and Cruise Procedures	MAP-4
Approach Planning	MAP-5
Descent Procedures	MAP-6
Approach Procedures	MAP-6
Go-Around/Balked Landing	MAP-7
MANEUVERS	MAP-7
General	MAP-7
Performance Standards	MAP-8
Minimum Maneuvering Speeds	MAP-9
Power Settings	MAP-9
Takeoff	MAP-10
Engine Failure Below V1 Speed	MAP-13
Engine Failure Above V ₁ Speed	MAP-13
Steep Turns	MAP-13
Slow Flight	MAP-17
Approach to Stall	MAP-19
Emergency Descent	MAP-21
Visual Traffic Pattern, Two Engines	MAP-22

Visual Traffic Pattern, Single-Engine	MAP-23
Flaps Up Landing	MAP-24
Precision Instrument Approach	MAP-25
Nonprecision Instrument Approach	MAP-26
Circling Instrument Approach	MAP-27
Go-Around/Balked Landing	MAP-27
Single-Engine Drift Down	MAP-30

ILLUSTRATIONS

Figure	Title	Page
MAP-1	Standing Takeoff	MAP-11
MAP-2	Rolling Takeoff	MAP-12
MAP-3	Engine Failure Below V ₁ Speed	MAP-14
MAP-4	Engine Failure Above V ₁ Speed	MAP-15
MAP-5	Steep Turns	MAP-16
MAP-6	Slow Flight—Clean Configuration	MAP-17
MAP-7	Slow Flight—Takeoff Configuration	MAP-18
MAP-8	Slow Flight—Landing Configuration	MAP-18
MAP-9	Approach to Stall—Clean Configuration	MAP-19
MAP-10	Approach to Stall—Takeoff Configuration	MAP-20
MAP-11	Approach to Stall—Landing Configuration	MAP-20
MAP-12	Emergency Descent	MAP-21
MAP-13	Visual Traffic Pattern—Two Engines	MAP-22
MAP-14	Visual Traffic Pattern—Single Engine	MAP-23
MAP-15	Flaps Up Landing	MAP-24
MAP-16	Precision Instrument Approach	MAP-25
MAP-17	Nonprecision Instrument Approach	MAP-26
MAP-18	Circling Instrument Approach	MAP-28
MAP-19	Go-Around/Balked Landing	MAP-29
MAP-20	Single-Engine Drift Down	MAP-30

TABLE

Table	Title	Page
MAP-1	Performance Standards	MAP-8

MANEUVERS AND PROCEDURES

INTRODUCTION

The general pilot information in this chapter is intended to supplement and expand upon information in other sources. It is not intended to supercede any official publication. If there is any conflict between the information in this chapter and that in any official publication, the information in the official publication takes precedence.

GENERAL

General pilot information includes Standard Operating Procedures and the maneuvers normally encountered during Learjet training and operations. The following abbreviations are used in this chapter.

ABBREVIATIONS

AFM	Airplane Flight Manual	MEA	EA Minimum Enroute Alti-		
AGL	Above Ground Level		tude		
ATA	Airport Traffic Area (Class D Airspace effec- tive 9/16/93)	M _{MO}	Mach, Maximum Opera- tional		
		MSL	Mean Sea Level		
ATC	Air Traffic Control	N_1	Fan Speed		
CDI	Course Deviation	PF	Pilot Flying		
	Indicator	PIC	Pilot in Command		
COM/ NAV	Communication/ Navigation	PNF	Pilot Not Flying		
DH	Decision Height	SOP	Standard Operating Pro- cedure		
FAF	Final Approach Fix	VDP	Visual Descent Point		
FL	Flight Level	V _{FE}	Velocity Flaps Extended		
HAA	Height Above Airport	V _{MO}	Velocity Maximum Op-		
HAT	Height Above Touch-		erational		
	down	\mathbf{V}_1	Critical Engine Failure		
IAF	Initial Approach Fix	Speed			
KIAS	Knots, Indicated Air- speed	VR	Rotation Speed		
		VREF	Reference Speed		
MAP	Missed Approach Point	V_2	Takeoff Safety Speed		
MDA	Minimum Descent Alti- tude				

STANDARD OPERATING PROCEDURES

GENERAL

Standard Operating Procedures (SOPs) are used to supplement the information in the AFM and Federal Air Regulations. Adherence to SOPs enhances individual and crew situational awareness and performance. SOPs may include assignment of responsibilities, briefing guides and procedures to be followed during specific segments of flight. The SOPs in this section are not intended to be mandatory or to supercede any individual company SOPs. They are simply provided as examples of good operating practices.

RESPONSIBILITIES

PIC—The Pilot in Command is designated by the company for flights requiring more than one pilot. Responsible for conduct and safety of the flight. Designates pilot flying and pilot not flying duties.

PF—The Pilot Flying controls the airplane with respect to heading, altitude and airspeed and accomplishes other tasks as directed by the PIC.

PNF—The Pilot Not Flying maintains ATC communications, obtains clearances, accomplishes checklists, makes altitude call outs and other tasks as directed by the PIC.

All crewmembers are responsible for providing advice and council to the PIC. The PIC may choose to accept or reject such advice. That is a prerogative of the PIC. But neither the PIC's acceptance nor rejection of advice relieves other crewmembers of the responsibility of providing it.

CHECKLIST PROCEDURES

Normally, the PF initiates all checklists. However, if the PNF thinks a checklist should be accomplished, and the PF has not called for it, the PNF should prompt the PF. For example, "Ready for the Approach checklist, Captain?"

FlightSafety International recommends the use of the checklist challenge and response concept. Using Normal Procedures checklists, the PNF challenges the PF and the PF responds. Using Abnormal or Emergency Procedures checklists, the PNF challenges the PF and, as a memory aid, also gives the checklist item response. The PF then responds.

The PF may elect to have the PNF accomplish some Abnormal or Emergency Procedure checklists on the PF's command. In this case, the PNF gives the checklist item and response. The PF replies with the response and the PNF accomplishes the action.

When a checklist has been completed the PNF reports the checklist is complete and that he/she is standing by with the next checklist. For example, "Approach checklist complete. Standing by with the Before Landing checklist."

If an emergency occurs on takeoff after V_1 speed and the takeoff is continued, no checklist should be initiated before the airplane reaches a safe altitude above the ground; at least 400 feet.

BRIEFING GUIDES

General

While the Learjet *AFM* does not specifically require before takeoff and approach briefings, such briefings are appropriate under some circumstances. The briefing guides presented below should be used when flying with unfamiliar crewmembers or any other time the PIC believes they are necessary.

It should be noted that many of these items can, and should, be briefed well before engine start. Many of them can be discussed before arriving at the airplane.

Pretakeoff Briefing

The pretakeoff briefing should address the following items:

- Type of takeoff: rolling or standing, flap setting, etc
- Review takeoff data to include power setting and speeds
- Procedures to be used in the event of an emergency before or after V₁ speed including emergency return procedures
- Headings and altitudes to be flown during the departure including restrictions, if any
- Radio, navigational systems and flight director settings
- Anti-icing requirements, if applicable
- Specific PNF duties and callouts. (See "Takeoff Procedures," later in this section, for additional information.)
- A request for "Any questions?" directed to all cockpit crewmembers

Approach Briefing

The approach briefing should be completed before starting descent and address the following items. The PF normally transfers airplane control to the PNF during the briefing.

- Approach to be used and backup approach, if available
- Special procedures to be used during the approach, such as circling approach procedures, interception of a radial from an arc, VDP, etc.
- Altitudes of IAF, FAF, stepdowns, sector and obstacles
- Minimums (DH, MDA), (HAT, HAA), radio altimeter setting
- Missed approach point and procedures, timing to MAP/VDP
- Radio (COM/NAV) setup desired

- Anti-icing requirements
- Specific PNF duties and callouts. (See "Approach Procedures," later in this section, for additional information.)
- The procedure for transitioning to visual flight
- A request for "Any questions?" directed to all cockpit crewmembers

At the completion of the Approach briefing, the PF announces "Approach briefing complete," and reassumes control of the airplane if control has been transferred to the PNF.

TAKEOFF PROCEDURES

When cleared for takeoff the PNF reports "Before Takeoff checklist complete, cleared for takeoff." The PF advances power toward the takeoff power setting, the PNF taps PF's hand and makes the final power setting.

At initial airspeed indication, the PNF cross-checks airspeed indicators and reports "Airspeed alive." PF releases nosewheel steering (airplanes without digital nosewheel steering only).

At V_1 speed, the PNF calls "Vee One." The PF releases the thrust levers and puts both hands on the control column.

At V_R , the PNF calls "Rotate." The PF rotates airplane to a 9° noseup pitch attitude.

With positive rate of climb, the PF calls "Positive rate, gear up." The PNF positions gear switch to up and calls "Gear selected up." The PNF monitors the gear while it is retracting and reports "Gear up," when retraction is complete.

Before V_{FE} (V₂ plus 20 knots minimum), the PF calls, "Flaps up, After Takeoff checklist." The PNF positions the flap handle to up and calls "Flaps selected up." The PNF monitors the flaps while they are retracting and reports "Flaps up," when retraction is complete. PNF accomplishes the After Takeoff checklist.

CLIMB AND CRUISE PROCEDURES

The PNF announces all assigned altitudes and sets them in the altitude alerter. The PNF also calls out 1,000 feet above, or below, all assigned altitudes and altitude restrictions. These calls normally are made by stating the existing altitude and the assigned altitude or restriction. For example, "Through 9,000 feet, cleared to 8,000," or "Through flight level 460 for 470." The PNF also announces other significant altitudes, such as, "Through 18,000 feet, altimeter 29.92," or, "Flight level 410, going on oxygen."

The PF periodically announces his intentions and targets throughout the flight, such as "Accelerating to 250 knots," "Turning right to 260 degrees and

descending to 3,000 feet," "We'll hold this heading until intercepting the 090 degree radial and then turn right to the station."

Any change in cockpit function is announced by the pilot making the change and acknowledged by the other pilot. For example, the PNF announces, "VOR number two set to Springfield and identified." PF acknowledges, "VOR two on Springfield." PF announces, "Autopilot engaged and coupled in climb and heading modes." PNF acknowledges, "Roger."

Transfer of airplane control is announced by the pilot initiating the change and acknowledged by the pilot assuming control. Specific target values are provided to the pilot assuming control. For example, the PF announces, "Take the airplane for a minute. We're climbing at 250 knots to 7,000 on a vector to the 045 radial." PNF acknowledges, "I've got the airplane, climbing at 250 to 7,000 on this heading until intercepting the 045 radial."

APPROACH PLANNING

Approach planning and briefing should be accomplished during cruise. Review hazardous terrain, MEAs, and minimum sector altitudes. Complete and review performance data to include V_{REF} speed, landing distance, approach climb speed and power setting.

The PF directs the PNF to obtain destination weather or obtains it himself. If the PNF obtains the weather, the PF normally assumes ATC communications while the PNF is obtaining weather. In either case, after checking weather, the pilot who did so briefs the other pilot on the destination weather, the expected approach, and any other significant information.

If a VDP has not been published, a "time to see the runway" may be computed as follows. Take the MDA, divided by 10, and subtract that, in seconds, from the time from the FAF to the MAP. For example, assume the MDA is 400 feet and the time from the FAF to the MAP is 1 minute and 45 seconds. Four hundred, divided by 10 equals 40. Subtracting that from 1:45 equals 1:05 from the FAF to see the runway. If the runway is not in sight at the end of that time, either a faster than normal rate of descent is required, or the airplane lands beyond the normal touchdown zone.

Normally ATC determines when a descent may be started. However, descents may sometimes be started at the PF's discretion. To determine how far out to start descent for an approach, use 3 times the altitude to be lost, divided by 1,000. For example, to lose 40,000 feet, 3 times 40,000 equals 120,000, divided by 1,000 equals 120 miles out to start descent.

The Descent checklist should be started before, or early in, the descent to permit proper windshield heat and pressurization system operation.

Descent below flight level 180 will not be started before obtaining a local area altimeter setting.

DESCENT PROCEDURES

The same procedures used during climb and cruise are used during descent. The PNF accomplishes the Descent checklist, as directed by the PF, and makes altitude callouts to include the transition level and 10,000 feet.

APPROACH PROCEDURES

The PF initiates the Approach checklist when descending out of 18,000 feet or when within 50 miles of the destination airport. The checklist is accomplished so as to not interfere with the visual lookout for other traffic.

Configuration changes during the approach are accomplished using the same crew coordination techniques used after takeoff. The PF calls for a configuration change. The PNF acknowledges, selects the switch position, monitors and reports when gear and flaps are in the selected positions.

The Approach checklist is completed and the airplane slowed to V_{REF} + 30 knots (minimum) before reaching the IAF.

Over the IAF, for other than a straight-in approach, the PF turns outbound, call for flaps 8° , slows the airplane to $V_{REF} + 25$ knots (minimum) and begins a descent, if necessary. The PNF starts timing, announces the time to be flown and the outbound course, or heading, and altitude if an altitude change is required.

If a procedure turn is to be made, any accepted procedure turn maneuver may be used. At the expiration of the time from the IAF, the PNF announces that time is up, the direction of turn, and the next heading. For example, "Time's up, left turn now to 045 degrees." Wings-level outbound in the procedure turn, the PNF starts timing, announces the time to be flown and the next heading and altitude. At the expiration of the procedure turn outbound time, the PNF announces the time is up, the direction of turn, the next heading and altitude, if an altitude change is required. For example, "Time's up, right turn now to 225° and cleared down to 3,000."

Approaching the final approach course, the PNF monitors the CDI or bearing pointer and reports "CDI alive," or "Within 5° of the inbound course."

Established on final approach, the PF will call for flaps 20° and slow the airplane to $V_{REF}+20$ (minimum) and begin a descent, if necessary. After the flaps have been set to 20° and within 3–5 miles of the final approach fix, the PF will call "Gear Down Before Landing Checklist". The PNF extends the landing gear, completes the Before Landing Checklist up to flaps down and reports, before Landing Checklist complete except full flaps.

Over the FAF, on a two-engine, straight-in approach, the PF calls for flaps 40°, slows the airplane to V_{REF} (minimum) and begins a descent. For a circling approach, the flaps remain at 20° until the aircraft is continuously in a position from which a descent to a normal landing on the intended runway can be made at a normal rate of descent using normal maneuvers. If single-engine, the flaps remain at 20° until landing. The PNF begins timing, if necessary,extends the flaps and completes the Before Landing checklist. The PNF also confirms that the COM/NAV radios are set properly, checks the flight

instruments, airspeed bugs, altitude alerter, radio altimeter setting and MDA or DH. The PNF then reports, "Before Landing checklist complete, no flags, cleared to descend to ______ feet."

After passing the FAF, the PNF begins looking for visual references outside the airplane. However, he/she also monitors the instruments and calls out significant deviations such as 1 dot, or more, deflection on the CDI or glideslope and airspeed variations greater than -0 to +10 knots from V_{REF}. If the PF does not respond to the callout, the PNF repeats it. If the PF does not respond to the second callout, the PNF assumes the PF has been incapacitated and announces that he/she (the PNF) is taking control of the airplane.

The PNF calls out the time to the VDP/MAP and 1,000, 500 and 100 feet above MDA or DH. The PNF also reports visual contact with the ground such as, "Visual contact, no runway yet," "Approach lights in sight at 11 o'clock," or "Runway in sight straight ahead."

Approaching minimums, or the missed approach point, the PF begins crosschecking outside the airplane for visual references. When satisfied that visual references are adequate for landing, the PF announces, "I'm going visual," or "Going outside." At this point, the PNF directs his attention primarily inside the airplane, while cross-checking outside, and calls airspeed, descent rate and altitude. The purpose is to provide the PF, verbally, the same information he/she would have if still on instruments.

Airspeed should be called as plus or minus V_{REF} , descent rate as up or down and altitude above the ground. For example, "Plus 5, down 500, 100 feet," indicates the airspeed is V_{REF} plus 5 knots, the airplane is descending at 500 feet per minute and is 100 feet above the ground.

GO-AROUND/BALKED LANDING

If a go-around/balked landing is necessary, the PF will call "Going around", set power to Take-off thrust and simultaneously establish a 9° nose-up pitch altitude. Selecting the flight director to Go-around mode will disengage the auto-pilot and set the pitch bars to 9°. Spoilers will be checked retracted and flaps set to 20°. The PNF will confirm spoilers and flaps set and will call out the direction of turn if one is required, along with the missed approach heading and altitude. The PNF notifies ATC of the missed approach.

MANEUVERS

GENERAL

This section contains a description of most of the maneuvers that are likely to be encountered during Learjet training and operational flying. While there is always more than one way to fly an airplane, these procedures have been developed over many years of Learjet operations. They have proven to be safe, efficient and readily manageable. These procedures are consistent with the AFM. However, if a conflict should develop between these procedures and those in the AFM, the AFM procedures should be used.

PERFORMANCE STANDARDS

The performance standards in Table MAP-1 should be maintained during all Learjet flight operations.

Table MAP-1. PERFORMANCE STANDARDS

Steep Turns	eep Turns				
Bank angle:	Bank angle: 45°, ±5°				
Altitude: ±1	Altitude: ±100 feet				
Airspeed: ±	Airspeed: ±10 KIAS				
Heading: ±1	Heading: ±10°				
Approach to Stall	roach to Stall				
Initiate reco Recover with	Initiate recovery at stick shaker onset Recover with minimum altitude loss				
Holding					
Altitude: ±1	.00 feet				
Airspeed: ±	Airspeed: ±10 knots				
Instrument Approac	ches				
Initial:	Altitude: ±100 feet				
	Airspeed: ±10 knots				
Final:	Airspeed: -0, +5 knots				
	Localizer: ±one dot				
	Glide Slope: ±one dot				
	Bearing Pointer: ±5°				
MDA:	Altitude: -0, +50 feet				
Circling Approaches					
Bank Angle:	Bank Angle: 30° maximum				
Altitude: -0	Altitude: -0, +100 feet				
Airspeed: -	Airspeed: -0, +5 knots				
Missed Approach	ssed Approach				
DH: Altitud	DH: Altitude: -0 before initiation of the missed approach				
MDA: Altitu in sight befo	MDA: Altitude: -0, unless runway environment had been in sight before the missed approach				
Landings					
Traffic Patte	rn: Airspeed: ±10 knots				
	Altitude: ±100 feet				
Final Approa	ach: Airspeed: -0, +5 knots				

MINIMUM MANEUVERING SPEEDS

Minimum maneuvering speeds are expressed in terms of V_{REF} speed which is 1.3 times the stalling speed in the landing configuration.

For maneuvering with up to 30° of bank, the following minimum speeds should be used:

Spoilers deployed V_{REF} + 40 knots					
Flaps up $\dots \dots \dots$					
Flaps 8° V_{REF} + 25 knots					
Flaps 20° V _{REF} + 20 knots					
Flaps 40° V _{REF} + 10 knots					
For maneuvering with up to 15° of bank, on final approach for landing, for example, the following minimum speeds should be used:					
Spoilers deployed					
Flaps up V _{REF} + 20 knots					
Flaps 8° V _{REF} + 15 knots					
Flaps 20° V _{REF} + 10 knots					

Flaps 40° V_{REF}

POWER SETTINGS

Actual power settings vary depending upon the temperature, pressure altitude, and airplane gross weight. The following target settings are approximate, but may be used to provide a starting point to determine the actual power setting.

Below 10,000 MSL, 60% N_1 to maintain 200 KIAS, 70 to 75% N_1 to maintain 250 KIAS.

Between 10,000 MSL and FL 250, 75 to 80% N_1 to maintain 250 KIAS.

TAKEOFF

Either 8 or 20° of flaps may be used for takeoff. The normal, standing takeoff (Figure MAP-1) must be used to achieve the performance specified in the *AFM*. If the runway available is at least 10 percent longer than the planned takeoff distance, a rolling takeoff (Figure MAP-2) may be used. The procedures are the same except for a standing takeoff, power is set before brake release. For a rolling takeoff, the brakes are released before the power is set. During a rolling takeoff, takeoff power must be set before the runway remaining equals the takeoff distance.

Normally, before V_{FE} (V₂ plus 20 knots minimum) the flaps are retracted and the After Takeoff checklist is accomplished. However, if traffic conditions warrant, the After Takeoff checklist may be delayed until the airplane is clear of local traffic.

Approaching 200 knots the PF should adjust power and pitch attitude if necessary, to maintain 200 knots or less within the ATA (Class D Airspace). For passenger comfort and ease of airplane control, it is recommended that the pitch attitude not exceed 20° noseup.

The maximum continuous climb power setting is a variable depending on temperature and pressure altitude. The "Maximum Continuous Thrust (N_1) " chart, in the Performance Data section of the checklist, and *AFM* thrust setting procedures should be used.

Figure MAP-1. Standing Takeoff

FlightSafety

LEARJET 31A PILOT TRAINING MANUAL

Figure MAP-2. Rolling Takeoff

ENGINE FAILURE BELOW V1 SPEED

If an engine fails below V_1 speed (Figure MAP-3), the takeoff must be aborted. The PF simultaneously reduces power to idle, applies maximum braking and deploys the spoilers. The drag chute or thrust reversers (if installed) are deployed if necessary.

Takeoffs may be aborted for malfunctions other than engine failure, however, the same procedures should normally be used.

ENGINE FAILURE ABOVE V₁ SPEED

If an engine fails above V_1 speed (Figure MAP-4), the takeoff is normally continued. The PF maintains directional control with ailerons and rudder and keeps the nosewheel on the runway until reaching rotate speed. After liftoff, the initial climb is made at V_2 speed with takeoff flaps until the airplane is clear of obstacles or, if there are no obstacles, to 1,500 feet AGL. The PF then accelerates the airplane to V_2 plus 20 knots (minimum) and directs the PNF to retract the flaps. The PF then accelerates the airplane to single-engine climb speed (normally 200 knots) and climbs to the assigned altitude.

At a safe altitude above the ground, (normally, no lower than 400 feet) the memory items for the Engine Failure/Fire Shutdown in Flight checklists are completed. The rest of the Engine Failure/Fire Shutdown in Flight checklists, and the After Takeoff checklist, are normally completed at, or above, 1,500 feet AGL. The crew then elects to obtain clearance to return to the departure airport for landing or proceeds to an alternate airport.

STEEP TURNS

Steep turns (Figure MAP-5) are used to build confidence in the airplane and improve instrument cross-check. They may be accomplished at any altitude above 5,000 feet AGL. The higher the altitude, the more difficult the maneuver is to perform correctly. Steep turns are accomplished without flight director steering commands since the flight director does not command 45° of bank.

Power must be increased approximately $2\% N_1$ to maintain airspeed during steep turns. The airplane should be kept in trim and the bank angle should be held constant. If altitude corrections are necessary, they should be made in pitch only. It is not necessary to shallow the bank to climb during a steep turn in a Learjet.

Steep turns of at least 180° , preferably 360° , should be practiced in each direction.

FlightSafety

* AIRPLANES WITHOUT DIGITAL NOSEWHEEL STEERING

Figure MAP-3. Engine Failure Below V₁ Speed

Figure MAP-4. Engine Failure Above V1 Speed

Figure MAP-5. Steep Turns

SLOW FLIGHT

Slow flight is used to develop the pilot's sense of feel for the airplane's low speed handling characteristics and improve the pilot's coordination and instrument cross-check. Slow flight is accomplished in the clean, takeoff and landing configurations (Figures MAP-6, MAP-7 and MAP-8), and is normally accomplished between 10,000 and 15,000 feet MSL. Slow flight should not be accomplished below 5,000 AGL. To stay above 5,000 AGL, high terrain may require that slow flight be accomplished above 15,000 MSL.

Slow flight may be practiced while maintaining a constant altitude and heading or while maintaining a constant altitude and making turns to preselected headings. Slow flight may also be practiced while making constant rate climbs and descents to preselected altitudes. Slow flight practice may be terminated by a recovery to normal cruise or an approach to stall.

Figure MAP-6. Slow Flight—Clean Configuration

Figure MAP-7. Slow Flight—Takeoff Configuration

APPROACH TO STALL

Approaches to stalls are accomplished in the clean, takeoff, and landing configurations (Figures MAP-9. MAP-10, and MAP-11), and are normally accomplished between 10,000 and 15,000 feet MSL. Approaches to stalls should not be accomplished below 5,000 AGL. Approaches to stalls may be made from level or turning flight with 15 to 30° of bank. Approaches to stalls may also be combined with slow flight practice. All recoveries are made with power and minimum loss of altitude.

Approach to stall recovery is initiated at the first indication of an impending stall. This indication is provided by the stick shaker and stall warning annunciator lights which activate as the angle of attack indicator needle moves into the yellow band.

Power should be advanced to maximum and the existing pitch attitude maintained. However, the angle-of-attack indicator should be monitored and the pitch attitude reduced, if necessary, to keep the needle at the line between the green and yellow bands.

To set maximum power in minimum time, the PF should move the thrust levers smoothly forward to the stop and then the PNF should monitor and adjust the power setting if necessary. Approaches to stall from the landing configuration are normally terminated by a simulated missed approach, (Figure MAP-11).

Figure MAP-9. Approach to Stall—Clean Configuration

Figure MAP-10. Approach to Stall—Takeoff Configuration

EMERGENCY DESCENT

Emergency descents are accomplished in accordance with *AFM* procedures as shown in Figure MAP-12. The PF should accomplish the checklist memory items and allow the airplane to pitch down to a 10 to 15° nosedown pitch attitude. This pitch attitude is maintained until the airplane accelerates to M_{MO}/V_{MO} . Then the pitch attitude is adjusted to maintain M_{MO}/V_{MO} .

After the emergency descent has been established, the crew should determine the desired level-off altitude.

Figure MAP-12. Emergency Descent

VISUAL TRAFFIC PATTERN, TWO ENGINES

A two-engine visual traffic pattern is shown in Figure MAP-13. The airspeeds indicated on the diagram are minimums. Traffic pattern altitude for jet airplanes is normally 1,500 feet AGL. During gusty wind conditions, 1/2 the gust velocity should be added to V_{REF} on final approach. If a crosswind exists, final approach should be flown with a drift correction angle (crab) to maintain alignment with the runway center line. Approaching touchdown, rudder should be applied to align the airplane with the runway centerline and the upwind wing lowered with aileron to prevent drift.

Figure MAP-13. Visual Traffic Pattern—Two Engines

VISUAL TRAFFIC PATTERN, SINGLE-ENGINE

A single-engine visual traffic pattern (Figure MAP-14) is flown exactly the same as a two-engine pattern except for the flap setting on final approach. For a single-engine landing, final approach is flown with flaps 20° at V_{REF} plus 10 knots until landing. Additionally, the PF may elect to have the PNF remove some, or all, of the rudder trim on final approach.

Figure MAP-14. Visual Traffic Pattern—Single Engine

FLAPS UP LANDING

The corrected landing distance for a flaps up landing (Figure MAP-15) is determined by multiplying the normal landing distance by 1.6. Consideration should be given to reducing the airplane's weight, if possible, to lower the landing speed and reduce landing distance, if the available runway length is marginal.

To avoid excessive floating during the landing flare, the PF should establish the landing attitude as power is reduced to idle, maintain the attitude and allow the airplane to touch down. The use of the drag chute, or thrust reversers, (if installed) is recommended during a flaps up landing.

Figure MAP-15. Flaps Up Landing

PRECISION INSTRUMENT APPROACH

A typical, precision instrument approach is shown in Figure MAP-16. All accepted instrument flying procedures and techniques should be used while making instrument approaches in the Learjet.

Two-engine, precision approaches should be flown with a stabilized airspeed and configuration from the final approach fix (FAF) inbound. Single-engine, precision approaches should be flown with flaps 20° at V_{REF} plus 10 knots from the FAF inbound.

Figure MAP-16. Precision Instrument Approach

NONPRECISION INSTRUMENT APPROACH

A typical, nonprecision instrument approach is shown in Figure MAP-17. All accepted instrument flying procedures and techniques should be used while making instrument approaches in the Learjet.

Two-engine, nonprecision approaches should be flown with a stabilized airspeed and configuration from the final approach fix (FAF) inbound. Single-engine, nonprecision approaches should be flown with flaps 20° at V_{REF} plus 10 knots from the FAF inbound.

Figure MAP-17. Nonprecision Instrument Approach

CIRCLING INSTRUMENT APPROACH

Any instrument approach that requires a heading change of 30° or more to line up with the landing runway is a circling approach. An identifiable part of the airport must be distinctly visible to the pilot during the circling approach, unless the inability to see an identifiable part of the airport results only from a normal bank of the airplane. The circling MDA and weather minima to be used are those for the runway to which the approach is flown.

The Learjet is an approach category C airplane. However, category D minimums should be used if the airplane will be maneuvered at speeds over 141 knots (the minimum for category D airplanes) during the circling approach.

There are two types of circling approaches. The first type of circling approach positions the airplane within 90°, or less, of the runway heading on a base leg for landing. With two engines, this type of approach is normally flown with the gear down and 40° of flaps at V_{REF} plus 10 knots from the FAF inbound. When landing is assured, airspeed may be reduced to V_{REF} minimum.

The second type of circling approach (Figure MAP-18) requires a heading change of more than 90° to line up with the landing runway. With two engines, this type of approach is normally flown with the gear down and 20° of flaps at V_{REF} plus 20 knots from the FAF inbound. On final approach, flaps should be extended to 40° and airspeed reduced to V_{REF} minimum.

All single-engine circling approaches should be flown with 20° of flaps at V_{REF} + 20 knots from the FAF inbound. When landing is assured, the airspeed can be reduced to V_{REF} + 10 knots.

GO-AROUND/BALKED LANDING

The Learjet go-around/balked landing procedure, shown in Figure MAP-19, should be used for all missed approaches. Generally, if a missed approach is started at, or above, MDA or DH, it is considered a go-around. If a missed approach is started below MDA or DH, it is considered a rejected, or balked, landing. During training, rejected, or balked, landings will normally be initiated over the runway threshold at an altitude of approximately 50 feet.

In either case, use of the flight director go-around mode is recommended to provide a target 9° nose-high pitch attitude. After the airplane is clear of obstacles and the flaps have been retracted, the pitch attitude and power may be adjusted to maintain the desired airspeed.

If the go-around/balked landing is made from an instrument approach, the published missed approach procedure should be accomplished unless otherwise instructed. If the go-around/balked landing is made during a circling approach, the initial turn to the missed approach heading must be made toward the landing runway. The turn may then be continued until the airplane is established on the missed approach heading.

FlightSafety

Figure MAP-18. Circling Instrument Approach

* SELECTING FLIGHT DIRECTOR GO AROUND MODE WILL DISENGAGE THE AUTOPILOT AND PROVIDE A 9 DEGREE NOSE-UP PITCH COMMAND.

Figure MAP-19. Go-Around/Balked Landing

SINGLE-ENGINE DRIFT DOWN

The single-engine drift down procedure shown in Figure MAP- 20 is used to cover the greatest possible distance while descending to single-engine cruise altitude after an engine failure at high altitude.

As the note on the chart explains, the speed schedule depicted also approximates the best single-engine, rate-of- climb speed below the single- engine service ceiling. This speed schedule may then also be used to climb to single- engine cruise altitude after an engine failure at low altitude.

NOTE: THIS SPEED SCHEDULE REPRESENTS THE MINIMUM SINK-RATE SPEED ABOVE THE SINGLE-ENGINE SERVICE CEILING AND APPROXIMATES THE BEST RATE-OF-CLIMB SPEED BELOW THE SINGLE-ENGINE SERVICE CEILING.

Figure MAP-20. Single-Engine Drift Down

WEIGHT AND BALANCE CONTENTS

Page

NTRODUCTION I	WB-1
EFINITIONS	WB-6
VEIGHT AND BALANCE COMPUTATION N	WB-7
Weighing Instructions W	VB-16
Weight and Center-of-Gravity Limits W	VB-20
Loading Instructions W	VB-21

ILLUSTRATIONS

Figure	Title	Page
WB-1	Center-of-Gravity Envelope— Standard 15,500 lb (7,031 kg) Takeoff Weight	WB-2
WB-2	Center-of-Gravity Envelope— Optional 16,500 lb (7,484 kg) Takeoff Weight	WB-3
WB-3	Center-of-Gravity Envelope— Optional 17,000 lb (7,711 kg) Takeoff Weight	WB-4
WB-4	Dimensional Data	WB-5
WB-5	Aircraft Loading Form	WB-8
WB-6	Payload Moments	WB-9
WB-7	Usable Fuel Moments	WB-10
WB-8	Fuel Used Vs. Moment Loss	WB-11
WB-9	Weight-Moment-CG Envelope	WB-13
WB-10	Center-of-Gravity Table	WB-15
WB-11	Unusable and Trapped Fluids	WB-17
WB-12	Landing Gear Dimensional Data	WB-18
WB-13	Aircraft Weighing Record	WB-19

WEIGHT AND BALANCE

INTRODUCTION

The airplane weight and load arrangement, as loaded for flight, must be within limits of the applicable center-of-gravity envelope (Figures WB-1, WB-2 and WB-3). It is the pilot's responsibility to ensure that the airplane is loaded properly to ensure acceptable stability, control, performance, and structural loads.

Weight and balance data are supplied in the Weight and Balance Data section of the AFM by the manufacturer when the airplane is delivered. The Weight and Balance Data section also contains charts and tables necessary for CG computations.

To prevent aircraft damage caused by tip back, some aircraft may require that a tail stand be used or have ballast placed in the cockpit during ground handling or in gusty wind conditions. This is particularly important if the aircraft is fully fueled with no other payload. A placard on the nose strut explains this requirement.

It is the responsibility of the aircraft owner and pilot to ensure that the aircraft is loaded properly. The basic empty weight and center of gravity noted are for the aircraft as delivered from the factory. In the event the aircraft is altered, refer to the Aircraft Records.

Owners are advised to contact the aircraft manufacturer when any change is made to the aircraft which would appreciably affect the location of useful load items.

Refer to dimensional data shown in Figure WB-4.

FlightSafety

FORWARD FLIGHT LIMIT—FS 368.29 (4.0% MAC) FOR ALL WEIGHTS UP TO AND INCLUDING 12,000 POUNDS (5,443 KG) AND TAPERS THROUGH FS 376.00 (13.63% MAC) AT 15,500 POUNDS (7,031 KG) TO FS 376.55 (14.32% MAC) AT 15,750 POUNDS (7,144 KG).

AFT FLIGHT LIMIT—FS 381.11 (20.0% MAC) FOR ALL WEIGHTS UP TO AND INCLUD-ING 9,000 POUNDS (4,082 KG), AND TAPERS TO FS 388.95 (29.8% MAC) AT 12,500 POUNDS (5,670 KG), AND REMAINS AT FS 388.95 (29.8% MAC) UP TO AND INCLUDING 15,750 POUNDS (7,144 KG).

MAX RAMP WEIGHT—15,750 LB MAX TAKEOFF WEIGHT—15,500 LB MAX ZERO FUEL WEIGHT—13,500 LB

Figure WB-1. Center-of-Gravity Envelope—Standard 15,500 lb (7,031 kg) Takeoff Weight

FORWARD FLIGHT LIMIT—FS 368.29 (4.0% MAC) FOR ALL WEIGHTS UP TO AND INCLUDING 12,000 POUNDS (5,443 KG) AND TAPERS THROUGH FS 378.21 (16.38% MAC) AT 16,500 POUNDS (7,484 KG) TO FS 378.76 (17.07% MAC) AT 16,750 POUNDS (7,598 KG).

AFT FLIGHT LIMIT—FS 381.11 (20.0% MAC) FOR ALL WEIGHTS UP TO AND INCLUD-ING 9,000 POUNDS (4,082 KG), AND TAPERS TO FS 388.95 (29.8% MAC) AT 12,500 POUNDS (5,670 KG), AND REMAINS AT FS 388.95 (29.8% MAC) UP TO AND INCLUDING 15,750 POUNDS (7,144 KG).

MAX RAMP WEIGHT—16,750 LB MAX TAKEOFF WEIGHT—16,500 LB MAX ZERO FUEL WEIGHT—13,500 LB

Figure WB-2. Center-of-Gravity Envelope—Optional 16,500 lb (7,484 kg) Takeoff Weight

FORWARD FLIGHT LIMIT—FS 368.29 (4.0% MAC) FOR ALL WEIGHTS UP TO AND INCLUDING 12,000 POUNDS (5,443 KG) AND TAPERS THROUGH FS 379.31 (17.76% MAC) AT 17,000 POUNDS (7,711 KG) TO FS 379.75 (18.31% MAC) AT 17,200 POUNDS (7,802 KG).

AFT FLIGHT LIMIT—FS 381.11 (20.0% MAC) FOR ALL WEIGHTS UP TO AND INCLUD-ING 9,000 POUNDS (4,082 KG), AND TAPERS TO FS 388.95 (29.8% MAC) AT 12,500 POUNDS (5,670 KG), AND REMAINS AT FS 388.95 (29.8% MAC) UP TO AND INCLUDING 17,200 POUNDS (7,802 KG).

MAX RAMP WEIGHT—17,200 LB MAX TAKEOFF WEIGHT—17,000 LB MAX ZERO FUEL WEIGHT—13,500 LB

Figure WB-3. Center-of-Gravity Envelope—Optional 17,000 lb (7,711 kg) Takeoff Weight

Figure WB-4. Dimensional Data

DEFINITIONS

The following contains abbreviations and definitions which are used in the Weight and Balance section of the *Flight Manual* and in this discussion.

Datum—(*reference datum*). An imaginary vertical plane or line from which all measurements of arm are taken. On the 31/31A, the datum is 86.75 inches forward of the nose. The distance from the datum is sometimes called "Fuse-lage Station".

LEMAC—Leading Edge of the Mean Aerodynamic Chord. On the Learjet 31/31A aircraft, the LEMAC is 365.085 inches aft of the datum.

MAC—Mean Aerodynamic Chord. The average distance from the leading edge to the trailing edge of the wing. The MAC is specified for the aircraft by determining the average chord of an imaginary wing which has the same aerodynamic characteristics as the actual wing. On the 31/31A aircraft, the MAC is 80.09 inches.

Moment Index (or index). The moment divided by a constant. In the Learjet, the moment is divided by 1,000. The purpose of the index is to simplify computations and avoid the use of long numbers.

WEIGHT AND BALANCE COMPUTATION

The aircraft loading form, Figure WB-5, may be used for weight and balance calculations. The first step in computing weight and balance is to determine the basic empty weight and moment from the *Flight Manual* or aircraft records. The moment will be listed as a seven- digit figure. When the moment is entered on the worksheet, it is converted to a moment index by moving the decimal point three digits to the left. This will reduce numbers in the data to a more manageable size. All Learjet weight and balance computations are based on an index of moment/1000.

Weights and moments for crew, service provisions, and any additional equipment should be added to the basic empty weight and moment on the aircraft loading form to arrive at the operating weight. The moment index for these weights is found on the payload moments tables of the *AFM* (Figure WB-6) showing the interior arrangement applicable for your specific airplane. On the 31 model aircraft, several different interior arrangements may appear in the *Flight Manual*. On the 31A, only a specific aircraft interior should be found.

The weight and moment index for the passengers and baggage should be added to the operating weight. These moments are also on the payload moments tables of the AFM. The total of these will result in the zero fuel weight and its moment. The maximum zero fuel weight is one of the airplane limitations.

The Usable Fuel Moments table (Figure WB-7) must be used to find the correct moment for the fuel load. The use of this table is necessary because there is no average arm for the fuel tanks. The arm varies with the amount of fuel in the tanks. Enter the table with gallons or pounds on the left and find the moment/1000 in the column for the tank.

The weight of the fuel should be added to the zero fuel weight to determine the ramp weight. Fuel consumed for engine start and taxi must be subtracted from the ramp weight to leave takeoff weight. Fuel burnoff for engine start and taxi is approximately 3.5 pounds per engine per minute from the wing tanks. To find the moment for this fuel burn, the Fuel Used Vs. Moment Loss table is used (Figure WB-8). A separate table is used for aircraft with the standard fuselage tank and for those with the extended range tank. The taxi fuel and its moment should be subtracted from the ramp weight and moment to arrive at the takeoff weight and moment.

After the takeoff weight and moment/1000 have been computed, one of three methods may be used to determine the takeoff CG.

The first of the methods that can be used to find the CG is the Weight-Moment-CG Envelope in your *AFM* (Figure WB-9). This chart depicts the flight envelope with heavy dark lines. Enter this chart at the left side and follow the horizontal line corresponding to the aircraft weight to the right until it intersects the sloping moment/1000 line. Follow the vertical lines to the bottom of the chart to read the CG as a per cent of MAC. If the takeoff weight and moment lines intersect within the envelope, the airplane load is within limits for flight. If the lines intersect outside the envelope, changes should be made to bring the weight and CG to within limits.

AIRCRAFT LOADING FORM

INTERIOR CONFIGURATION ______ MISSING OR ADDITIONAL EQUIPMENT_

	WEIGHT	FS	MOM/1000	% MAC
BASIC EMPTY WEIGHT				
MISSING/ADDITIONAL EQUIPMENT				_
CREW				_
PROVISIONS—FWD				_
PROVISIONS-MID				_
PROVISIONS—AFT				_
PROVISIONS-TOILET				_
WATER				_
MISCELLANEOUS				_
				_
OPERATING WEIGHT EMPTY				
BAGGAGE—FWD				—
BAGGAGE—AFT				_
PASSENGER — FWD SIDEFACING				_
PASSENGER — FWD SWIVEL				_
PASSENGER —AFT SWIVEL				—
PASSENGER — DIVAN				_
				—
				—
				—
ZERO FUEL WEIGHT				—
FUEL—FUSELAGE TANK				—
FUEL—WING TANKS				—
RAMP WIEGHT				_
TAXI BURNOFF OUT OF WINGS*				—
TAKEOFF GROSS WEIGHT				—

ZERO FUEL WEIGHT		_
FUEL—WING TANKS		_
FUEL—FUSELAGE TANK		_
LANDING WEIGHT		_

*FUEL BURNOFF IS APPROXIMATELY 3.5 POUNDS PER ENGINE PER MINUTE.

Figure WB-5. Aircraft Loading Form

PAYLOAD MOMENTS-MOMENT/1,000

LEARJET 31A PILOT TRAINING MANUAL

FS		204.0	221.6	234.7	267.0	267.8	281.2	289.0	308.2	362.4	402.0	🗲 FS	3
ITE	em 🗭	PILOT OR COPILOT	LEFT SERVICE CABINET PROVISIONS 20 LB MAX	PASS 1	PASS 2	TOILET PROVISIONS	PASS 3	MID CABINET PROVISIONS 24 LB MAX	PASS 4/5	PASS 6/7/8	AFT BAGGAGE 500 LB MAX		Л
	10 20 30 40 50	2.04 4.08 6.12 8.16 10.20	2.22 4.43 — —	2.35 4.69 7.04 9.39 11.73	2.67 5.34 8.01 10.68 13.35	2.68 5.36 8.03 10.71 —	2.81 5.62 8.44 11.25 14.06	2.89 5.78 6.94 *	3.08 6.16 9.25 12.33 15.41	3.62 7.25 10.87 14.50 18.12	4.02 8.04 12.06 16.08 20.10	10 20 30 40 50	
SUND	60 70 80 90 100	12.24 14.28 16.32 18.36 20.40		14.08 16.43 18.78 21.12 23.47	16.02 18.69 21.36 24.03 26.70	 	16.87 19.68 22.50 25.31 28.12		18.49 21.57 24.66 27.74 30.82	21.74 25.37 28.99 32.62 36.24	24.12 28.14 32.16 36.18 40.20	60 70 80 90 100	
EIGHT-PO	110 120 130 140 150	22.44 24.48 26.52 28.56 30.60	 	25.82 28.16 30.51 32.86 35.20	29.37 32.04 34.71 37.38 40.05	- - - -	30.93 33.74 36.66 39.34 42.88	- - -	33.90 36.98 40.07 43.15 46.23	39.86 43.49 47.11 50.74 54.36	44.22 48.24 52.26 56.28 60.30	110 120 130 140 150	
WE	160 170 180 190 200	32.64 34.68 36.72 38.76 40.80	 	37.55 39.90 42.25 44.59 46.94	42.72 45.39 48.06 50.73 53.40	- - - -	44.99 47.80 50.62 53.43 56.24		49.31 52.39 55.48 58.56 61.64	57.98 61.61 65.23 68.86 72.48	64.32 68.34 72.36 76.38 80.40	160 170 180 190 200	WE
	210 220 230 240 250	42.84 44.88 46.92 48.96 51.00	 	49.29 51.63 53.98 56.33 58.67	56.07 58.74 61.41 64.08 66.75	 	59.05 61.86 64.68 67.49 70.30	 	64.72 67.80 70.89 73.97 77.05	76.10 79.73 83.35 86.98 90.60	84.42 88.44 92.46 96.48 100.50	210 220 230 240 250	понт_ро

*24 LB

- THIS TABLE PRESENTED FOR USE WITH AIRCRAFT LOADING FORM.
- PASSENGER WEIGHTS SHOULD IN-CLUDE CARRY-ON BAGGAGE STOWED UNDER SEATS.
- PASSENGER MOMENTS BASED ON SEATS LOCATED AGAINST THE SEAT STOP OR INDEX AND FACING AS SHOWN.
- CREW MOMENTS BASED ON SEATS BEING IN THE NOMINAL POSITION.

		. –
104.52 108.54 112.56 116.58 120.60	260 270 280 290 300	JNDS
124.62 128.64 132.66 136.68 140.70	310 320 330 340 350	_
144.72 148.74 152.76 156.78 160.80	360 370 380 390 400	_
164.82 168.84 172.86 176.88 180.90	410 420 430 440 450	-
184.92 188.94 192.96 196.98 201.00	460 470 480 490 500	_

Figure WB-6. Payload Moments

			WING AN	DFUSELA	JE TANK			
	POU	NDS			MOMEN	IT/1,000		
	KEROSENE	JP-4	WING FUSELAGE			DARD LAGE	E FUSE	R LAGE
GALLONS	6.7 LB/GAL	6.5 LB/GAL	KEROSENE	JP-4	KEROSENE	JP-4	KEROSENE	JP-4
20 40 60 80 100	134 268 402 536 670	130 260 390 520 650	50.33 100.81 151.85 203.39 254.98	48.83 97.80 147.32 197.32 247.37	58.67 117.64 177.15 236.59 295.44	56.92 114.13 171.86 229.52 286.62	58.17 117.63 177.81 234.81 292.54	56.43 114.12 172.50 227.80 283.81
120 140 160 180 197	804 938 1072 1206 1320	780 910 1040 1170 1281	306.85 358.78 410.74 462.85 —	297.69 348.07 398.48 449.03 —	353.43 413.53 472.87 531.71 581.55	343.85 401.19 458.75 515.84 564.37	350.81 407.81 465.17 523.17 —	340.34 395.64 451.28 507.55 —
200 220 240 260 272.7	1340 1474 1608 1742 1827	1300 1430 1560 1690 1773	515.10 567.49 620.10 672.91 —	499.72 550.55 601.59 652.82 —			581.17 639.54 697.81 754.44 790.00	563.82 620.45 676.98 731.92 766.65
280 300 320 340 360	1876 2010 2144 2278 2412	1820 1950 2080 2210 2340	725.91 779.19 832.67 886.33 940.28	704.24 755.93 807.81 859.87 912.21				
380 400 418 420 421.8	2546 2680 2804 2814 2826	2470 2600 2720 2730 2742	994.39 1048.63 1099.07 1103.14 1108.10	964.71 1017.33 1066.26 1070.21 1075.01				

WIND AND FUCELAGE TANK

LEARJET 31A PILOT TRAINING MANUAL

AINO SESUDABILA

WB-10

FOR TRAINING PURPOSES ONLY

EFFECTIVITY: ALL AIRCRAFT

FlightSafety

	POU	INDS		MOMEN	IT/1,000	
	KEROSENE	JP-4	WING		STAN FUSE	DARD LAGE
GALLONS	6.7 LB/GAL	6.5 LB/GAL	KEROSENE	JP-4	KEROSENE	JP-4
20 40 60 80 100	134 268 402 536 670	130 260 390 520 650	54.49 108.72 162.82 216.75 270.39	52.86 105.47 157.96 210.28 262.32	58.79 117.72 176.66 235.59 294.53	57.04 114.21 171.39 228.56 285.74
120 140 160 180 197	804 938 1072 1206 1320	780 910 1040 1170 1280	323.86 377.12 430.10 482.89 —	314.19 365.86 417.26 468.48 —	353.47 412.40 471.33 530.19 580.22	342.92 400.09 457.26 514.36 562.90
200 220 240 260 280	1340 1474 1608 1742 1876	1300 1430 1560 1690 1820	535.49 587.87 640.11 692.21 744.17	519.51 570.32 621.00 671.55 721.96	 	
300 320 340 360 380	2010 2144 2278 2412 2546	1950 2080 2210 2340 2470	796.09 847.94 899.53 951.03 1002.03	772.33 822.63 872.68 922.64 972.12	 	
400 418.5	2680 2804	2600 2720	1052.49 1099.07	1021.07 1066.14		

WING AND FUSELAGE TANK

EFFECTIVITY:

AIRCRAFT WITH STANDARD FUEL TANK

Figure WB-8. Fuel Used Vs. Moment Loss (Sheet 1 of 2)

FOR TRAINING PURPOSES ONLY

WING AND FUSELAGE TANK

	POU	INDS	MOMENT/1,000					
	KEROSENE	JP-4	WING		E FUSE	R LAGE		
GALLONS	6.7 LB/GAL	6.5 LB/GAL	KEROSENE	JP-4	KEROSENE	JP-4		
20 40 60 80 100	134 268 402 536 670	130 260 390 520 650	54.15 108.31 162.46 216.61 270.77	52.54 105.07 157.61 210.15 262.68	56.00 113.00 172.00 230.00 288.00	54.33 109.63 166.87 223.13 279.40		
120 140 160 180 200	804 938 1072 1206 1340	780 910 1040 1170 1300	324.09 377.12 430.15 483.19 536.22	314.41 365.86 417.31 468.77 520.22	346.00 403.00 460.00 519.00 576.00	335.67 390.97 446.27 503.51 558.81		
220 240 260 272.7 280	1474 1608 1742 1827 1876	1430 1560 1690 1773 1820	588.57 640.68 692.79 744.90	571.00 621.55 672.11 722.66	633.00 695.00 753.00 790.00 —	614.10 674.25 730.52 766.65 —		
300 320 340 360 380	2010 2144 2278 2412 2546	1950 2080 2210 2340 2470	797.01 848.77 899.86 950.95 1002.05	773.22 823.43 873.00 922.57 972.13	 			
400 420 421.8	2680 2814 2826	2600 2730 2742	1053.14 1104.23 1108.81	1021.70 1071.27 1075.85	 			

EFFECTIVITY:

AIRCRAFT WITH EXTENDED RANGE FUEL TANK

Figure WB-8. Fuel Used Vs. Moment Loss (Sheet 2 of 2)

FlightSafety

Figure WB-9. Weight-Moment-CG Envelope

Since the weight and moment lines cross at a rather shallow angle, a small error in plotting can result in an error in computing CG. As a second method, the point on the chart can be more accurately plotted by mathematically computing CG as a per cent of MAC and then finding the point on the CG envelope where the weight and CG (as a percent of MAC) lines cross. The formula for this computation is given in your *Flight Manual*. The following will give the same result:

- Move the decimal point of the moment three places to the right to convert the moment index back to a moment.
- Divide the moment by the weight to find the CG in inches aft of the reference datum.
- Subtract the LEMAC (365.085) from the CG in the previous step and divide the remainder by the MAC (80.09).

The result of these steps can be multiplied by 100 to convert to a percent. This computation should be plotted on the CG envelope in the *Flight Manual* to ensure that it is within limits.

A third method of computing the center of gravity is the Center-of-Gravity table in the *Flight Manual* (Figure WB-10).

Enter the table on its left with the airplane weight and move to the right to find the moment/1000. The center of gravity is read at the top of the column of moments. Interpolate as necessary to compute the CG. If the weight and moment falls beyond the limits, loading or weight must be changed.

The aircraft loading form uses a simple method to compute the landing weight and moment index. Since the zero fuel weight will not change for landing, copy this information to the appropriate blocks at the bottom of the form. Next, enter the estimated fuel remaining on landing. Go to the Usable Fuel Moments table (Figure WB-7) to determine the moment/1000 for this estimated fuel. Interpolation may be necessary to compute the correct moment.

Add the zero fuel weight and the estimated landing fuel with their moments to find the landing weight and its moment. All that remains is to use any of the three methods described earlier to determine the landing center of gravity.

POUNDS	F		т	10%MAC	15%MAC	20%MAC	25%MAC		AFT LIMI	т
GROSS			MOM/	STA	STA	STA	STA			MOM/
WEIGHT	%MAC	STA	1000	373.09	377.10	381.10	385.11	%MAC	STA	1000
9000	4.00	368.29	3314.60	3357.85	3393.89	3429.93		20.00	381.10	3429.93
9100	4.00	368.29	3351.43	3395.16	3431.60	3468.04		20.28	381.33	3470.08
9200	4.00	368.29	3388.26	3432.46	3469.31	3506.15		20.56	381.55	3510.27
9300	4.00	368.29	3425.08	3469.77	3507.02	3544.26		20.84	381.78	3550.51
9400	4.00	368.29	3461.91	3507.08	3544.73	3582.37		21.12	382.00	3590.80
9500	4.00	368.29	3498.74	3544.39	3582.44	3620.48		21.40	382.22	3631.13
9600	4.00	368.29	3535.57	3581.70	3620.15	3658.59		21.68	382.45	3671.51
9700	4.00	368.29	3572.40	3619.01	3657.86	3696.70		21.96	382.67	3711.93
9800	4.00	368.29	3609.23	3656.32	3695.57	3734.81		22.24	382.90	3752.39
9900	4.00	368.29	3646.06	3693.63	3733.28	3772.92	BEYOND	22.52	383.12	3792.90
10000	4.00	368.29	3682.89	3730.94	3770.98	3811.03	LIMITS	22.80	383.35	3833.46
10100	4.00	368.29	3719.71	3768.25	3808.69	3849.14		23.08	383.57	3874.05
10200	4.00	368.29	3756.54	3805.56	3846.40	3887.25		23.36	383.79	3914.70
10300	4.00	368.29	3793.37	3842.87	3884.11	3925.36		23.64	384.02	3955.39
10400	4.00	368.29	3830.20	3880.18	3921.82	3963.47		23.92	384.24	3996.12
10500	4.00	368.29	3867.03	3917.49	3959.53	4001.58		24.20	384.47	4036.90
10600	4.00	368.29	3903.86	3954.80	3997.24	4039.69		24.48	384.69	4077.72
10700	4.00	368.29	3940.69	3992.11	4034.95	4077.80		24.76	384.92	4118.59
10800	4.00	368.29	3977.52	4029.42	4072.66	4115.91	4159.16	25.04	385.14	4159.51
10900	4.00	368.29	4014.35	4066.72	4110.37	4154.02	4197.67	25.32	385.36	4200.47
11000	4.00	368.29	4051.17	4104.03	4148.08	4192.13	4236.18	25.60	385.59	4241.47
11100	4.00	368.29	4088.00	4141.34	4185.79	4230.24	4274.69	25.88	385.81	4282.52
11200	4.00	368.29	4124.83	4178.65	4223.50	4268.35	4313.20	26.16	386.04	4323.61
11300	4.00	368.29	4161.66	4215.96	4261.21	4306.46	4351.71	26.44	386.26	4364.75
11400	4.00	368.29	4198.49	4253.27	4298.92	4344.57	4390.23	26.72	386.49	4405.93
11500	4.00	368.29	4235.32	4290.58	4336.63	4382.68	4428.74	27.00	386.71	4447.16
11600	4.00	368.29	4272.15	4327.89	4374.34	4420.79	4467.25	27.28	386.93	4488.43
11700	4.00	368.29	4308.98	4365.20	4412.05	4458.91	4505.76	27.56	387.16	4529.75
11800	4.00	368.29	4345.81	4402.51	4449.76	4497.02	4544.27	27.84	387.38	4571.11
11900	4.00	368.29	4382.63	4439.82	4487.47	4535.13	4582.78	28.12	387.61	4612.52
12000	4.00	368.29	4419.46	4477.13	4525.18	4573.24	4621.29	28.40	387.83	4653.97
12100	4.28	368.51	4458.96	4514.44	4562.89	4611.35	4659.80	28.68	388.05	4695.46
12200	4.55	368.73	4498.50	4551.75	4600.60	4649.46	4698.31	28.96	388.28	4737.00
12300	4.83	368.95	4538.058	4589.06	4638.31	4687.57	4736.82	29.24	388.50	4778.59
12400	5.10	369.17	4577.71	4626.37	4676.02	4725.68	4775.33	29.52	388.73	4820.22
12500	5.38	369.39	4617.38	4663.67	4713.73	4763.79	4813.84	29.80	388.95	4861.90
12600	5.65	369.61	4657.10	4700.98	4751.44	4801.90	4852.35	29.80	388.95	4900.79
12700	5.93	369.83	4696.86	4738.29	4789.15	4840.01	4890.87	29.80	388.95	4939.69
12800	6.20	370.05	4736.66	4775.60	4826.86	4878.12	4929.38	29.80	388.95	4978.58
12900	6.48	370.27	4776.51	4812.91	4864.57	4916.23	4967.89	29.80	388.95	5017.48
13000	6.75	370.49	4816.40	4850.22	4902.28	4954.34	5006.40	29.80	388.95	5056.37
13100	7.03	370.71	4856.34	4887.53	4939.99	4992.45	5044.91	29.80	388.95	5095.27
13200	7.30	370.93	4869.32	4924.84	4977.70	5030.56	5083.42	29.80	388.95	5134.16
13300	7358	371.15	4936.34	4962.15	5015.41	5068.67	5121.93	29.80	388.95	5173.06
13400	7.85	371.37	4976.41	4999.46	5053.12	5106.78	5160.44	29.80	388.95	5211.95
13500	8.13	371.59	5016.52	5036.77	5090.83	5144.89	5198.95	29.80	388.95	5250.85
13600	8.40	371.81	5056.68	5074.08	5128.54	5183.00	5237.46	29.80	388.95	5289.74
13700	8.68	372.03	5096.88	5111.39	5166.25	5221.11	5275.97	29.80	388.95	5328.64
13800	8.95	372.25	5137.12	5148.70	5203.96	5259.22	5314.48	29.80	388.95	5367.54
13900	9.23	372.47	5177.41	5186.01	5241.67	5297.33	5352.99	29.80	388.95	5406.43
14000	9.50	372.69	5217.75	5223.32	5279.38	5335.44	5391.50	29.80	388.95	5445.33
14100	9.78	372.92	5258.12	5260.63	5317.09	5373.55	5430.02	29.80	388.95	5484.22
14200	10.05	373.14	5298.54		5354.80	5411.66	5468.53	29.80	388.95	5523.12
14300	10.33	373.36	5339.01	DEVON	5392.51	5449.77	5507.04	29.80	388.95	5572.01
14400	10.60	373.58	5376.52	BEYOND	5430.22	5487.88	5545.55	29.80	388.95	5600.91
14500	10.88	373.80	5420.07	LIMITS	5467.93	5525.99	5584.06	29.80	388.95	5639.80

MOMENT/1000

Figure WB-10. Center-of-Gravity Table (Sheet 1 of 2)

	F	WD LIM	IT MOM/	10%MAC STA	15%MAC STA	20%MAC STA	25%MAC STA		AFT LIMI	т мом/
WEIGHT	%MAC	STA	1000	373.09	377.10	381.10	385.11	%MAC	STA	1000
14600	11.15	374.02	5460.67		5505.64	5564.10	5622.57	29.80	388.95	5678.70
14700	11.43	374.24	5501.31		5543.35	5602.21	5661.08	29.80	388.95	5717.59
14800	11.70	374.46	5541.99		5581.06	5640.32	5699.59	29.80	388.95	5756.49
14900	11.98	374.68	5582.72		5618.77	5678.43	5738.10	29.80	388.95	5795.38
15000	12.25	374.90	5623.50		5656.48	5716.54	5776.61	29.80	388.95	5834.28
15100	12.53	375.12	5664.31		5694.19	5754.66	5815.12	29.80	388.95	5873.17
15200	12.81	375.34	5705.18		5731.90	5792.77	5853.63	29.80	388.95	5912.07
15300	13.08	375.56	5746.08		5769.61	5830.88	5892.14	29.80	388.95	5950.96
15400	13.36	375.78	5787.03		5807.32	5868.99	5930.66	29.80	388.95	5989.86
15500	13.63	376.00	5828.03		5854.03	5907.10	5969.17	29.80	388.95	6028.75
15600	13.91	376.22	5869.06		5882.74	5945.21	6007.68	29.80	388.95	6067.65
15700	14.18	376.44	5910.15		5920.45	5983.32	6046.19	29.80	388.95	6106.54
15800	14.46	376.66	5951.27		5958.16	6021.43	6084.70	29.80	388.95	6145.44
15900	14.73	376.88	5992.44		5995.87	6059.54	6123.21	29.80	388.95	6184.33
16000	15.01	377.10	6033.66			6097.65	6161.72	29.80	388.95	6223.23
16100	15.28	377.32	6074.92			6135.76	6200.23	29.80	388.95	6262.12
16200	15.56	377.54	6116.22	BEY	OND	6173.87	6238.74	29.80	388.95	6301.02
16300	15.83	377.76	6157.56	1 1 1 1	ITS	6211.98	6277.25	29.80	388.95	6339.91
16400	16.11	377.99	6198.95			6250.09	6315.76	29.80	388.95	6378.81
16500	16.38	378.21	6240.39			6288.20	6354.27	29.80	388.95	6417.71
16600	16.66	378.43	6281.87			6326.31	6392.78	29.80	388.95	6456.60
16700	16.93	378.65	6323.39			6364.42	6431.30	29.80	388.95	6495.50
16800	17.21	378.87	6364.96			6402.53	6469.81	29.80	388.95	6534.39
16900	17.48	379.09	6406.57			6440.64	6508.32	29.80	388.95	6573.29
17000	17.76	379.31	6448.22			6478.75	6546.83	29.80	388.95	6612.18
17100	18.03	379.53	6489.92			6516.86	6585.34	29.80	388.95	6651.08
17200	18.31	379.75	6531.61			6554.97	6623.85	29.80	388.95	6689.97

Figure WB-10. Center-of-Gravity Table (Sheet 2 of 2)

WEIGHING INSTRUCTIONS

Periodic weighing may be required to keep the BASIC EMPTY WEIGHT current. All changes to the aircraft affecting weight and balance are the responsibility of the aircraft operator. For additional detailed information relating to weighing and leveling procedures, refer to *Maintenance Manual*, Chapter 8.

- 1. The BASIC EMPTY WEIGHT is established with the wheels down.
- 2. Fuel should be drained through the drain valves prior to weighing and with the aircraft in level or static position. If unable to drain fuel, refer to the Unusable and Trapped Fuel table (Figure WB-11) to determine weight and balance. Unusable and trapped fluids are included in the basic empty weight.
- 3. The engine oil must be at full level in each oil tank. Total engine oil is 36.0 pounds at FS 439.17.
- 4. Hydraulic reservoir, accumulator, oxygen bottles, alcohol tank, and gear shock struts must be filled to normal operating capacities.
- 5. Determine aircraft configuration at time of weighing. Missing item(s) in aircraft (but not part of BASIC EMPTY WEIGHT) should be noted and the final BASIC EMPTY WEIGHT shall be corrected for these items. All items should be in their normal place during weighing.

EFFECTIVITY:

ALL AIRCRAFT

NOTE:

THE BASIC EMPTY WEIGHT INCLUDES FUEL OIL, TRAPPED, SUMP, AND UNUSABLE FUEL. IF THE AIRCRAFT IS WEIGHED AFTER DRAINING THE FUEL AND OIL, THE SUMP AND UNUSABLE FUEL AND DRAINABLE OIL MUST BE ADDED TO THE "AS WEIGHED" CONDITION TO OBTAIN THE BASIC EMPTY WEIGHT.

WHEN THE AIRCRAFT IF WEIGHED WITH COMPLETELY DRY FUEL AND DRAINED OIL SYSTEMS, THE TRAPPED, SUMP, AND UNUSABLE FUEL AND DRAINABLE OIL WEIGHT AND MOMENT MUST BE ADDED TO THE "AS WEIGHED" CONDITION TO OBTAIN THE BASIC EMPTY WEIGHT OF THE AIR CRAFT. THIS DRY FUEL CONDITION WOULD OCCUR ONLY IF THE FUEL SYSTEM WERE PURGED.

UNUSABLE AND TRAPPED FUEL

		POU	NDS	MOMENT/1000		
ITEM	GALLONS	KEROSENE 6.7 LB/GAL	JP-4 6.5 LB/GAL	KEROSENE	JP-4	
TRAPPED FUEL DRAINABLE SUMP INFLIGHT UNUSABLE	2.69 1.34 12.53	18.0 9.0 84.0	17.5 8.7 81.5	6.56 3.43 32.43	6.37 3.32 31.46	
TOTAL	16.56	111.0	107.7	42.42	41.15	

TRAPPED AND DRAINABLE ENGINE OIL

ITEM	GALLONS	WEIGHT (8.0 LB/GAL)	MOMENT/1000
TRAPPED OIL	1.0	8.0	3.54
DRAINABLE OIL	3.5	28.0	12.27
TOTAL OIL	4.5	36.0	15.81

Figure WB-11. Unusable and Trapped Fluids

NOSE WHEEL	ଢୁ WHEEL FUS. STA.	MAIN WHEELS	ଜୁ WHEEL FUS. STA.
FULLY COMPRESSED	153.88	FULLY COMPRESSED	397.00
STATIC	153.63	STATIC	396.82
FULLY EXTENDED	152.62	FULLY EXTENDED	396.04

Figure WB-12. Landing Gear Dimensional Data

- 6. The aircraft must be in a level attitude at the time of weighing. Level is determined with a plumb bob attached to a clip on the upper aft side of frame 26A and the level plate hole on the lower portion of the frame.
- 7. Weighing should always be made in an enclosed area free of drafts. The scales used should be properly certified and calibrated.
- 8. Weighing the aircraft on jacks:
 - a. Three jackpoints are provided for weighing: Two on the wing at FS 414.85 and one on the forward fuselage at FS 170.53.
 - b. Leveling is accomplished by adjusting the jacks.
- 9. Weighing the aircraft on wheels (refer to Figure WB-12):
 - a. Inflate the tires to the proper pressure.
 - b. Deflate the shock struts. This is to establish the fuselage station of the centerline of the nose wheel axle. The fuselage station for the nose wheel axle in this condition is 153.88.
 - c. Leveling is accomplished by inflating the main gear struts.
 - d. Measure the perpendicular distance between the nose and main gear axle center lines (approximately 243.2 inches) if shock struts are inflated. Add this measurement to the nose gear axle position (FS 153.88) to obtain the main gear fuselage station.
 - e. Substitute the nose and main gear stations for the jackpoint stations on the Aircraft Weighing Record (Figure WB-13) and proceed as in jackpoint weighing.

DATE WEIGHED		MODE	MODEL 31A		ERIAL NO.
PLACED WEIGHED			WEIGHING IN	SPECTOR	
REACTION	SCALE READING	TARE	NET WEIGHT	ARM	MOMENT
LEFT JACK					
RIGHT JACK					
SUBTOTAL				414.85*	
NOSE JACK				170.53*	
TOTAL (AS WEIGHED)					
TOTAL ITEMS TABLE I			-		
TOTAL ITEMS TABLE II			+		
BASIC AIRPLANE					

TABLE I

ITEMS WEIGHED BUT NOT PART OF BASIC AIRPLANE	WEIGHT	ARM	MOMENT
JACK PADS			
TOTAL			

TABLE II

BASIC ITEMS NOT IN WHEN WEIGHED	WEIGHT	ARM	MOMENT
UNUSABLE FUEL			
TOTAL			

* JACKPOINT STATIONS FOR ELECTRONIC SCALES WEIGHING

Figure WB-13. Aircraft Weighing Record

WEIGHT AND CENTER-OF-GRAVITY LIMITS

NOTE

- The Normal Empty Weight Center of Gravity may be aft of the Flight Limit.
- For Fuel Used vs. Moment Loss (For Flight Planning), refer to Figure WB-8.

The airplane center of gravity, as loaded for flight, must be maintained within the center-of-gravity envelope defined in Figures WB-1 and WB-2 as applicable.

CAUTION

To prevent aircraft damage caused by tip back, some aircraft may require the installation of tailstand P/N 3170002 or placing ballast in the cockpit during ground handling operations and/or gusty wind conditions. Potential tip back condition occurs when the aircraft is loaded with full fuel prior to loading passengers and other payload items. *On aircraft 31-024, 31-028 and subsequent*, refer to the placard on the nose gear strut for further guidance.

LOADING INSTRUCTIONS

It is the responsibility of the pilot to see that this aircraft is loaded within the weight and CG limits. The loading forms (Figure WB-5) may be used.

- 1. Enter the BASIC EMPTY WEIGHT and MOMENT from page 1 of the AFM; or, in the event the airplane has been altered, enter the BASIC EMPTY WEIGHT and MOMENT from the Aircraft Records.
- 2. Enter the payload weights and moments (crew, passengers, provisions, baggage, etc.) using the Payload Moments charts, Figure WB-6.
- 3. Compute the ZERO FUEL WEIGHT and MOMENT (OPERATING WEIGHT values plus passenger and baggage values).
- 4. Enter the fuel weights and moments using the Usable Fuel Moments charts, Figure WB-7.
- 5. Compute RAMP WEIGHT and MOMENT (ZERO FUEL WEIGHT values plus fuel values).
- 6. Compute TAKEOFF WEIGHT and MOMENT (RAMP WEIGHT values minus taxi burnoff out of wings).
- 7. Compare TAKEOFF WEIGHT and MOMENT with weight and CG limits from Weight-Moment-CG Envelope, Figure WB-9, or Center-of-Gravity Table, Figure WB-10. If not within limits, reduce weight or rearrange load as required to obtain weight and CG within limits.
- 8. LANDING WEIGHT and MOMENT may be calculated by adding the fuel weight and moment remaining at the destination to the ZERO FUEL WEIGHT.
- 9. The formula to calculate the CG in % MAC is:

CG in % MAC =
$$\frac{\text{Fuselage Station}}{(\text{Center of Gravity}) - 365.085}}{80.09} \times 100$$

Page

LEARJET 31A PILOT TRAINING MANUAL

PERFORMANCE

CONTENTS

INTRODUCTION	. PER-1
GENERAL	. PER-1
REGULATORY COMPLIANCE	. PER-1
STANDARD PERFORMANCE	
CONDITIONS	. PER-1
VARIABLE FACTORS	. PER-2
DEFINITIONS	. PER-2
Airspeeds	. PER-2
Weights	PER-11
Distances	PER-11
Meteorology	PER-12
Miscellaneous	PER-23
Climb Segments (in Order of Occurrence)	PER-23
NOISE LEVELS	PER-25
TAKEOFF	PER-25
Maximum Takeoff Weight	PER-25
Takeoff Flight Path	PER-26
Climb Gradients	PER-27
Determination of Takeoff Flight Bath for Obstagle Clearance	DED_27
Takaoff from Wet or Contominated Dupwey	
	PER-28
Takeoff Distance	PER-29
Simplified Takeoff Data	PER-30
THRUST SETTING PROCEDURE	PER-54
Takeoff Thrust	PER-54
Maximum Climb Thrust	PER-54
CLIMB, CRUISE, AND DESCENT	PER-61

Climb Performance	PER-61
Cruise Performance	PER-61
Descent Performance	PER-62
APPROACH AND LANDING	PER-62
Maximum Allowable Landing Weight	PER-62
Maximum Landing Weight (Approach Climb or Brake Energy Limited)	PER-62
Landing Distance	PER-63
Landing Approach Speed (V _{REF})	PER-65
Approach Climb Speed (V _{APP})	PER-65
Approach and Landing Climb Gradient Charts	PER-65

ILLUSTRATIONS

Figure	Title	Page
PER-1	Airspeed Calibration	PER-3
PER-2	Ground Airspeed Calibration	PER-5
PER-3	Mach Calibration	PER-6
PER-4	Stall Speeds	PER-8
PER-5	Buffet Boundary	. PER-10
PER-6	Relation of Temperature to ISA	. PER-13
PER-7	Altitude Position Correction	. PER-18
PER-8	Wind Components	. PER-22
PER-9	Takeoff Profile	. PER-30
PER-10	Takeoff Weight Limit—Flaps at 8°	. PER-31
PER-11	Takeoff Distance—Flaps at 8° and Rudder Boost OFF	. PER-32
PER-12	Takeoff Distance—Flaps at 8° and Rudder Boost ON	. PER-33
PER-13	Takeoff Speeds—Flaps at 8° and Rudder Boost OFF	. PER-34
PER-14	Takeoff Speeds—Flaps at 8° and Rudder Boost ON	. PER-36
PER-15	First Segment Climb Gradient—Flaps at 8°	. PER-38
PER-16	Second Segment Climb Gradient—Flaps at 8°	. PER-39
PER-17	Takeoff Weight Limit—Flaps at 20° and Anti-ice OFF	. PER-40
PER-18	Takeoff Weight Limit—Flaps at 20° and Anti-ice ON	. PER-41
PER-19	Takeoff Distance—Flaps at 20° and Rudder Boost OFF	. PER-42
PER-20	Takeoff Distance—Flaps at 20° and Rudder Boost ON	. PER-43
PER-21	Takeoff Speeds—Flaps at 20° and Rudder Boost OFF	. PER-44
PER-22	Takeoff Speeds—Flaps at 20° and Rudder Boost ON	. PER-46

FlightSafety

Table

LEARJET 31A PILOT TRAINING MANUAL

PER-23	First Segment Climb Gradient—Flaps at 20°	PER-48
PER-24	Second Segment Climb Gradient—Flaps at 20°	PER-49
PER-25	Final Segment Climb Gradient	PER-50
PER-26	Close-in Takeoff Flight Path	PER-51
PER-27	Distant Takeoff Flight Path	PER-52
PER-28	Enroute Climb Gradient— Single Engine	PER-53
PER-29	Takeoff Thrust Setting	PER-56
PER-30	Maximum Continuous Thrust for Climb (N ₁)	PER-59
PER-31	Landing Speeds	PER-66
PER-32	Approach Climb Gradient	PER-67
PER-33	Landing Climb Gradient	PER-68
PER-34	Landing Weight Limit	PER-69
PER-35	Actual Landing Distance	PER-71
PER-36	Factored Landing Distance	PER-72

TABLES

Title

Page

PER-1	Temperature Conversion	PER-14
PER-2	Linear Conversion	PER-15
PER-3	Volume Conversion	PER-16
PER-4	Weight Conversion	PER-17
PER-5	Climb Segment Configurations	PER-24
PER-6	Noise Level in EPNdB	PER-25
PER-7	Simplified Takeoff Data	PER-30

PERFORMANCE

INTRODUCTION

This chapter will introduce the various charts, tables, and methods used to compute airplane performance and weight and balance.

GENERAL

Takeoff and landing performance data is located in Section V, the Performance section, of the *Airplane Flight Manual (AFM)*. This data is presented in tabular-chart form. Tabular performance charts are provided in the *Pilot's Manual* and the aircrew checklist. However, the tabular performance charts do not address the effects of wind, runway gradient, antiskid-off, and anti-ice on operations. To account for these factors, the *AFM* charts must be used. Climb, cruise, and descent data may be found in the appropriate *Learjet Pilot's Manual*.

REGULATORY COMPLIANCE

Performance data information in the *AFM* and in this chapter is presented for the purpose of compliance with the appropriate performance criteria and certification requirements of FAR 25.

STANDARD PERFORMANCE CONDITIONS

All performance calculations in this section are based on the following performance conditions:

- Pertinent thrust ratings less installation, airbleed, and accessory losses.
- Full temperature accountability within the operational limits for which the airplane is certified.

NOTE

Should OAT be below the lowest temperature shown on the performance charts, use performance at the lowest temperature shown.

• Wing flap positions as follows:

•	Takeoff	8 or	20°
•	Enroute	UP-	-0°
•	Approach		20°
•	Landing I	DN—	40°

• Thrust settings (N₁) from appropriate charts or tables.

VARIABLE FACTORS

Details of variables affecting performance are given with the charts to which they apply. Conditions which relate to all performance calculations are:

- Cabin Air is ON.
- Humidity effects performance.
- Winds, for which graphical correction is presented on the charts, are to be taken as the tower winds (10 meters above runway surface).
- Factors for 50% headwind component and 150% tailwind components have been applied as prescribed in pertinent regulations.
- The percentages of stall speed are calculated from speeds as expressed in calibrated airspeed (KCAS).
- The standard (coplanar) nozzle is installed.

NOTE

The performance of airplanes equipped with thrust reversers is equivalent to performance shown in the *Flight Manual*. However, the power setting charts for thrust reverser equipped airplanes are different and are contained in the *Dee Howard Thrust Reverser* Supplement to the AFM, and in the aircrew checklist.

DEFINITIONS

The following contains the symbols and definitions which are used in the Performance section of the *AFM*.

AIRSPEEDS

CAS—Calibrated Airspeed. This is the airspeed indicator reading for instrument and position error. KCAS is calibrated airspeed expressed in knots.

IAS—Indicated Airspeed. This is the airspeed indicator reading as installed in the airplane. KIAS is indicated airspeed expressed in knots. The information in this manual is presented in terms of indicated airspeed, unless otherwise stated, and assumes zero instrument error.

M—**Calibrated Mach Number.** This number is the Machmeter reading corrected for instrument and position error.

 M_I —Indicated Mach Number. This number is the Machmeter reading as installed in the airplane. Zero instrument error is assumed for presentations in this section of the manual.

Refer to Figures PER-1 through PER-3 pertaining to airspeed calibrations.

FLAPS UP/GEAR UP

EFFECTIVITY:

ALL AIRCRAFT

1.	INDICATED AIRSPEED	. 200 KIAS
2.	CALIBRATED AIRSPEED	198 KCAS
	POSITION CORRECTION	–2 KNOTS

Figure PER-1. Airspeed Calibration (Sheet 1 of 2)

FlightSafety

FLAPS AT 8°, 20°, OR DOWN GEAR UP OR DOWN

EFFECTIVITY:

ALL AIRCRAFT

1.	INDICATED AIRSPEED	170 KIAS
2.	CALIBRATED AIRSPEED	168 KIAS
		2 KNOTS

Figure PER-1. Airspeed Calibration (Sheet 2 of 2)

FLAPS AT 8° OR 20° GEAR DOWN

EFFECTIVITY:

ALL AIRCRAFT

1.	INDICATED AIRSPEED	120 KIAS
2.	CALIBRATED AIRSPEED	118 KCAS
	POSITION CORRECTION	-2 KNOTS

Figure PER-2. Ground Airspeed Calibration

FLAPS UP/GEAR UP

EFFECTIVITY:

ALL AIRCRAFT

1.	INDICATED MACH NO.	0.700 M _I
2.	ALTITUDE	20,000 FT
3.	CALIBRATED MACH NO.	0.694 M
	POSITION CORRECTION	–.006

Figure PER-3. Mach Calibration

 V_A —Maneuvering Speed. V_A is the highest speed full aileron and rudder control that can be applied without overstressing the aircraft, or the speed at which the aircraft will stall with the load factor of 3.0 at maximum gross weight, whichever is less.

V_{LOF} (Liftoff speed)—Actual speed of aircraft at liftoff

V_{SO}—Stalling speed in the landing configuration

V_{SI}—Stalling speed in the appropriate gear/flap configuration

Refer to Figures PER-4 and PER-5.

 V_{MCA} —Minimum Control Speed, Air. The minimum flight speed at which the airplane is controllable with 5° of bank when one engine suddenly becomes inoperative and the remaining engine is operating at takeoff thrust

 V_{MCG} —Minimum Control Speed, Ground. The minimum speed on the ground at which control can be maintained using aerodynamic controls alone, when one engine suddenly becomes inoperative and the remaining engine is operating at takeoff thrust

 V_{MO}/M_{MO} —Maximum Operating Limit Speed. The speed that may not be deliberately exceeded in any flight condition except where specifically authorized for flight test or in approved emergency procedures. V_{MO} is expressed in knots. M_{MO} is expressed in Mach number.

 V_1 —Critical Engine Failure Speed. If engine failure occurs at V_1 , the distance to continue the takeoff to 35 feet will not exceed the usable takeoff distance; or, the distance to bring the airplane to a full stop will not exceed the accelerate-stop distance available. V_1 must not be less than V_{MCG} or greater than V_R .

 V_R —Rotation Speed. The speed at which rotation is initiated during takeoff to attain V_2 at or before a height of 35 feet above the runway surface

 V_2 —Takeoff Safety Speed. The actual speed at 35 feet above the runway surface as demonstrated in flight during single-engine takeoff. V_2 must not be less than 1.2 times the stalling speed, or less than 1.1 times the air minimum control speed (V_{MCA}), or less than rotation speed (V_R) plus an increment in speed attained prior to reaching a height of 35 feet above the runway surface

 V_{APP} —Approach Climb Speed. The airspeed is equal to 1.3 V_{S1} (airplane in the approach configuration).

 V_{REF} —Landing Approach Speed. The airspeed is equal to 1.3 V_{SO} (airplane in the landing configuration).

GEAR UP OR DOWN / IDLE THRUST

Figure PER-4. Stall Speeds (Sheet 1 of 2)

FlightSafety

LEARJET 31

A PILOT

-

RAINING

MANUA

FlightSafety

PER-10 FOR TRAINING PURPOSES ONLY

3.

GROSS WEIGHT -- 100 KG

WEIGHTS

Maximum Allowable Takeoff Weight. The maximum allowable takeoff weight at the start of the takeoff roll is limited by the most restrictive of the following requirements:

- Maximum certified takeoff weight.
- Maximum takeoff weight (Climb or brake energy limited) for altitude and temperature as determined from the applicable Takeoff Weight Limits chart.
- Maximum takeoff weight for the runway and ambient conditions as determined from the applicable Takeoff Distance chart.
- Maximum takeoff weight for obstacle clearance determined from the applicable Takeoff Flight Path and Climb Gradient charts.

Maximum Allowable Landing Weight. The maximum landing weight is limited by the most restrictive of the following requirements:

- Maximum certified landing weight.
- Maximum landing weight for the runway and ambient conditions as determined from the applicable Landing Distance chart.
- Maximum landing weight (Approach climb or brake energy limited) for altitude and temperature as determined from the applicable Landing Weight Limits chart.

DISTANCES

Accelerate-Stop Distance. The accelerate-stop distance is the horizontal distance traversed from brake release until the airplane comes to a complete stop on a takeoff during which one engine fails at V_1 and the pilot elects to stop.

Engine-Out Accelerate-Go Distance. The engine-out accelerate-go distance is the horizontal distance traversed from brake release until the airplane attains a height of 35 feet above the runway surface on a takeoff during which one engine fails at V_1 and the pilot elects to continue.

Takeoff Field Length. The takeoff field lengths presented in this section are based on a smooth, dry, paved runway. The takeoff field length given for each combination of airplane weight, atmospheric temperature, altitude, wind, and runway gradient is the greatest of the following:

- 115% of the all-engine takeoff distance from start to a height of 35 feet above the runway surface.
- Accelerate-stop distance.
- Engine-out accelerate-go distance.

No specific identification is made on the charts as to which of the above distances governs a specific case. However, in all cases for which charts are furnished, the field length is governed by either accelerate-stop or engine-out accelerate-go distance as the all-engine takeoff distance is shorter than either.

Actual Landing Distance. The landing field lengths presented in this section are based on a smooth, dry, paved runway. The landing field length is equal to the horizontal distance from a point 50 feet above the runway surface to the point at which the airplane would come to a full stop on the runway.

Factored Landing Distance. The factored landing distances presented are equal to the actual landing distance divided by 0.60. The factored wet landing distance is the factored dry landing distance multiplied by 1.15.

METEOROLOGY

ISA—International Standard Atmosphere.

OAT—Outside Air Temperature. The free air static temperature obtained from either ground meteorological sources or from inflight temperature indications adjusted for instrument error and compressibility effects.

RAT—Ram Air Temperature. The static air temperature corrected for full adiabatic compression rise corresponding to the calibrated Mach number and multiplied by a recovery factor.

SAT—Static Air Temperature. Static air temperature is equivalent to OAT.

TAT—Total Air Temperature. This is the static air temperature corrected for full adiabatic compression rise corresponding to the calibrated Mach. (The recovery factor has been accounted for in the TAT display.)

Altitude—All altitudes given are pressure altitudes unless otherwise stated.

Wind—The wind velocities on the performance charts are headwind or tailwind components of the actual winds at 20 feet (10 meters)above the runway surface (tower winds).

Demonstrated Crosswind—The demonstrated crosswind velocity of 30 knots is velocity of the reported tower winds (measured at a 10-meter height) for which adequate control of the airplane during takeoff and landing was actually demonstrated during certification tests. The value shown is not considered to be limiting.

The meteorological data is shown in Figures PER-6 through PER-8 and Table PER-1 through Table PER-4.

Figure PER-6. Relation of Temperature to ISA

LEARJET

31A PILO

-

-

RAINING

MANUAL

FlightSafety

Table PER-1. TEMPERATURE CONVERSION

EFFECTIVITY:

ALL AIRCRAFT

- TO CONVERT FROM CELSIUS TO FAHRENHEIT, FIND, IN THE BOLD FACE COLUMNS, THE NUMBER REPRESENTING THE CELSIUS TEMPERATURE TO BE CONVERTED. THE EQUIVALENT FAHRENHEIT TEMPERATURE IS READ IN THE ADJACENT COLUMN HEADED °F.
- TO CONVERT FROM FAHRENHEIT TO CELSIUS, FIND, IN THE BOLD FACE COLUMNS, THE NUMBER REPRESENTING THE CELSIUS TEMPERATURE TO BE CONVERTED. THE EQUIVALENT CELSIUS TEMPERATURE IS READ IN THE ADJACENT COLUMN HEADED °C.

°F	°C	°F °	c (°F	°C	°F		°C	°F		°C
-148.0 -	-100 -73.3	-58.0 -50 -44	5.6 3	2.0 0 3.8 1 5.6 2 7.4 3 9.2 4	-17.8	122.0	50	10.0	212.0	100	37.8
-146.2	-99 -72.8	-56.2 -49 -44	5.0 3		-17.2	123.8	51	10.6	213.8	101	38.3
-144.4	-98 -72.2	-54.4 -48 -44	4.4 3		-16.7	125.6	52	11.1	215.6	102	38.9
-142.6	-97 -71.7	-52.6 -47 -44	3.9 3		-16.1	127.4	53	11.7	217.4	103	39.4
-140.8	-96 -71.1	-50.8 -46 -44	3.3 3		-15.6	129.2	54	12.2	219.2	104	40.0
-139.0	-95 -70.6	-49.0 -45 -4:	2.8 4	1.0 5 2.8 6 4.6 7 6.4 8 8.2 9	-15.0	131.0	55	12.8	221.0	105	40.6
-137.2	-94 -70.0	-47.2 -44 -4:	2.2 4		-14.4	132.8	56	13.3	222.8	106	41.1
-135.4	-93 -69.4	-45.4 -43 -4	1.7 4		-13.9	134.6	57	13.9	224.6	107	41.7
-133.6	-92 -68.9	-43.6 -42 -4	1.1 4		-13.3	136.4	58	14.4	226.4	108	42.2
-131.8	-91 -68.3	-41.8 -41 -4	0.6 4		-12.8	138.2	59	15.0	228.2	109	42.8
-130.0	-90 -67.8	-40.0 -40 -44	0.0 5	0.0 10 1.8 11 3.6 12 5.4 13 7.2 14	-12.2	140.0	60	15.6	230.0	110	43.3
-128.2	-89 -67.2	-38.2 -39 -33	0.4 5		-11.7	141.8	61	16.1	231.8	111	43.9
-126.4	-88 -66.7	-36.4 -38 -33	0.9 5		-11.1	143.6	62	16.7	233.6	112	44.4
-124.6	-87 -66.1	-34.6 -37 -33	0.3 5		-10.6	145.4	63	17.2	235.4	113	45.0
-122.8	-86 -65.6	-32.8 -36 -3	7.8 5		-10.0	147.2	64	17.8	237.2	114	45.6
-121.0 -119.2 -117.4 -115.6 -113.8	-85 -65.0 -84 -64.4 -83 -63.9 -82 -63.3 -81 -62.8	-31.0 -35 -3 -29.2 -34 -3 -27.4 -33 -3 -25.6 -32 -3 -23.8 -31 -3	7.2 5 5.7 6 5.1 6 5.6 6 5.0 6	9.0 15 0.8 16 2.6 17 4.4 18 6.2 19	-9.4 -8.9 -8.3 -7.8 -7.2	149.0 150.8 152.6 154.4 156.2	65 66 67 68 69	18.3 18.9 19.4 20.0 20.6	239.0 240.8 242.6 244.4 246.2	115 116 117 118 119	46.1 46.7 47.2 47.8 48.3
-112.0	-80 -62.2	-22.0 -30 -34	4.4 6	8.0 20 9.8 21 1.6 22 3.4 23 5.2 24	-6.7	158.0	70	21.1	248.0	120	48.9
-110.2	-79 -61.7	-20.2 -29 -33	3.9 6		-6.1	159.8	71	21.7	249.8	121	49.4
-108.4	-78 -61.1	-18.4 -28 -33	3.3 7		-5.6	161.6	72	22.2	251.6	122	50.0
-106.6	-77 -60.6	-16.6 -27 -33	2.8 7		-5.0	163.4	73	22.8	253.4	123	50.6
-104.8	-76 -60.0	-14.8 -26 -33	2.2 7		-4.4	165.2	74	23.3	255.2	124	51.1
-103.0	-75 -59.4	-13.0 -25 -3	1.7 7	7.0 25 8.8 26 0.6 27 2.4 28 4.2 29	-3.9	167.0	75	23.9	257.0	125	51.7
-101.2	-74 -58.9	-11.2 -24 -3	1.1 7		-3.3	168.8	76	24.4	258.8	126	52.2
-99.4	-73 -58.3	-9.4 -23 -3	0.6 8		-2.8	170.6	77	25.0	260.6	127	52.8
-97.6	-72 -57.8	-7.6 -22 -3	0.0 8		-2.2	172.4	78	25.6	262.4	128	53.3
-95.8	-71 -57.2	-5.8 -21 -2	0.4 8		-1.7	174.2	79	26.1	264.2	129	53.9
-94.0 -92.2 -90.4 -88.6 -86.8	-70 -56.7 -69 -56.1 -68 -55.6 -67 -55.0 -66 -54.4	-4.0 -20 -24 -2.2 -19 -24 -0.4 -18 -2 1.4 -17 -2 3.2 -16 -24	3.9 8 3.3 8 7.8 8 7.2 9 5.7 9	6.0 30 7.8 31 9.6 32 1.4 33 3.2 34	-1.1 -0.6 0.0 0.6 1.1	176.0 177.8 179.6 181.4 183.2	80 81 82 83 84	26.7 27.2 27.8 28.3 28.9	266.0 267.8 269.6 271.4 273.2	130 131 132 133 134	54.4 55.0 55.6 56.1 56.7
-85.0	-65 -53.9	5.0 -15 -24	5.1 9	5.0 35 6.8 36 8.6 37 0.4 38 2.2 39	1.7	185.0	85	29.4	275.0	135	57.2
-83.2	-64 -53.3	6.8 -14 -24	5.6 9		2.2	186.8	86	30.0	276.8	136	57.8
-81.4	-63 -52.8	8.6 -13 -24	5.0 9		2.8	188.6	87	30.6	278.6	137	58.3
-79.6	-62 -52.2	10.4 -12 -24	4.4 10		3.3	190.4	88	31.1	280.4	138	58.9
-77.8	-61 -51.7	12.2 -11 -24	3.9 10		3.9	192.2	89	31.7	282.2	139	59.4
-76.0 -74.2 -72.4 -70.6 -68.8	-60 -51.1 -59 -50.6 -58 -50.0 -57 -49.4 -56 -48.9	14.0 -10 -21 15.8 -9 -21 17.6 -8 -22 19.4 -7 -2 21.2 -6 -2	3.3 10 2.8 10 2.2 10 1.7 10 1.1 11	4.0405.8417.6429.4431.244	4.4 5.0 5.6 6.1 6.7	194.0 195.8 197.6 199.4 201.2	90 91 92 93 94	32.2 32.8 33.3 33.9 34.4	284.0 285.8 287.6 289.4 291.2	140 141 142 143 144	60.0 60.6 61.1 61.7 62.2
-67.0 -65.2 -63.4 -61.6 -59.8	-55 -48.3 -54 -47.8 -53 -47.2 -52 -46.7 -51 -46.1	23.0 -5 -21 24.8 -4 -21 26.6 -3 -11 28.4 -2 -11 30.2 -1 -11	0.6 11 0.0 11 0.4 11 3.9 11 3.3 12	3.0 45 4.8 46 6.6 47 8.4 48 0.2 49	7.2 7.8 8.3 8.9 9.4	203.0 204.8 206.6 208.4 210.2	95 96 97 98 99	35.0 35.6 36.1 36.7 37.2	293.0 294.8 296.6 298.4 300.2	145 146 147 148 149	62.8 63.3 63.9 64.4 65.0

Table PER-2. LINEAR CONVERSION

EFFECTIVITY:

ALL AIRCRAFT

- TO CONVERT FROM METERS TO FEET, FIND, IN THE BOLD FACE COLUMNS, THE NUMBER OF METERS TO BE CONVERTED. THE EQUIVALENT NUMBER OF FEET IS READ IN THE ADJACENT COLUMN HEADED FEET.
- TO CONVERT FROM FEET TO METERS, FIND, IN THE BOLD FACE COLUMNS, THE NUMBER OF FEET TO BE CONVERTED. THE EQUIVALENT NUMBER OF METERS IS READ IN THE ADJACENT COLUMN HEADED METERS.

METERS		FEET	METERS		FEET	METERS		FEET
304.8	1000	3280.8	1341.1	4400	14435.5	2377.5	7800	25590.2
335.3	1100	3608.9	1371.6	4500	14763.6	2407.9	7900	25918.3
365.8	1200	3937.0	1402.1	4600	15901.7	2438.4	8000	26246.4
396.2	1300	4265.0	1432.6	4700	15419.8	2468.9	8100	26574.5
426.7	1400	4593.1	1463.1	4800	15747.8	2499.4	8200	26902.6
457.2	1500	4921.2	1493.5	4900	16075.9	2529.9	8300	27230.6
487.7	1600	5249.3	1524.0	5000	16404.0	2560.4	8400	27558.7
518.2	1700	5577.4	1554.5	5100	16732.1	2590.8	8500	27886.8
548.6	1800	5905.4	1585.0	5200	17060.2	2621.3	8600	28214.9
579.1	1900	6233.5	1615.5	5300	17388.2	2651.8	8700	28543.0
609.6	2000	6561.6	1645.9	5400	17716.3	2682.3	8800	28871.0
640.1	2100	6889.7	1676.4	5500	18044.4	2712.8	8900	29199.1
670.6	2200	7217.8	1706.9	5600	18372.5	2743.2	9000	29527.2
701.0	2300	7545.8	1737.4	5700	18700.6	2773.7	9100	29855.3
731.5	2400	7873.9	1767.9	5800	19028.6	2804.2	9200	30183.4
762.0	2500	8202.0	1798.3	5900	19356.7	2834.7	9300	30511.4
792.5	2600	8530.1	1828.8	6000	19684.8	2865.2	9400	30839.5
823.0	2700	8858.2	1859.3	6100	20012.9	2895.6	9500	31167.6
853.5	2800	9186.2	1889.8	6200	20341.0	2926.1	9600	31495.7
883.9	2900	9514.3	1920.3	6300	20669.0	2956.6	9700	31823.8
914.4	3000	9842.4	1950.7	6400	20997.1	2987.1	9800	32151.8
944.9	3100	10170.5	1981.2	6500	21325.2	3017.6	9900	32479.9
975.4	3200	10498.6	2011.7	6600	21653.3	3048.0	10000	32808.8
1005.9	3300	10826.6	2042.2	6700	21981.4	3352.8	11000	36.88.8
1036.3	3400	11154.7	2072.7	6800	22309.4	3657.6	12000	39369.6
1066.8	3500	11482.8	2103.1	6900	22637.5	3962.4	13000	42650.4
1097.3	3600	11810.9	2133.6	7000	22965.6	4267.3	14000	45931.2
1127.8	3700	12139.0	2164.1	7100	23293.7	4572.1	15000	49212.0
1158.3	3800	12467.0	2194.6	7200	23621.8	4876.9	16000	52492.8
1188.7	3900	12795.1	2225.1	7300	23949.8	5181.7	17000	55773.6
1219.2	4000	13123.2	2255.5	7400	24277.9	5486.5	18000	59054.4
1249.7	4100	13451.3	2286.0	7500	24606.0	5791.3	19000	62335.2
1280.2	4200	13779.4	2316.5	7600	24934.1	6096.1	20000	65616.0
1310.7	4300	14107.4	2347.0	7700	25262.2	6400.9	21000	68896.8

Table PER-3. VOLUME CONVERSION

EFFECTIVITY:

ALL AIRCRAFT

- TO CONVERT FROM LITERS TO GALLONS, FIND, IN THE BOLD FACE COLUMNS, THE NUMBER OF LITERS TO BE CONVERTED. THE EQUIVALENT NUMBER OF GALLONS IS READ IN THE ADJACENT COLUMN HEADED GALLONS.
- TO CONVERT FROM GALLONS TO LITERS, FIND, IN THE BOLD FACE COLUMNS, THE NUMBER OF GALLONS TO BE CONVERTED. THE EQUIVALENT NUMBER OF LITERS IS READ IN THE ADJACENT COLUMN HEADED LITERS.

LITERS	∢ ►	GALLONS	LITERS		GALLONS	LITERS	5 ◀►	GALLONS
18.9	5	1.3	1476.2	390	103.0	2952.3	780	206.1
37.9	10	2.6	1514.0	400	105.7	2990.2	790	208.7
75.7	20	5.3	1551.9	410	108.3	3028.0	800	211.7
113.6	30	7.9	1589.7	420	111.0	3065.9	810	214.0
151.4	40	10.6	1627.6	430	113.6	3103.7	820	216.6
189.3	50	13.2	1665.4	440	116.2	3141.6	830	219.3
227.1	60	15.9	1703.3	450	118.9	3179.4	840	221.9
265.0	70	18.5	1741.1	460	121.5	3217.3	850	224.6
302.8	80	21.1	1779.0	470	124.2	3255.1	860	227.2
340.7	90	23.8	1816.8	480	126.8	3293.0	870	229.9
378.5	100	26.4	1854.7	490	129.5	3330.8	880	232.5
416.4	110	29.1	1892.5	500	132.1	3368.7	890	235.1
454.2	120	31.7	1930.4	510	134.7	3406.5	900	237.8
492.1	130	34.3	1968.2	520	137.4	3444.4	910	240.4
529.9	140	37.0	2006.1	530	140.0	3482.2	920	243.1
567.8	150	39.6	2043.9	540	142.7	3520.1	930	245.7
605.6	160	42.3	2081.8	550	145.3	3557.9	940	248.3
643.5	170	44.9	2119.6	560	148.0	3595.8	950	251.0
681.3	180	47.6	2157.5	570	150.6	3633.6	960	253.6
719.2	190	50.2	2195.3	580	153.2	3671.5	970	256.3
757.0	200	52.8	2233.2	590	155.9	3709.3	980	258.9
794.9	210	55.5	2271.0	600	158.5	3747.2	990	261.6
832.7	220	58.1	2308.9	610	161.2	3785.0	1000	264.2
870.6	230	60.8	2346.7	620	163.8	4163.5	1100	290.6
908.4	240	63.4	2384.6	630	166.4	4542.0	1200	317.0
946.3	250	66.0	2422.4	640	169.1	4920.5	1300	343.5
984.1	260	68.7	2460.3	650	171.7	5299.0	1400	369.9
1022.0	270	71.3	2498.1	660	174.4	5677.5	1500	396.3
1059.8	280	74.0	2536.0	670	177.0	6056.0	1600	422.7
1097.7	290	76.6	2573.8	680	179.7	6434.5	1700	449.1
1135.5	300	79.3	2611.7	690	182.3	6813.0	1800	475.6
1173.4	310	81.9	2649.5	700	184.9	7191.5	1900	502.0
1211.2	320	84.5	2687.4	710	187.6	7570.0	2000	528.4
1249.1	330	87.2	2725.2	720	190.2	7948.5	2100	554.8
1286.9	340	89.8	2763.1	730	192.9	8327.0	2200	581.2
1324.8	350	92.5	2800.9	740	195.5	8705.5	2300	607.7
1362.6	360	95.1	2838.8	750	198.1	9084.0	2400	634.1
1400.5	370	97.8	2876.6	760	200.8	9462.5	2500	660.5
1438.3	380	100.4	2914.5	770	203.4	9841.0	2600	686.9

Table PER-4. WEIGHT CONVERSION

EFFECTIVITY:

ALL AIRCRAFT

- TO CONVERT FROM KILOGRAMS TO POUNDS, FIND, IN THE BOLD FACE COLUMNS, THE NUMBER OF KILOGRAMS TO BE CONVERTED. THE EQUIVALENT NUMBER OF POUNDS IS READ IN THE ADJACENT COLUMN HEADED POUNDS.
- TO CONVERT FROM POUNDS TO KILOGRAMS, FIND, IN THE BOLD FACE COLUMNS, THE NUMBER OF POUNDS TO BE CONVERTED. THE EQUIVALENT NUMBER OF KILOGRAMS IS READ IN THE ADJACENT COLUMN HEADED KILOGRAMS.

KILOGRAMS		POUNDS	KILOGRAM	s ৰ 🕨	POUNDS	KILOGRAM	ns ৰ 🕨	POUNDS
4.5	10	22.0	208.7	460	1014.1	412.8	910	2006.2
9.1	20	44.1	213.2	470	1036.2	417.3	920	2028.2
13.6	30	66.1	217.7	480	1058.2	421.8	930	2050.3
18.1	40	88.2	222.3	490	1080.3	426.4	940	2072.3
22.7	50	110.2	226.8	500	1102.3	430.9	950	2094.4
31.8	70	154.3	235.0	520	1124.5	433.3	900	2138.5
36.3	80	176.4	240.4	530	1168.4	444.5	980	2160.5
40.8	90	198.4	244.9	540	1190.5	449.1	990	2185.6
45.4	100	220.5	249.5	550	1212.5	453.6	1000	2204.6
49.9	110	242.5	254.0	560	1234.6	499.0	1100	2425.1
54.4	120	264.6	258.6	570	1256.6	544.3	1200	2645.5
59.0	130	286.6	263.1	580	1278.7	589.7	1300	2866.0
63.5	140	308.6	267.6	590	1300.7	635.0	1400	3086.4
68.0	150	330.7	272.2	600	1322.8	680.4	1500	3306.9
72.6	160	352.7	276.7	610	1344.8	907.2	2000	4409.2
77.1	1/0	374.8	281.2	620	1366.9	1134.0	2500	5511.5
81.6	180	396.8	285.8	630	1388.9	1360.8	3000	5513.8
00.2	200	410.9	290.3	650	1410.9	1914.4	4000	8818 /
90.7	210	440.9	294.0	660	1455.0	2041.2	4000	9920.7
99.8	220	485.0	303.9	670	1477.1	2268.0	5000	11023.0
104.3	230	507.1	308.4	680	1499.1	2494.8	5500	12125.3
108.9	240	529.1	313.0	690	1521.2	2721.6	6000	13227.6
113.4	250	551.1	317.5	700	1543.2	2948.4	6500	14329.9
117.9	260	573.2	322.1	710	1565.3	3175.2	7000	15432.2
122.5	270	595.2	326.6	720	1587.3	2402.0	7500	16534.5
127.0	280	617.3	331.1	730	1609.4	3628.8	8000	17636.8
131.5	290	639.3	335.7	740	1631.4	2855.6	8500	18739.1
136.1	300	661.4	340.2	750	1653.4	4082.4	9000	19841.4
140.0	310	705.5	344.7	760	1607.5	4309.2	10000	20943.7
143.2	330	703.5	349.3	780	1719.6	2989.6	11000	24250.6
154.2	340	749.6	358.3	790	1741.6	5443.2	12000	26455.2
158.8	350	771.6	362.9	800	1763.7	5896.8	13000	28659.8
163.3	360	793.7	367.4	810	1785.7	6350.4	14000	30864.4
167.8	370	815.7	371.9	820	1807.8	6804.0	15000	33069.0
172.4	380	837.7	376.5	830	1829.8	7257.6	16000	35273.6
176.9	390	859.8	381.0	840	1851.9	7711.1	17000	37478.2
181.4	400	881.8	385.6	850	1873.9	8164.7	18000	39682.8
186.0	410	903.9	390.1	860	1896.0	8618.3	19000	41887.4
190.5	420	925.9	394.6	870	1918.0	9071.9	20000	44092.0
195.0	430	948.0	399.2	880	1940.0	9525.5	21000	46296.6
199.6	440	970.0	403.7	000	1902.1	9979.1	22000	40001.2
204.1	450	992.1	408.2	900	1984.1	10432.7	23000	50705.8

FOR TRAINING PURPOSES ONLY

LEARJET 31A PILOT TRAINING MANUAL
PER-19

LEARJET 31A PILOT TRAINING MANUAL

Figure PER-7. Altitude Position Correction (Sheet 3 of 4)

Figure PER-7. Altitude Position Correction (Sheet 4 of 4)

LEARJET

31A

PILOT

TRAINING

MANUAL

1.	INDICATED AIRSPEED	140 KIAS
2.	INDICATED ALTITUDE	5,000 FT
3.	POSITION CORRECTION	–20 FT
		4 980 FT

FlightSafety

EFFECTIVITY:

ALL AIRCRAFT

CONDITIONS:

٠	WIND VELOCITY	NOTS
٠	WIND DIRECTION	300°
•	RUNWAY HEADING	340°

EXAMPLE:

1.	WIND DIRECTION FROM RUNWAY (SEE NOTE)	40°
2.	WIND VELOCITY	35 KNOTS
3.	HEADWIND COMPONENT.	26.7 KNOTS
4.	CROSSWIND COMPONENT	

NOTE:

TO CALCULATE WIND DIRECTION FROM RUNWAY, SUBTRACT WIND DIRECTION FROM RUNWAY HEADING. ENTER THE CHART AT THE ABSOLUTE VALUE OF WIND DIRECTION FROM RUNWAY.

Figure PER-8. Wind Components

MISCELLANEOUS

Static Position Correction—The static position corrections is applied to indicated airspeed or altitude to eliminate the effect of the static source location on the instrument reading. Instrument error is assumed to be zero. Since all airspeeds and altitudes in this sect on are presented as "indicated" values, no position corrections need be made when reading from the charts. Any change in the airspeed-altitude system external to the airplane, or locating any external object near the pressure pickup sources, requires calibration of the system and revision of the charts.

Takeoff Brake Energy—The maximum brake energy demonstrated during emergency stop tests. Maximum effort braking at weights associated with the takeoff brake energies shown on the TAKEOFF WEIGHT LIMITS charts will meet the accelerate-stop distances expressed on the TAKEOFF DIS-TANCE charts if the takeoff is aborted at V₁. However, after the stop, wheel fuse plugs will release and brake and tire damage will occur.

Landing Brake Energy—The maximum brake energy demonstrated during landing tests. Maximum effort braking at weights associated with the landing brake energies shown on the LANDING WEIGHT LIMITS charts will meet the stopping distances expressed on the ACTUAL LANDING DISTANCE chart. Maximum effort stops above the maximum landing brake energy weight may cause excessive brake wear, and after the stop, may cause wheel fuse plug release and damage tires..

Runway Gradient—Runway gradient is a change in runway elevation per 100 feet of runway length. The values given are positive for uphill gradients and negative for downhill gradients.

Gradient of Climb—This is the ratio of the change in height during a portion of the climb to the horizontal distance traversed in the same time interval.

Gross Climb Gradient—The gross climb gradient is one the airplane can actually achieve given ideal conditions.

Net Climb Gradient—This is the gross climb gradient reduced by 0.8% during the takeoff phase and 1.1 enroute. This conservatism is required by FAR 25 for terrain clearance determination to account for variables encountered in service.

CLIMB SEGMENTS (IN ORDER OF OCCURRENCE)

First Segment Climb—Climb from the point at which the airplane becomes airborne to the point at which the landing gear is fully retracted. The gross climb gradient with one engine not operating and the other engine at takeoff thrust must be positive, without ground effect. This requirement is satisfied by observing the Takeoff Weight Limits chart. Velocity increase is from lift-off velocity (V_{LOF}) to V_2 with gradient calculated at V_{LOF} .

Second Segment Climb—Second segment climb is calculated at a height of 400 feet. The gross climb gradient may not be less than 2.4% with one engine not operating and the other engine at takeoff thrust. This requirement is satisfied by observing the Takeoff Weight Limits chart. Velocity for this segment is V_2 .

Final Segment Climb—Final segment climb is calculated at a height of 1,500 feet. The gross climb gradient may not be less than 1.2% with one engine not operating and the other engine at maximum continuous thrust. This requirement is satisfied by observing the Takeoff Weight Limits chart. Velocity for this segment is $V_2 + 20$ KIAS. The final segment climb gradients are presented for pilot reference and are not used in takeoff path calculation.

Enroute Climb—Climb with flaps UP (0°) , landing gear retracted and maximum continuous thrust on one engine. There is no minimum requirement for enroute climb gradients. The enroute net climb gradients are presented for pilot reference. Velocity is presented in Enroute Climb Gradient chart.

Approach Climb—Climb from a missed or aborted approach with approach (20°) flaps, landing gear retracted, one engine not operating and the other engine at takeoff thrust. The gross climb gradient may not be less than 2.1%. This requirement is satisfied by observing the Landing Weight Limits chart. Velocity for this segment is 1.3 V_{S1}.

Landing Climb—Climb from an aborted landing with landing flaps DN (40°), landing gear extended, and takeoff thrust on both engines. The gross climb gradient may not be less than 3.2%. This requirement is satisfied by observing the Landing Weight Limits chart. Velocity for this segment is 1.3 VSO.

Configurations

L

The configurations referred to by name in the charts correspond to the settings listed in Table PER-5.

CONFIGURATION	NO. OF ENGINES OPERATION	THRUST	FLAP SETTING	GEAR
1ST SEGMENT TAKEOFF CLIMB	1	TAKEOFF	8 OR 20°	DOWN
2ND SEGMENT TAKEOFF CLIMB	1	TAKEOFF	8 OR 20°	UP
FINAL SEGMENT CLIMB	1	MAX CONT	UP—0°	UP
ENROUTE CLIMB	1	MAX CONT	UP—0°	UP
APPROACH CLIMB	1	TAKEOFF	20°	UP
LANDING CLIMB	2	TAKEOFF	DN—40°	DOWN

|--|

NOISE LEVELS

The noise levels are in compliance with the requirements of FAR 36 (Stage 3) (Table PER-3) which are equal to or more severe than the requirements outlined in ICAO Annex 16, Chapter 3.

These noise levels established in compliance with FAR 36 (Stage 3) are listed in Table PER-6.

	ACI	UAL	MAXIMUM
CONDITION	FLAPS 8°	FLAPS 20°	ALLOWABLE
SIDELINE			
15,500 LB (7,031 KG)	87.2	87.4	94
16,500 LB (7,484 KG)	87.0	87.1	94
TAKEOFF			
15,500 LB (7,031 KG)	79.6	80.9	89
16,500 LB (7,484 KG)	81.0	82.4	89
APPROACH	FLAF	PS 40°	
15,300 LB (6,940 KG)	9:	2.8	98

Table PER-6. NOISE LEVEL IN EPNdB

No determination has been made by the Federal Aviation Administration that the noise levels in the *AFM* are or should be acceptable or unacceptable for operation at, into, or out of any airport.

These noise values are stated for reference conditions of standard atmospheric pressure at sea level, $77^{\circ}F(25^{\circ}C)$ ambient temperature, 70% relative humidity, and zero wind.

Takeoff and sideline noise levels were obtained at the maximum takeoff weights listed above, $V_2 + 10$ knots climb speed, 8 and 20° flaps, anti-ice systems off, and all engine takeoff with takeoff thrust setting. No thrust cutback was required for compliance.

Landing approach noise levels were established on a 3° glideslope, gear down, maximum landing weights listed above, approach speed of VREF + 10 knots, and 40° flaps. No special noise abatement procedures were used.

TAKEOFF

MAXIMUM TAKEOFF WEIGHT

The charts on the following pages (Figures PER-11 through PER-29) present the information necessary to determine the maximum allowable takeoff weight as limited by gross climb performance or brake energy limits. The climb limitations portion of the charts do not specify the limiting climb segment, only

that any one or a combination of the takeoff climb segments (first, second or final) are limiting.

Takeoff must be made within the limitations of the maximum takeoff weight, Takeoff Weight Limits chart, and by the performance determined from the Takeoff Distance chart.

Example:

- 1. Maximum certified takeoff weight.
- 2. From the applicable Takeoff Weight Limits chart, determine maximum takeoff weight for airport altitude and temperature.
- 3. From the applicable Takeoff Distance chart, determine the maximum takeoff weight for the runway and ambient conditions.
- 4. From the applicable Takeoff Flight Path and Climb Gradient charts, determine the maximum takeoff weight for obstacle clearance, if required.
- 5. The lowest of the weights from steps 1, 2, 3, and 4 is the heaviest allowable weight at which the airplane can take off.

TAKEOFF FLIGHT PATH

The takeoff flight path is divided into segments defined by changes in the airplane configuration. The terms used in flight path plotting are defined as follows and illustrated on the Takeoff Profile in Figure PER-30.

Reference Zero—A point 35 feet above the runway surface at the final point of the takeoff run (takeoff distance).

First Segment—Segment extending from the 35-foot height at the end of the takeoff run (Reference Zero) to the height at the end of gear retraction.

NOTE

The First Segment of the Takeoff Flight Path represents only a portion of the First Segment Climb as shown on the Takeoff Profile figure.

Second Segment—Segment beginning at the end of gear retraction (end of first segment) and continuing to a height of up to 1,500 feet above the runway at V_2 speed. For obstacle clearance, maintain second segment climb (gear up, flaps at takeoff setting, takeoff thrust and V_2) until reaching obstacle clearance altitude. This procedure will produce the performance shown in the Takeoff Flight Path charts.

Transition Segment—Segment beginning at the end of second segment (1,500 feet or 5-minute limit on takeoff thrust) for level-off, acceleration to $V_2 + 20$

KIAS and flap retraction at maximum continuous thrust. The horizontal distance traversed during this segment will be less than 11 nautical miles at the most limiting conditions.

NOTE

Under the most limiting conditions, 5 minutes at takeoff thrust will result in a climb of 1,350 feet for the second segment. Therefore, the horizontal distance stated includes the distance traversed for 150 feet climb in the final segment configuration (clean).

Effect of Wind on Flight Path—The effect of wind is to increase or decrease the climb gradients or horizontal distances on each segment of the flight path.

The Takeoff Flight Path charts presented in this manual are separated into Closein and Distant flight paths. The Close-in Takeoff Flight Path charts facilitate determination of required gradients within approximately two miles horizontal distance from Reference Zero. The Distant Takeoff Flight Path charts facilitate determination of required gradients to nearly eight miles from Reference Zero.

On these charts each flight path line is marked with numbers showing the net climb gradients required for obstacle clearance at the end of the first and second segment climb. The origin of each line is Reference Zero, and the slope of the line segments (scale vertical distance divided by scale horizontal distance) are the slopes of the required climb segments in space in zero wind conditions. Since the zero wind first and second segment climbs are uniquely related to each other for each airplane weight and environment, it can be seen that the actual flight path in still air can be obtained from the Takeoff Flight Path charts by knowing only one of the applicable gradients.

CLIMB GRADIENTS

Climb performance charts for 8 and 20° flap settings are presented in terms of altitude, temperature, weight, wind, and anti-ice systems on or off. The gradients for First, Second, and Final Segments are read at the temperature and pressure altitude for the departure airport and are the net gradients that will be achieved at the appropriate segment of the Takeoff Flight Path.

These charts show the net gradients available and are to be used with the Takeoff Flight Path charts which show the required net gradients when flight planning for obstacle clearance.

DETERMINATION OF TAKEOFF FLIGHT PATH FOR OBSTACLE CLEARANCE

The weight used for the following determination is defined as the airplane weight at the beginning of the takeoff roll. Using this weight for each climb segment will result in some small conservatism, since the gradients are presented in terms of instantaneous gross weight rather than the weight at the beginning of takeoff roll.

When flight path planning for obstacle clearance is desired, the following procedure may be used:

- 1. From the applicable Takeoff Weight Limits chart, determine the highest weight at which a takeoff may be made for the local temperature and pressure altitude.
- 2. From the applicable Takeoff Distance chart, determine the highest weight at which a takeoff may be made using the runway gradient, appropriate wind component, field pressure altitude, and local temperature. The lower of this weight and the weight from the Takeoff Weight Limits chart is the first trial takeoff gross weight.
- 3. Determine the horizontal distance of the obstacle from reference zero.
- 4. From the applicable Takeoff Flight Path chart, for the first or second segment, depending on where the critical obstacle is considered to be, determine the required climb gradient for obstacle clearance (zero wind gradient).
- 5. From the applicable Climb Gradient chart, determine the aircraft climb gradient performance.

NOTE

It is noted at this point that a headwind serves to increase climb gradient performance, whereas a tailwind decreases climb gradient performance.

- 6. If step 5 (climb gradient performance) is more than step 4 (required gradient), obstacle clearance is satisfactory.
- Or:
 - 6. If step 5 (climb gradient performance) is less than step 4 (required gradient), obstacle clearance is unsatisfactory and procedures must be repeated using a lesser weight. When weight is reduced to achieve obstacle clearance, note that the horizontal distance between the obstacle and reference zero increases, since the takeoff field length is less. Consequently an interpolative process is required to find the exact minimum gradient and maximum weight for obstacle clearance.

TAKEOFF FROM WET OR CONTAMINATED RUNWAY

Refer to the WET/CONTAMINATED RUNWAY DATA for guidance material pertaining to takeoff on a wet or contaminated runway.

TAKEOFF PROCEDURE

The takeoff distances on the Takeoff Distance charts can be realized by following the Engine Failure During Takeoff procedure in Section III of the *AFM* and using the following techniques:

- 1. Set takeoff $\rm N_1$ prior to brake release. Adjust Fan Speed ($\rm N_1)$ continuously up to 80 KIAS.
- 2. For engine failure above V_1 :
 - a. Rotate to approximately 9° nose up at V_R.
 - b. Accelerate to V_2 then increase pitch as required to maintain V_2 through a height of 35 feet.

NOTE

For a two-engine takeoff, maintain $V_2 + 8$ knots up through the 35-foot point.

Or:

- 2. For rejected takeoff (engine failure below V₁):
 - a. Braking Techniques:
 - Anti-skid operative—Apply maximum anti-skid braking until the airplane stops.
 - Anti-skid inoperative—Apply brakes judiciously to prevent tire skid or failure. Modulating brake pressures will improve feel and reduce the probability of tire skid.

TAKEOFF DISTANCE

The Takeoff Distance charts in the AFM are presented for 8 or 20° flap settings and show required field length in terms of altitude, temperature, weight, wind, runway gradient, anti-skid on or off, and anti-ice systems on or off. These charts may be used to determine either of the following:

- The runway length required given the airplane weight, runway gradient, pressure altitude, temperature, and wind. The example on the applicable chart illustrates determination of runway length required.
- The maximum airplane takeoff weight corresponding to a specific runway length, runway gradient, pressure altitude, temperature, and wind. Takeoff weight for runway length available may be determined by working through the chart in the opposite manner as finding runway length.

SIMPLIFIED TAKEOFF DATA

The simplified takeoff data may be used for all certified takeoff weights (rudder boost ON or OFF) if the listed conditions are satisfied (Table PER-7). If the listed conditions are not satisfied, refer to the appropriate figures in this section.

Table PER-7. SIMPLIFIED TAKEOFF DATA

AMBIENT TEMPERATURE	V ₁ KIAS	V _R KIAS	V ₂ KIAS	N ₁ %
8 – 48°F (–13 – 9°C)	118	118	122	91.5
48 – 88°F (9 – 31°C)	118	118	122	95.5

CONDITIONS:

- 1. ENGINE NOZZLE-STANDARD
- 2. FLAPS-20°
- 3. ANTI-ICE SYSTEMS-OFF
- 4. ANTI-SKID- OPERATIVE
- 5. RUNWAY LENGTH AVAILABLE-DRY, PAVED 5,000 FEET OR GREATER
- 6. OBSTACLES-NONE
- TAILWIND —NONE
 RUNWAY GRADIENT—NONE
- 9. FIELD ELEVATION-2,000 FEET OR LESS
- 10. TEMPERATURE 8 TO 88°F (-13 TO 31°C) INCLUSIVE

Figure PER-9. Takeoff Profile

LEARJET 31A PILOT TRAINING MANUAL

Figure PER-10. Takeoff Weight Limit—FLAPS at 8°

LEARJET 31A PILOT TRAINING MANUAL

UNCORRECTED TAKEOFF FIELD LENGTH—FT													
ALTITUDE	ALTITUDE WEIGHT TEMPERATURE—°F												
FEEI	LB	-40	-20	0	20	40	60	70	80	90	100	110	120
	10,000	2250	2350	2440	2540	2640	2730	2790	2910	3040	3190	3370	3580
	11,000	2320	2420	2520	2620	2710	2810	2870	3000	3150	3310	3510	3740
	12,000	2380	2490	2590	2690	2800	2890	2960	3100	3260	3440	3650	3950
SEA LEVEL	14,000	2400	2570	2750	2760	2000	2960	3140	3300	3480	3690	4050	4200
	15.000	2600	2720	2830	2940	3060	3160	3240	3410	3700	4120	4630	5270
	15,500	2640	2760	2870	2990	3100	3210	3290	3570	3950	4410	4970	5710
	16,000	2790	2910	3020	3140	3260	3360	3470	3810	4220	4710	5290	6440
	17,000	3130	3280	3400	3540	3690	3790	3910	4310	4770	5320	6090	8750
	10,000	2420	2530	2630	2730	2830	2940	3060	3210	3370	3550	3770	4040
	12.000	2570	2680	2790	2900	3010	3120	3270	3440	3630	3850	4150	4730
	13,000	2650	2770	2880	2990	3100	3220	3380	3560	3760	4000	4500	5110
2,000	14,000	2730	2850	2970	3090	3200	3320	3490	3680	3900	4280	4830	5540
	15,000	2810	2940	3060	3180	3300	3420	3600	3940	4380	4890	5560	7230
	15,500	2850	2990	3100	3230	3350	3480	3810	4210	4690	5250	5990	8650
	16,000 17,000	3030 3420	3190 3590	3310 3730	3440 3870	3550 4000	3700 4180	4060 4590	4480 5070	5000 5660	5610 6460	6760 9040	11240
	10,000	2590	2710	2830	2940	3050	3250	3400	3560	3750	3970	4220	
	11,000	2670	2800	2910	3030	3140	3360	3520	3700	3900	4140	4480	
	12,000	2750	2880	3000	3120	3240	3470	3640	3840	4060	4330	4890	
4 000	13,000	2830	2970	3090	3220	3340	3590	3770	3980	4220	4700	5250	
4,000	14,000	2920	3060	3190	3320	3440	3710	3900	4130	4500	5020	5730	
	15,000	3000	3160	3290	3420	3550	3830	4190	4640	5160	5790	7060	
	15,500	3260	3430	3560	3490	3840	4070	4400	5280	5900	6830	9890	
	17,000	3670	3870	4020	4180	4340	4920	5400	5990	6760	8880		
	10,000	2810	2940	3060	3180	3340	3630	3790	3980	4200	4460	4800	
	11,000	2900	3030	3150	3280	3440	3750	3930	4140	4380	4690	5290	
	12,000	2990	3120	3250	3380	3550	3890	4080	4300	4580	5120	5790	
6.000	13,000	3080	3210	3350	3480	3660	4020	4230	4480	4970	5490	5550	
-,	15.000	3270	3420	3400	3700	3900	4160	4350	5480	6110	7230	10990	
	15,500	3350	3510	3660	3800	4060	4820	5320	5870	6600	8310		
	16,000	3560	3730	3890	4050	4320	5170	5650	6280	7190	9840		
	17,000	4020	4210	4390	4560	4870	5840	6430	7200	9290			
	10,000	3070	3210	3340	3480	3730	4060	4270	4500	4780	5180		
	11,000	3160	3310	3440	3580	3850	4200	4430	4690	5070	5700		
	12,000	3260	3410	3660	3800	3960 4110	4300	4610	4940 5300	5460	7140		
8,000	14.000	3460	3620	3770	3920	4250	4690	5160	5690	6420	8130		
	15,000	3570	3730	3890	4040	4480	5320	5890	6600	7690			
	15,500	3700	3870	4030	4200	4790	5700	6310	7130	9210			
	16,000	3930	4120	4290	4460	5100	6130	6790	7850	11260			
	17,000	4440	4030	4030	5020	5/60	6930	//60	10360				
	10,000	3330 3420	3480 3580	3630 3730	3870	4190 4330	4590 4760	4820 5020	5090 5350	5420 5970			
	12.000	3520	3680	3840	3990 4110	4330	4760	5280	5750	6410			
	13,000	3620	3790	3950	4240	4640	5160	5650	6220	7180			
10,000	14,000	3730	3900	4070	4380	4800	5570	6080	6790	8000			
MAX CERTIFIED	15,000	3840	4020	4190	4550	5310	6360	7070	8140	11560			
TAKEOFF	15,500	3980	4160	4340	4850	5690	6850	7610	9360				
ALITODE	16,000 17,000	4230 4770	4440 4980	4640 5230	5170 5850	6110 6900	7330 8520	8330	11110				
	10,000	3680	3840	4090	4420	4800	5270	5540	5860				
	11,000	3760	3940	4200	4550	4950	5470	5820	6340				
	12,000	3860	4040	4310	4690	5130	5710	6240	6890		ABO	OVE	
12 000	13,000	3970	4150	4440	4840	5310	6150	6750	7640				
,000	14,000	4080	4270	43/0	5000	5280 6390	7730	2050	03/0	EN	GIN	EIE	VIP
	15,500	4310	4520	4990	5810	6860	8320	10360	12000		LIM	IITS	
	16,000	4580	4820	5320	6240	7340	9290	12830					
	17,000	5150	5430	6020	7050	8490	12900						
	10,000	4150	4420	4720	5100	5550	6100	6430	6970				
	11,000	4230	4510	4830	5240	5730	6320	6880	7600				
	12,000	4320	4030	4950	5400	5920	7340	8230	0450				
14,000	14,000	4540	4880	5250	5750	6670	8050	9320	.0030				
	15,000	4670	5020	5580	6530	7740	9840						
	15,500	4790	5340	5980	7010	8300	11690						
	16,000	5100	5690	6440	7510	9020							
	17,000	5760	6480	7300	8690	11010							

EXAMPLE:

2 3 4 5 6 7 8 9 1 1 1 40	UNCORRECTED TAKEOFF FIELD LENGTH (from table). REFERENCE LINE HEADWIND. REFERENCE LINE RUNWAY GRADIENT. REFERENCE LINE ANTI-SKID. REFERENCE LINE ANTI-ICE. 0. REFERENCE LINE 1. ALTITUDE. 2. CORRECTED TAKEOFF FIELD LENGTH.	4,700 FT (1,433 M)
UNCORRECTED TAKEOFF FIELD LENGTH-100 METERS 9 8 00 75 75 75 97 88 00 75 78 99 88 9 14 14 14 14 14 14 14 14 14 14 14 14 14	3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	13 13 13 13 14 12 14 14 15 12 14 14 15 12 14 14 15 12 14 14 15 12 14 14 15 12 14 14 15 16 17 17 16 17 17 17 17 17 17 17 17 17 17

Figures in shaded area are provided for interpolation only.

Figure PER-11. Takeoff Distance—Flaps at 8° and Rudder Boost OFF

LEARJET 31A PILOT TRAINING MANUAL

UNCORRECTED TAKEOFF FIELD LENGTH—FT													
ALTITUDE	WEIGHT	HT TEMPERATURE—°F											
	ЦВ	-40	-20	0	20	40	60	70	80	90	100	110	120
	10,000	1760	1840	1910	1980	2060	2130	2170	2270	2370	2500	2640	2800
	11,000	1820	1900	1970	2050	2120	2190	2240	2350	2460	2590	2750	2930
	12,000	1870	1960	2030	2110	2190	2270	2320	2430	2550	2/00	2880	3200
SEA LEVEL	13,000	2220	2070	2140	2220	2290	2360	2420	2010	2/00	3450	3880	4380
	15,000	2470	2580	2670	2400	2870	2960	3040	3270	3570	3970	4460	5080
	15,500	2610	2730	2820	2920	3040	3130	3210	3460	3820	4250	4790	5610
	16,000	2750	2870	2970	3080	3190	3290	3380	3680	4080	4550	5130	6380
	17,000	3040	3180	3290	3420	3560	3670	3780	4170	4630	5180	6010	8590
	10,000	1890 1950	1970 2040	2050	2130	2210	2290 2360	2390	2500 2590	2630 2730	2780	2950 3090	3160
	12.000	2020	2110	2190	2280	2360	2440	2560	2690	2840	3020	3370	3830
	13,000	2140	2230	2310	2390	2470	2560	2730	2930	3180	3530	3960	4510
2,000	14,000	2390	2490	2590	2690	2780	2870	3080	3320	3660	4090	4610	5360
	15,000	2670	2790	2890	3000	3100	3220	3460	3800	4210	4720	5360	7110
	15,500	2820	2960	3050	3160	3280	3400	3680	4060	4520	5070	5880	10900
	17,000	3300	3460	3600	3750	3880	4050	4460	4950	5530	6370	8870	10890
	10,000	2020	2120	2200	2290	2370	2530	2650	2780	2930	3100	3300	
	11,000	2080	2190	2270	2360	2450	2620	2750	2890	3050	3240	3590	
	12,000	2150	2260	2350	2440	2530	2720	2850	3010	3180	3510	3950	
4,000	14,000	2540	2300	2780	2300	2040	3280	3520	3880	4300	4810	5450	
	15,000	2840	2990	3100	3220	3330	3690	4040	4470	4980	5590	6940	
	15,500	3000	3150	3270	3400	3520	3940	4340	4800	5350	6020	9030	
	16,000	3170	3320	3450	3590	3720	4210	4630	5140	5740	6710	9660	
	17,000	3550	3740	3690	4060	4210	4790	5280	5860	6610	8690		
	10,000	2190	2280	2380	2470	2590	2820	2950	3100	3270	3480	3840	
	11,000	2260	2360	2460	2550	2680	2930	3070	3230	3420	3760	4210	
	13,000	2340	2440	2540	2040	2920	3040	3570	3940	4360	4870	5510	
6,000	14,000	2760	2880	3010	3120	3300	3790	4150	4580	5110	5720	7210	
	15,000	3100	3220	3360	3480	3690	4370	4810	5310	5940	7100	10640	
	15,500	3260	3400	3540	3680	3930	4680	5160	5710	6380	8140		
	16,000 17.000	3440 3890	3600 4080	3760 4270	3920 4440	4200 4760	5010 5720	5530 6290	6110 7040	7050 9110	9630		
	10.000	2390	2490	2590	2690	2890	3150	3310	3500	3720	4140		
	11,000	2460	2570	2680	2780	2990	3280	3460	3660	4040	4520		
	12,000	2540	2660	2770	2880	3100	3410	3600	3980	4450	5020		
8 000	13,000	2680	2900	2900	3010	3330	3830	4220	4700	5260	5970		
0,000	14,000	3020	3160	3280	3400	3770	4450	4930	5500	6200	7960		
	15,000	3570	3530	3890	4060	4330	5540	6140	6880	9020	12/30		
	16,000	3800	3990	4160	4340	4980	5950	6620	7690	10950			
	17,000	4320	4540	4720	4920	5670	6760	7630	10060				
	10,000	2570	2690	2800	2990	3240	3550	3740	3950	4320			
	11,000	2650	2770	2890	3090	3360	3700	3900	4260	4730 5240			
	13.000	2860	2980	3110	3400	3490	4560	5010	5550	6210			
10,000	14,000	3230	3370	3510	3840	4450	5360	5890	6520	7830			
MAX CERTIFIED	15,000	3610	3780	3940	4400	5140	6190	6830	7960	11170			
TAKEOFF	15,500	3830	4020	4200	4720	5540	6640	7360	9030				
ALTITUDE	16,000 17,000	4100 4660	4300 4880	4490 5110	5040 5750	5940 6750	7180 8320	8150 10640	10770				
	10,000	2820	2950	3140	3390	3690	4060	4280	4650				
	11,000	2900	3030	3240	3510	3830	4230	4620	5080				
	12,000	2990	3120	3340	3630	3980	4620	5080	5620		ABO	OVE	
12.000	13,000	3090	3230	3500	3930	4570	5480	6040 7080	6670 9270	-			
,	14,000	3900	3030	4530	4050 5260	6220	0410 7470	8740	0370	EN	GIN		viP
	15,500	4170	4380	4840	5670	6710	8060	10080			LIM	ITS	
	16,000	4450	4670	5180	6080	7140	9070	12230					
	17,000	5050	5310	5910	6900	8260	12310						
	10,000	3150	3360	3590	3890	4240	4670	5040	5550				
	12,000	3230	3560	3810	4020	4400	5530	6080	6720				
	13,000	3420	3710	4060	4680	5510	6600	7230	8470				
14,000	14,000	3840	4200	4700	5480	6500	7730	9080	12920				
	15,000	4350	4850	5440	6380	7490	9620						
	15,500	4650	5190	5820	6880	8070	11230						
	16,000	4960	5560 6340	6270 7140	7300	8740							
	17,000	3630	0340	7140	04/U	10050							

EFFECTIVITY:

FY	Δ	м	PI	E

1.	UNCORRECTED TAKEOFF FIELD LENGTH (from table)	4,700 FT (1,433 M)
2.	REFERENCE LINE	
3.	HEADWIND	20 KT
4.	REFERENCE LINE	
5.	RUNWAY GRADIENT	1.3% UP
6.	REFERENCE LINE	
7.	ANTI-SKID	ON
8.	REFERENCE LINE	
9.	ANTI-ICE	OFF
10.	REFERENCE LINE	
11.	ALTITUDE	1,000 FT
12.	CORRECTED TAKEOFF FIELD LENGTH	5,170 FT (1,576 M)

Figures in shaded area are provided for interpolation only

Figure PER-12. Takeoff Distance—Flaps at 8° and Rudder Boost ON

V _R /V ₂ -KIAS			TY: AFT	EXAMP		ENCINE			
ALTITUDE WEIGHT KIA	s		-	F/ 2 R	AILURE SPEED (from table	e) 115 KIAS			
V _R	V ₂	CRITICAL ENGINE FAIL	URE SPEED—V₁	3. H	EADWIND				
	119			4. REFERENCE LINE					
12,000 114	119			5. R	5. RUNWAY GRADIENT				
SEA LEVEL 13,000 114	119	TAKEOFF SAFETY	SPEED—V ₂	6. R	6. REFERENCE LINE				
	119			7. Al	7. ANTI-ICE				
15,500 120	124	CAUTION		8. R					
16,000 122	126		STHAN V. IF V. FROM FI	GURE 10 O	NTI-SKID	ON			
16,500 124	127	IS LESS THAN V, FROM F	IGURE, INCREASE V AN	D V ₂		IGINE 122 KIAS			
		BY THE DIFFERENCE BET	TWEEN V _R AND V ₁ .	11 C		122 NAO			
VCORRECTED CRITICAL ENGINE FAILURE SPEED V ₁ -KIAS 130 110			Image: state			140 10 10 10 10 10 10 10 10 10 10 10 10 10			

Figure PER-13. Takeoff Speeds—Flaps at 8° and Rudder Boost OFF (Sheet 1 of 2)

UF

2

OFF

NAC HT

ANTI-ICE SYSTEMS

FULL

ON

ANTI-SKID SYSTEM

1

PER-34

100

0

10

WIND-KNOTS

20

30

DOWN

-1

0

RUNWAY GRADIENT-%

-2

100

OFF

V ₁ —KIAS													
ALTITUDE	WEIGHT				1	ГЕМРЕ	RATU	RE—°I	F				
FEET	LB	-40	-20	0	20	40	60	70	80	90	100	110	120
	10,000	109	109	109	109	109	109	109	109	109	109	109	109
	12,000	109	109	109	109	109	109	109	109	109	109	109	110
	13,000	109	109	109	109	109	109	109	109	109	109	109	112
SEA LEVEL	14,000	109	109	109	109	109	109	109	109	109	109	110	113
	15,000	109	109	109	109	109	109	109	110	112	115	118	121
	16,000	111	111	111	111	111	111	111	113	116	118	121	123
	17,000	116	116	116	116	116	116	116	118	121	123	126	127
	10,000	109	109	109	109	109	109	109	109	109	109	109	109
	11,000	109	109	109	109	109	109	109	109	109	109	110	112
	13,000	109	109	109	109	109	109	109	109	109	109	112	114
2,000	14,000	109	109	109	109	109	109	109	109	109	111	113	116
	15,000	109	109	109	109	109	109	109	111	113	116 118	118	120
	16,000	112	112	112	112	111	112	114	116	119	121	123	124
	17,000	116	116	116	116	116	117	119	121	124	126	127	
	10,000	109	109	109	109	109	109	109	109	109	109	109	
	11,000	109	109	109	109	109	109	109	109	109	109	112	
	13,000	109	109	109	109	109	109	109	109	109	111	113	
4,000	14,000	109	109	109	109	109	109	109	109	110	113	115	
	15,000	109	109	109	109	109	109	111	113	116 118	118	120	
	16,000	112	112	112	112	112	114	116	118	121	123	124	
	17,000	117	117	117	117	117	119	121	124	126	127		
	10,000	109	109	109	109	109	109	109	109	109	109	109	
	11,000	109	109	109	109	109	109	109	109	109	109	112	
6,000	12,000	109	109	109	109	109	109	109	109	111	112	114	
	14,000	109	109	109	109	109	109	109	111	113	115	117	
	15,000	109	109	109	109	109	111	114	116	118	120	121	
	15,500	109	109	109	109	110	114	116	118	121	122		
	17,000	117	117	117	117	118	122	124	127	127			
	10,000	109	109	109	109	109	109	109	109	109	110		
	11,000	109	109	109	109	109	109	109	109	110	112		
	13,000	109	109	109	109	109	109	109	111	113	114		
8,000	14,000	109	109	109	109	109	109	111	113	115	117		
	15,000	109	109	109	109	110	114	116	118	120			
	16,000	113	113	113	113	115	120	122	121	124			
	17,000	118	118	118	118	121	125	127	127				
	10,000	109	109	109	109	109	109	109	109	109			
	11,000	109	109	109	109	109	109	109	109	112			
	13,000	109	109	109	109	109	109	111	113	114			
10,000	14,000	109	109	109	109	109	111	113	115	117			
MAX CERTIFIED	15,000	109	109	109	109	113	116	119	121	121			
ALTITUDE	16,000	113	113	113	112	119	122	124	124				
	17,000	118	118	118	120	123	127	128					
	10,000	109	109	109	109	109	109	109	109				
	11,000	109	109	109	109	109	109	110	111				
	13,000	109	109	109	109	109	111	113	114		ABC	JVE	
12,000	14,000	109	109	109	109	110	113	115	117	EN	IGINI	E TEI	MP
	15,000	109	109	109	112	115	119	121	121		I IM	лте	
	16,000	112	112	114	118	121	124	125			C114		
	17,000	117	117	118	123	125	128						
	10,000	109	109	109	109	109	109	109	110				
	11,000 12,000	109	109 109	109	109	109	109	111	113				
	13,000	109	109	109	109	110	113	114	114				
14,000	14,000	109	109	109	109	112	116	117					
	15,000	109	109	111	114	118	121						
	16,000	112	114	117	120	123	123						
	17,000	118	120	122	124	128							

Figures in shaded area are provided for interpolation only.

Figure PER-13. Takeoff Speeds—Flaps at 8° and Rudder Boost OFF (Sheet 2 of 2)

FOR TRAINING PURPOSES ONLY

V _R /V ₂ —KIAS										
ALTITUDE	WEIGHT	KIAS								
FEET	LB	V _R	V ₂							
	10,000	105	110							
	11,000	105	110							
	12,000	108	110							
SEA LEVEL	13,000	112	115							
	14,000	115	118							
	15,000	119	122							
	15,500	120	124							
	16,000	122	126							
	16,500	124	127							

NOTE:

APPLICABLE AT ALL ALTITUDES

EFFECTIVITY: ALL

CRITICAL ENGINE FAILURE SPEED-V1 ROTATION SPEED-V_R TAKEOFF SAFETY SPEED-V₂

 $\begin{array}{l} \textbf{CAUTION:} \\ \textbf{V}_{R} \text{ MUST NEVER BE LESS THAN V}_{1}. \text{ IF V}_{R} \text{ FROM FIGURE} \\ \textbf{IS LESS THAN V}_{1} \text{ FROM FIGURE, INCREASE V}_{R} \text{ AND V}_{2} \\ \textbf{BY THE DIFFERENCE BETWEEN V}_{R} \text{ AND V}_{1}. \end{array}$

EXAMPLE:	
1. UNCORRECTED CRITICAL ENGINE	
FAILURE SPEED 115 KIAS	
2. REFERENCE LINE	
3. HEADWIND 20 KT	
4. REFERENCE LINE	
5. RUNWAY GRADIENT 1% UP	
6. REFERENCE LINE	
7. ANTI-ICE OFF	
8. REFERENCE LINE	
9. ANTI-SKID ON	
10. CORRECTED CRITICAL ENGINE	
FAILURE SPEED 118 KIAS	

11. COMPARE V₁ WITH V_R

Figure PER-14. Takeoff Speeds—Flaps at 8° and Rudder Boost ON (Sheet 1 of 2)

LEARJET 31A PILOT TRAINING MANUAL

V ₁ —KIAS													
ALTITUDE	WEIGHT					TEMPE	RATU	RE—°I	F				
FEET	LB	-40	-20	0	20	40	60	70	80	90	100	110	120
SEA LEVEL	10,000 11,000 12,000 13,000 14,000	100 100 100 101 106	100 100 100 101 106	100 100 100 101 105	100 100 100 101 105	100 100 100 101 105	100 100 100 101 105	100 100 100 101 105	100 100 100 102 106	100 100 100 102 107	100 100 100 103 109	100 100 100 105 111	100 100 102 108 114
	15,000 15,500 16,000 17,000	110 112 114 118	109 111 114 118	109 111 114 117	109 111 113 117	109 111 113 117	109 111 113 117	109 111 113 117	110 112 115 119	112 115 117 122	114 117 119 124	116 119 121 126	119 121 123 126
2,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	100 100 101 106 110 112 114 118	100 100 101 105 110 112 114 118	100 100 101 105 110 112 114 118	100 100 101 105 109 111 113 118	100 100 101 105 109 111 113 118	100 100 101 105 109 111 113 118	100 100 102 106 110 113 115 120	100 100 102 107 112 115 117 122	100 100 104 109 114 117 119 124	100 100 105 111 116 119 121 126	100 102 108 114 119 121 123 126	102 105 110 116 119 121 123
4,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	100 100 101 105 110 112 114 118	100 100 101 105 110 112 114 118	100 100 101 105 109 111 114 118	100 100 101 105 109 111 113 118	100 100 101 105 109 111 113 118	100 100 102 106 111 113 115 120	100 100 102 107 112 115 117 122	100 100 104 109 114 117 119 124	100 100 105 111 116 119 121 126	100 100 102 108 113 118 121 123 126	100 102 104 110 115 119 121 123	
6,000	10,000 11,000 12,000 13,000 14,000 15,500 16,000 17,000	100 100 101 105 110 112 114 118	100 100 101 105 109 112 114 118	100 100 101 105 109 112 114 118	100 100 101 105 109 111 114 118	100 100 101 105 110 112 114 119	100 100 103 107 113 115 118 122	100 100 104 109 115 117 120 124	100 100 106 111 116 119 121 126	100 100 102 108 113 118 121 123 126	100 101 104 110 115 119 121 123	102 104 106 112 116 119	
8,000	10,000 11,000 12,000 13,000 14,000 15,500 15,500 16,000 17,000	100 100 101 105 110 112 114 119	100 100 101 106 110 112 114 119	100 100 101 105 110 112 114 119	100 100 101 105 109 112 114 119	100 100 102 106 112 114 116 121	100 100 104 110 115 117 120 124	100 100 106 111 117 119 122 126	100 100 102 108 114 119 121 123 126	100 102 104 110 116 119 121 123	102 104 106 112 116 119		
10,000 MAX CERTIFIED TAKEOFF ALTITUDE	10,000 11,000 12,000 13,000 14,000 15,500 15,500 16,000 17,000	100 100 101 105 109 112 114 119	100 100 101 105 109 112 114 119	100 100 100 105 109 112 114 119	100 100 101 106 111 113 116 120	100 100 103 109 114 116 119 123	100 100 100 106 112 117 119 122 126	100 100 102 108 114 119 121 123 126	100 102 104 110 116 119 121 123	102 104 106 112 116 119			
12,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	100 100 100 105 109 111 114 118	100 100 100 105 109 111 114 118	100 100 100 100 106 110 113 115 120	100 100 102 108 113 115 118 122	100 100 105 111 116 118 120 125	100 100 102 108 114 119 121 123 126	100 102 104 110 115 119 121 123	101 103 106 112 116 119	E١	ABOVE ENGINE TEMP LIMITS		
14,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	100 100 100 105 109 111 114 118	100 100 100 101 105 110 113 115 120	100 100 100 102 107 112 114 117 121	100 100 100 104 110 115 117 119 124	100 100 101 107 113 117 120 122 126	100 102 104 110 115 120 121	101 103 105 111 116	103 105 107 112 116				

Figures in shaded area are provided for interpolation only.

Figure PER-14. Takeoff Speeds—Flaps at 8° and Rudder Boost ON (Sheet 2 of 2)

LEARJET 31A PILOT TRAINING MANUAL

UN	CORREC	TED	FIRS	ST SE	GME	ENT N	NET (CLIM	B GR	ADIE	INT-	-%	
	WEIGHT LB					ТЕМР	ERATU	RE—°I	F				
		-40	-20	0	20	40	60	70	80	90	100	110	120
	10,000	17.1	16.9	17.0	17.1	17.2	17.4	17.2	15.2	13.3	11.4	9.5	7.7
	11,000	14.7	14.6	14.6	14.7	14.8	15.0	14.8	13.0	11.3	9.6	7.9	6.2
	12,000	12.6	12.6	12.6	12.7	12.7	13.0	12.7	11.1	9.6 8 1	8.0	6.5 5.2	4.9
SEA LEVEL	14.000	9.3	9.2	9.3	9.4	9.4	9.6	9.4	8.1	6.7	5.4	4.1	2.8
	15,000	7.8	7.8	7.8	7.9	7.9	8.1	7.9	6.7	5.5	4.2	3.0	1.8
	15,500	7.2	7.1	7.1	7.2	7.2	7.4	7.3	6.1	4.9	3.7	2.5	1.3
	17,000	5.4	5.3	5.4	5.4	5.5	5.6	5.5	4.4	3.3	2.2	1.2	0.5
	40.000	46.5	46.2	16.4	46 E	46.7	46.6	14.9	12.0	11.1	0.4	76	5.9
	11.000	14.2	14.0	14.1	14.2	14.4	14.3	12.6	11.0	9.3	7.7	6.1	4.5
	12,000	12.2	12.1	12.1	12.2	12.4	12.3	10.8	9.3	7.8	6.3	4.8	3.4
2.000	13,000	10.5	10.3	10.4	10.5	10.6	10.6	9.2	7.8	6.4	5.1	3.7	2.4
_,	15.000	7.5	0.0 7.4	7.4	9.0 7.5	7.7	9.0 7.6	6.4	5.2	4.1	2.9	1.7	0.6
	15,500	6.8	6.7	6.8	6.8	7.0	6.9	5.8	4.6	3.5	2.4	1.3	0.2
	16,000	6.2	6.1	6.2	6.2	6.4	6.3	5.2	4.1	3.0	1.9	0.8	-0.2
	17,000	5.1	5.0	5.1	5.1	5.2	3.2	4.1	3.1	2.1	1.1	0.1	-0.9
	10,000	16.2	16.1	16.2 13 0	16.2	16.4	14.4	12.7 10.8	11.0 a 3	9.4 7 8	7.7 6 3	6.1 ₄ s	
	12,000	12.0	11.9	11.9	12.0	12.1	12.5	9.1	5.3 7.7	6.3	5.0	3.6	
4 000	13,000	10.3	10.2	10.2	10.3	10.4	8.9	7.6	6.4	5.1	3.8	2.6	
4,000	14,000	8.8	8.7	8.7	8.8	8.9	7.5	6.3 5 1	5.2	4.0	2.8	1.7	
	15,500	6.7	6.6	6.6	6.7	6.8	5.5	4.5	3.5	2.4	1.4	0.3	
	16,000	6.1	6.0	6.0	6.1	6.2	5.0	4.0	3.0	2.0	1.0	-0.1	
	17,000	5.0	4.9	4.9	5.0	5.1	4.0	3.0	2.1	1.1	0.2	-0.4	
	10,000	15.8	15.8	15.7	15.9	15.2	12.1	10.6	9.1	7.6	6.1	4.6	
	11,000	13.6	13.5	13.5	13.6	13.0	10.2	8.9 7.4	6.1	4.9	4.6	2.4	
6,000	13,000	10.0	9.9	9.9	10.0	9.5	7.2	6.0	4.9	3.8	2.6	1.5	
	14,000	8.5	8.5	8.4	8.5	8.1	5.9	4.9	3.8	2.7	1.7	0.6	
	15,500	6.4	6.4	6.4	6.5	6.1	4.7	3.2	2.3	1.3	0.8	-0.2	
	16,000	5.8	5.8	5.8	5.9	5.5	3.6	2.7	1.8	0.9	0.0	-0.9	
	17,000	4.7	4.7	4.7	4.8	4.4	2.7	1.8	1.0	0.1	-0.7		
	10,000	15.2	15.1	15.1	15.2	13.0	10.3	8.8	7.3	5.8	4.3		
	11,000	13.0	12.9	13.0	13.0 11.2	11.1 9.4	8.6 7.1	7.3	5.9 4.6	4.5	3.2		
	13,000	9.5	9.4	9.5	9.5	7.9	5.8	4.7	3.5	2.4	1.2		
8,000	14,000	8.0	8.0	8.0	8.1	6.6	4.7	3.6	2.5	1.5	0.4		
	15,000	6.1	6.0	6.0	6.1	5.3 4.7	3.0	2.0	1.0	0.8	-0.4		
	16,000	5.5	5.4	5.4	5.5	4.2	2.6	1.6	0.7	-0.2			
	17,000	4.4	4.4	4.4	4.4	3.2	1.7	0.8	0.0	-0.9			
	10,000	15.2	15.1	15.1	13.5	11.1	8.5	7.2	5.9	4.6			
	11,000 12,000	13.0 11.1	12.9 11 1	12.9 11.0	11.5 9.7	9.3 7 7	6.9 5.6	5.8 4.5	4.6 3.5	3.4			
	13,000	9.5	9.4	9.4	8.2	6.4	4.4	3.4	2.5	1.5			
10,000	14,000	8.0	8.0	8.0	6.9	5.2	3.4	2.4	1.5	0.6			
MAX CERTIFIED	15,000	6.7 6.0	6.6 6.0	6.6 6.0	5.6 5.0	4.0 3.5	2.3	1.5 1.1	0.7 0.2	-0.2			
ALTITUDE	16,000	5.4	5.4	5.4	4.5	3.0	1.4	0.6	-0.1	0.0			
	17,000	4.4	4.3	4.3	3.5	2.1	0.6	-0.1	-0.8				
	10,000	15.2	15.1	13.8	11.4	9.1	6.8	5.6	4.4				_
	11,000	13.0	12.9	11.7	9.6	7.5 6 1	5.4	4.3	3.3				
	13,000	9.5	9.4	8.4	6.7	4.9	3.1	2.2	1.3		AB	OVE	
12,000	14,000	8.0	8.0	7.1	5.4	3.8	2.2	1.3	0.5	EN	IGIN	E TEI	MP
	15,000	6.7 6.0	6.6 6 0	5.8 5.2	4.3	2.8	1.2 0.8	0.5	-0.3 -0 9		LIM	IITS	
	16,000	5.5	5.4	4.6	3.2	1.8	0.8	-0.3	-0.5		L.114		
	17,000	4.4	4.3	3.6	2.3	1.0	-0.3	-1.0					
	10,000	14.7	13.2	11.6	9.5	7.4	5.3	4.2	3.2				
	11,000	12.5	11.2	9.8 2 2	7.9	5.9	4.1	3.1	2.1				
	13,000	9.1	8.0	6.8	5.2	3.6	2.0	1.3	0.4				
14,000	14,000	7.7	6.7	5.6	4.1	2.6	1.1	0.4	-0.4				
	15,000	6.4 5.8	5.4 4 s	4.4 3 9	3.0	1.6	0.3	-0.4					
	16,000	5.2	4.3	3.4	2.1	0.8	-0.5						
	17,000	4.2	3.3	2.4	1.2	0.0	-1.2						
									-		-	_	-

EFFECTIVITY:

ALL /	AIRCRAFT
-------	----------

EXAMPLE:

1.	UNCORRECTED NET CLIMB	
	GRADIENT (from table) 5	5%
2.	REFERENCE LINE	
3.	HEADWIND	KΤ
4		

- REFERENCE LINE ANTI-ICE SYSTEMS. FULL 5.
- CORRECTED NET CLIMB GRADIENT.. 6. 3.16%

CONDITIONS:

_	-	-	
•	SINGL	E ENGIN	IE

•	THRUST	TAKEOFF
•	GEAR	DOWN
•	FLAPS	

• SPEED V _L	OF

Figures in shaded area are provided for interpolation only.

Figure PER-15. First Segment Climb Gradient—Flaps at 8°

UNC	ORRECT	ED S	SECO	ND S	SEGN	IENT	NET	CLI	MB G	RAD	IENT	-%	
ALTITUDE	WEIGHT					TEMP	ERATU	RE—°	F				
FEET	LB	-40	-20	0	20	40	60	70	80	90	100	110	120
SEA LEVEL	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	20.1 17.4 15.1 13.2 11.4 9.9 9.2 8.6 7.5	20.0 17.3 15.0 13.1 11.3 9.8 9.1 8.5 7.4	20.1 17.4 15.1 13.1 11.4 9.9 9.2 8.6 7.4	20.1 17.4 15.1 13.2 11.4 9.9 9.2 8.6 7.5	20.3 17.6 15.3 13.3 11.6 10.0 9.4 8.7 7.6	20.3 17.6 15.3 13.3 11.6 10.0 9.3 8.7 7.5	8.8 16.2 14.1 12.2 10.5 9.1 8.4 7.8 6.7	16.9 14.6 12.5 10.8 9.2 7.9 7.3 6.7 5.7	15.0 12.9 11.0 9.4 7.9 6.7 6.1 5.6 4.6	13.2 11.2 9.5 8.0 6.7 5.5 5.0 4.5 3.6	11.4 9.5 8.0 6.6 5.4 4.3 3.8 3.4 2.6	9.5 7.9 6.5 5.2 4.1 3.1 2.7 2.3 1.5
2,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	19.8 17.1 14.9 12.9 11.2 9.7 9.0 8.4 7.3	19.6 17.0 14.7 12.8 11.1 9.6 8.9 8.3 7.2	19.7 17.1 14.8 12.9 11.2 9.7 9.0 8.4 7.2	19.8 17.1 14.9 12.9 11.2 9.7 9.0 8.4 7.3	20.0 17.3 15.0 13.0 11.3 9.8 9.1 8.5 7.4	18.4 15.9 13.7 11.9 10.2 8.8 8.2 7.6 6.5	16.6 14.3 12.3 10.6 9.0 7.7 7.1 6.5 5.5	14.9 12.7 10.9 9.3 7.8 6.6 6.0 5.5 4.6	13.1 11.2 9.4 8.0 6.6 5.5 4.9 4.5 3.6	11.4 9.6 8.0 6.7 5.4 4.4 3.9 3.4 2.6	9.7 8.1 6.6 5.4 4.2 3.3 2.8 2.4 1.7	8.1 6.6 5.2 4.1 3.1 2.1 1.7 1.4 0.7
4,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	19.4 16.8 14.6 12.6 10.9 9.5 8.8 8.2 7.1	19.3 16.7 14.5 12.6 10.9 9.4 8.8 8.1 7.0	19.3 16.7 14.4 12.5 10.9 9.4 8.7 8.1 7.0	19.4 16.8 14.6 12.6 11.0 9.5 8.8 8.2 7.1	18.9 16.4 14.2 12.3 10.6 9.2 8.5 7.9 6.9	16.1 13.8 11.8 10.2 8.7 7.4 6.8 6.2 5.3	14.5 12.4 10.5 9.0 7.6 6.3 5.8 5.3 4.4	12.9 10.9 9.3 7.8 6.5 5.3 4.8 4.3 3.5	11.3 9.5 8.0 6.6 5.4 4.3 3.8 3.4 2.6	9.8 8.1 6.7 5.4 4.3 3.3 2.9 2.5 1.7	8.3 6.7 5.4 4.3 3.2 2.3 1.9 1.5 0.8	
6,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	18.8 16.2 14.1 12.2 10.5 9.1 8.5 7.9 6.8	18.7 16.1 14.0 12.1 10.5 9.0 8.4 7.8 6.7	18.7 16.2 14.0 12.1 10.5 9.1 8.4 7.8 6.7	18.8 16.3 14.1 12.2 10.5 9.1 8.5 7.9 6.8	17.0 14.6 12.6 10.8 9.3 7.9 7.3 6.8 5.8	14.1 12.0 10.3 8.7 7.3 6.1 5.6 5.1 4.2	12.6 10.6 9.0 7.5 6.2 5.1 4.6 4.2 3.3	11.0 9.3 7.7 6.4 5.2 4.1 3.7 3.2 2.4	9.5 7.9 6.5 5.2 4.1 3.1 2.7 2.3 1.6	8.0 6.5 5.2 4.1 3.0 2.1 1.7 1.4 0.7	6.5 5.2 4.0 2.9 2.0 1.2 0.8 0.5 -0.2	
8,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	18.6 16.1 13.9 12.0 10.4 9.0 8.3 7.7 6.6	18.5 16.0 13.9 12.0 10.4 8.9 8.3 7.7 6.6	18.5 16.0 13.8 12.0 10.3 8.9 8.3 7.7 6.6	17.3 14.9 12.9 11.1 9.5 8.2 7.6 7.0 6.0	14.9 12.7 10.9 9.3 7.9 6.6 6.1 5.5 4.6	12.2 10.3 8.7 7.3 6.0 4.9 4.4 3.9 3.1	10.9 9.1 7.6 6.2 5.0 4.0 3.5 3.1 2.3	9.5 7.9 6.5 5.2 4.1 3.1 2.7 2.3 1.6	8.1 6.6 5.3 4.2 3.1 2.2 1.8 1.5 0.8	6.8 5.4 4.2 3.1 2.1 1.3 1.0 0.6 0.0		
10,000 MAX CERTIFIED TAKEOFF ALTITUDE	10,000 11,000 12,000 13,000 14,000 15,500 15,500 16,000 17,000	18.6 16.0 13.9 12.0 10.4 9.0 8.3 7.7 6.6	18.5 16.0 13.8 12.0 10.3 8.9 8.3 7.7 6.6	17.5 15.0 13.0 11.2 9.6 8.3 7.7 7.1 6.0	15.3 13.1 11.2 9.6 8.1 6.9 6.3 5.8 4.8	12.9 10.9 9.3 7.8 6.5 5.3 4.8 4.4 3.5	10.5 8.7 7.2 5.9 4.8 3.7 3.3 2.9 2.1	9.2 7.6 6.2 5.0 3.9 3.0 2.5 2.1 1.4	8.0 6.5 5.2 4.1 3.1 2.2 1.8 1.4 0.7	6.7 5.4 4.2 3.1 2.1 1.3 0.9 0.6 0.0			
12,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	18.2 15.7 13.6 11.8 10.1 8.7 8.1 7.5 6.5	17.0 14.6 12.6 10.9 9.3 8.0 7.4 6.8 5.8	15.5 13.3 11.4 9.7 8.3 7.0 6.4 5.9 5.0	13.3 11.3 9.6 8.1 6.7 5.6 5.1 4.6 3.7	11.1 9.3 7.8 6.4 5.2 4.2 3.7 3.3 2.5	8.9 7.3 6.0 4.8 3.7 2.7 2.3 1.9 1.2	7.8 6.3 5.0 3.9 2.9 2.0 1.6 1.3 0.6	6.7 5.3 4.1 3.1 2.1 1.3 0.9 0.6 0.0	ABOVE ENGINE TEMP LIMITS			
14,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	17.8 15.3 13.2 11.4 9.8 8.5 7.9 7.3 6.3	15.2 13.0 11.1 9.5 8.1 6.8 6.3 5.8 4.9	13.3 11.3 9.6 8.1 6.8 5.8 5.1 4.6 3.8	11.3 9.5 8.0 6.6 5.4 4.3 3.9 3.4 2.6	9.3 7.7 6.3 5.1 4.0 3.0 2.6 2.2 1.5	7.4 6.0 4.7 3.6 2.6 1.8 1.4 1.0 0.4	6.4 5.1 3.9 2.9 1.9 1.1 0.7 0.4 -0.2	5.4 4.1 3.1 2.1 1.2 0.4 0.1 -0.2 -0.8				

EFFECTIVITY:	
ALL AIRCRAFT	

EXAN	IPLE:	
1.	UNCORRECTED NET CLIMB	
	GRADIENT (from table)	
2.	REFERENCE LINE	
3.	TAILWIND	5 KT
4.	REFERENCE LINE	
5.	NACELLE HEAT	ON
6.	CORRECTED NET	
		0.05%

CONDITIONS:

•	SINGLE ENGINE	
,	THRUST	TAKEOFF
•	GEAR	UF
	EL A DO	

FLAPS 8 SPEED. . V,

Figures in shaded area are provided for interpolation only.

Figure PER-16. Second Segment Climb Gradient—Flaps at 8°

EFFECTIVITY: ALL AIRCRAFT

EXAMPLE:

1.	TEMPERATURE		90°F
2.	ALTITUDE	6,00	00 FT
3.	TAKEOFF WEIGHT LIMIT 1	5.50	00 LB

NOTE:

THE VALUE OBTAINED FROM THIS CHART MAY NOT BE THE LIMITING WEIGHT. TAKEOFF WEIGHT IS ALSO LIMITED BY THE MAXIMUM CERTI-FIED TAKEOFF WEIGHT, THE TAKEOFF WEIGHT FOR THE RUNWAY LENGTH AVAILABLE, AND OBSTACLE CLEARANCE CONSIDERATIONS.

Figure PER-17. Takeoff Weight Limit—Flaps at 20° and Anti-Ice OFF

EFFECTIVITY:

ALL AIRCRAFT

EXAMPLE:

	==-	
1.	TEMPERATURE	24° F
2.	ALTITUDE (NACELLE HEAT ON)	14,000 FT
~	TAKEOFENNEIOUTUNNIT	40.0001.0

3. TAKEOFF WEIGHT LIMIT...... 16,300 LB

NOTE:

THE VALUE OBTAINED FROM THIS CHART MAY NOT BE THE LIMITING WEIGHT. TAKEOFF WEIGHT IS ALSO LIMITED BY THE MAXIMUM CERTI-FIED TAKEOFF WEIGHT, THE TAKEOFF WEIGHT FOR THE RUNWAY LENGTH AVAILABLE, AND OBSTACLE CLEARANCE CONSIDERATIONS.

UNCORRECTED TAKEOFF FIELD LENGTH—FT													
	WEIGHT					TEMPE	RATU	RE—°I	F				
FEEI	LD	-40	-20	0	20	40	60	70	80	90	100	110	120
	10,000	2360	2460	2560	2660	2760	2860	2920	3050	3190	3340	3530	3750
	11,000	2410	2520	2620	2720	2830	2930	2990	3130	3280	3450	3650	3890
	12,000	2470	2580	2690	2790	2900	3000	3070	3210	3370	3560	3780	4070
SEA LEVEL	14.000	2600	2030	2830	2940	3060	3160	3240	3400	3590	3800	4190	4820
	15,000	2670	2800	2910	3030	3140	3250	3330	3500	3700	3990	4530	6380
	15,500	2710	2840	2950	3070	3180	3290	3370	3550	3770	4260	4900	8610
	16,000	2750	2870 3140	2990 3260	3110 3390	3230 3520	3340 3630	3420	3610	4020	4580 5290	5650 9570	
				0200		0020		2240		0500	0200	0010	4400
	10,000	2530	2650	2760	2870	2970	3080	3300	3460	3640	3850	3940 4100	4420
	12,000	2660	2780	2900	3010	3120	3240	3390	3560	3760	3980	4290	4930
2 000	13,000	2730	2860	2970	3090	3210	3320	3490	3670	3880	4130	4640	5790
2,000	14,000	2810	2940 3020	3060	3180	3290	3420	3590	3790	4020	4410	5070 6590	8750
	15,500	2930	3060	3190	3310	3430	3560	3750	4050	4550	5170	8800	
	16,000	2970	3100	3230	3360	3480	3610	3890	4320	4870	5960		
	17,000	3280	3450	3580	3710	3830	4000	4420	4910	5700	10330		
	10,000	2710	2850	2960	3080	3200	3410	3560	3730	3930	4150	4410	
	11,000	2780	2910 2990	3030	3150	3270 3360	3500	3670	3850	4060	4300	4610	
	13.000	2920	3070	3200	3240	3450	3710	3900	4110	4360	4810	5580	
4,000	14,000	3000	3150	3280	3420	3540	3820	4020	4250	4630	5250	7570	
	15,000	3090	3240	3380	3510	3640	3930	4150	4470	5050	6420		
	15,500	3130	3290	3420	3560	3700	3990	4330	4810	5460 6160	8070		
	17,000	3520	3710	3860	4010	4150	4740	5220	6040	10090			
	10 000	2950	3080	3210	3340	3500	3800	3980	4170	4400	4660	5010	
	11,000	3020	3160	3290	3420	3590	3910	4100	4310	4560	4850	5520	
	12,000	3100	3240	3370	3510	3690	4030	4230	4460	4730	5440	6350	
6.000	13,000	3180	3320	3470	3600	3790	4160	4370	4620	5080	5780 7510	9420	
-,	15.000	3360	3510	3660	3810	4010	4290	4800	5400	6800	7510		
	15,500	3410	3560	3710	3860	4070	4690	5170	5580	8550			
	16,000	3450 3870	3610 4050	3770 4220	3920 4380	4140 4710	5030 5640	5490 6660	6660 11870				
	40,000	0070	0070	0540	0000		4000	4470	4720	5040	E 420		
	10,000	3230	3370	3510	3650	3920	4260	4620	4720	5210	5420		
	12,000	3380	3540	3680	3830	4130	4520	4780	5120	5690	7090		
8 000	13,000	3470	3630	3780	3930	4250	4670	4950	5470	6280	12060		
8,000	14,000	3570	3730	3890	4040	4380	4830	5290	5960	8640			
	15,500	3720	3890	4050	4220	4630	5570	6330	10170				
	16,000	3770	3950	4110	4280	4970	5980	7330					
	17,000	4290	4500	4670	4860	5540	7280	16100					
	10,000	3510	3660	3820	4080	4410	4820	5060	5340	5670			
	11,000	3580	3740	3900	4170	4520	4970	5230	5540	6180			
	12,000	3750	3920	3990 4090	4200	4650	5320	5830	6550	9730			
10,000	14,000	3850	4030	4200	4520	4950	5700	6350	8470				
MAX CERTIFIED	15,000	3960	4140	4320	4650	5130	6300	8140					
TAKEOFF	15,500	4010	4190	4380	4720 5030	5530 5930	6900 8320	11090					
ALITOPE	17,000	4610	4820	5040	5600	6720	0320						
	10.000	3890	4060	4320	4660	5060	5550	5840	6160	_	-	-	
	11,000	3950	4130	4400	4760	5190	5720	6030	6660				
	12,000	4020	4210	4490	4880	5340	5910	6510	7350		ABO	OVE	
12,000	13,000	4120	4310	4600 4720	5020	5500 5710	6380 6970	9770	10660				
	15,000	4320	4520	4850	5320	6270	9670	55		Er	GIN		vi P
	15,500	4380	4580	4920	5650	6770					LIM	ITS	
	16,000 17,000	4440	4640 5240	5170 5850	6030 6850	7260							
	11,000		5240	5050	0000	11050				_	_	_	_
	10,000	4410 4450	4700 4750	5010 5080	5410 5510	5880 6010	6450 6720	6800 7260	7450 8320				
	12,000	4520	4830	5180	5630	6180	7120	8020	0020				
44.000	13,000	4610	4940	5300	5780	6390	7830	12440					
14,000	14,000	4710	5050	5430	5950	6930	11760						
	15,000	4820	5180 5250	5580 5820	6390 6000	7990 9830							
	16,000	4940	5570	6230	7420	3030							
	17,000	5590	6210	7050	9580								

EFFECTIVITY: ALL AIRCRAFT

EXAMPLE:

	UNCORRECTED TAKEOFF	1.
	FIELD LENGTH (from table)	
	REFERENCE LINE	2.
6 KT	HEADWIND	3.
	REFERENCE LINE	4.
–1% DN	RUNWAY GRADIENT	5.
	REFERENCE LINE	6.
ON	ANTI-SKID	7.
	REFERENCE LINE	8.
	ANTI-ICE	9.
	REFERENCE LINE	10.
5,000 FT	ALTITUDE	11.
	CORRECTED TAKEOFF FIELD LENGTH.	12.

Figures in shaded area are provided for interpolation only.

Figure PER-19. Takeoff Distance—Flaps at 20° and Rudder Boost OFF

LEARJET 31A PILOT TRAINING MANUAL

	UNCORRECTED TAKEOFF FIELD LENGTH—FT												
ALTITUDE	WEIGHT					TEMPE	RATU	RE—°I	-				
FEEI	LB	-40	-20	0	20	40	60	70	80	90	100	110	120
SEA LEVEL	10,000 11,000 12,000 13,000 14,000	1820 1870 1930 1980 2090	1900 1960 2010 2070 2180	1980 2030 2090 2150 2250	2060 2110 2170 2240 2330	2130 2190 2250 2320 2410	2210 2270 2330 2400 2480	2250 2320 2380 2450 2540	2350 2420 2500 2580 2740	2460 2540 2630 2720 2970	2590 2680 2770 2870 3300	2730 2840 2980 3200 3720	2900 3100 3380 3650 4430
	15,000 15,500 16,000 17,000	2340 2460 2600 2900	2430 2570 2710 3030	2520 2660 2800 3130	2610 2750 2900 3260	2700 2850 3010 3390	2780 2930 3100 3490	2850 3010 3180 3610	3080 3290 3510 3980	3420 3650 3890 4450	3820 4080 4380 5230	4340 4840 5580 9430	6200 8510
2,000	10,000 11,000 12,000 13,000 14,000 15,000 16,000 17,000	1960 2010 2070 2130 2250 2520 2650 2810 3150	2050 2100 2170 2230 2350 2620 2780 2940 3310	2130 2190 2250 2320 2430 2720 2870 3040 3440	2210 2270 2340 2410 2520 2820 2980 3160 3570	2290 2360 2430 2500 2600 2910 3070 3260 3690	2370 2440 2510 2590 2690 3010 3190 3390 3860	2480 2550 2630 2720 2890 3270 3500 3740 4260	2590 2680 2770 2860 3140 3630 3880 4150 4750	2720 2820 2920 3030 3500 4040 4340 4660 5630	2880 2990 3150 3380 3930 4570 5030 5900 10140	3060 3260 3560 3830 4580 6420 8670	3390 3720 4250 4670 7440
4,000	10,000 11,000 12,000 13,000 14,000 15,500 15,500 16,000 17,000	2090 2150 2210 2280 2390 2670 2820 2990 3380	2200 2260 2320 2510 2800 2970 3150 3560	2280 2350 2420 2490 2600 2910 3090 3280 3710	2370 2440 2510 2590 2690 3020 3190 3410 3860	2460 2530 2600 2680 2790 3120 3300 3530 4010	2630 2710 2800 2890 3070 3510 3750 4020 4580	2750 2840 2940 3040 3350 3860 4140 4440 5080	2880 2980 3090 3210 3710 4280 4600 4940 5930	3030 3150 3320 3550 4130 4810 5200 6070 9830	3210 3400 3710 3990 4660 6260 7970	3500 3840 4240 4580 6650	
6,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	2270 2340 2400 2480 2600 2910 3080 3270 3710	2370 2440 2510 2590 2700 3030 3210 3430 3890	2470 2540 2620 2690 2810 3150 3360 3580 4070	2570 2640 2720 2800 2910 3270 3490 3710 4240	2690 2770 2860 2950 3080 3480 3730 3990 4550	2930 3020 3130 3240 3610 4170 4480 4800 5500	3060 3170 3290 3420 3970 4600 4950 5320 6570	3210 3340 3520 3780 4390 5120 5610 6590 11420	3390 3590 3910 4210 4920 6590 8420	3670 4010 4430 4750 6640	4120 4600 5600 6890	
8,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	2480 2550 2620 2700 2830 3180 3390 3620 4120	2590 2660 2740 2820 2950 3330 3560 3800 4340	2690 2770 2850 2940 3060 3460 3690 3950 4510	2800 2880 2960 3050 3180 3590 3850 4120 4710	3000 3100 3200 3300 3570 4140 4440 4760 5440	3270 3380 3510 3670 4260 4950 5320 5730 7160	3440 3570 3780 4060 4730 5530 6130 7240 14930	3630 3870 4210 4540 5330 7370 9850	3960 4310 4760 5130 7570	4440 5000 6160 7970		
10,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	2680 2750 2820 2910 3020 3410 3640 3890 4440	2800 2870 2950 3040 3150 3560 3810 4080 4670	2920 2990 3080 3170 3280 3720 3980 4260 4890	3110 3200 3300 3400 3620 4190 4490 4830 5500	3370 3480 3600 3720 4260 4940 5330 5690 6570	3690 3830 4100 4390 5140 6000 6810 8130	3880 4130 4480 4850 5700 7850 10670	4180 4540 4950 5390 7530	4670 5080 6120 7370			
12,000 MAX CERTIFIED TAKEOFF ALTITUDE	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	2940 3010 3090 3170 3260 3680 3950 4230 4840	3080 3150 3230 3320 3410 3870 4150 4450 5090	3280 3360 3450 3550 3730 4300 4620 4950 5650	3540 3640 3750 3870 4330 5060 5420 5810 6670	3850 3970 4120 4410 5140 5980 6460 7120 10720	4230 4500 4880 5290 6260 9270	4560 4920 5370 5890 8550	5030 5440 6530 7940	EN	AB(IGINI LIM	OVE E TEI IITS	МР
14,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	3300 3360 3440 3520 3620 4110 4410 4730 5420	3520 3590 3680 3780 3990 4610 4950 5330 6060	3760 3840 3940 4060 4470 5230 5590 5590 5990 6870	4070 4180 4300 4490 5260 6110 6580 7110 9340	4430 4570 4910 5310 6240 7730 9540	4990 5360 5860 6450 9970	5390 5900 7060 8770	5970 7100 9500				

EFFECTIVITY: ALL AIRCRAFT EXAMPLE: 1. UNCORRECTED TAKEOFF FIELD LENGTH (from table)... 2. REFERENCE LINE 3. HEADWIND 6 KT 4. REFERENCE LINE 5. RUNWAY GRADIENT. –1% DN 6. REFERENCE LINE 7. ANTI-SKID.. ON 8. REFERENCE LINE ... FULL 9. ANTI-ICE. 10. REFERENCE LINE 11. ALTITUDE.. . 5,000 FT 12. CORRECTED TAKEOFF FIELD LENGTH 11,500 FT (3,505 M) ⁴⁰ - 13 38 36 34 32 METERS ŝ METER 05 ٥Ē 00 4 000, 8 128 e 28 Э CORRECTED TAKEOFF FIELD LENGTH ENG. ŧ FIELD LENGTH 26 FIELD -UNCORRECTED TAKEOFF Ξ TAKI e Ξ 18 16 CORRECTED 18 넚 UNCOR 16 14 12 107 8 1 1 1 3 2 • • • • • • • • DOWN 2 ON OFF OFF NAC HT FULL 0 10 15 10 20 30 0 5 WIND-KNOTS RUNWAY GRADIENT-% ANTI-SKID SYSTEM ANTI-ICE SYSTEM ALTITUDE-1,000 FT

ed area are provided for interp

Figure PER-20. Takeoff Distance—Flaps at 20° and Rudder Boost ON

VR	/V ₂ — KI/	AS	
ALTITUDE	WEIGHT	KI/	AS
FEET	LB	V _R	V ₂
	10,000	114	117
	11,000	114	117
	12,000	114	117
SEA LEVEL	13,000	114	117
	14,000	114	117
	15,000	114	117
	15,500	115	118
	16,000	117	120
	17,000	120	124
NOTE:			

EFFECTIVITY: ALL AIRCRAFT

CRITICAL ENGINE FAILURE SPEED—V₁ ROTATION SPEED—V_R TAKEOFF SAFETY SPEED—V₂

CAUTION:

 $V_{\rm R}$ MUST NEVER BE LESS THAN $V_{\rm R}.$ IF $V_{\rm R}$ FROM FIGURE IS LESS THAN V_1 FROM FIGURE, INCREASE $V_{\rm R}$ AND V_2 BY THE DIFFERENCE BETWEEN $V_{\rm R}$ AND $V_1.$

EXAMPLE:

	UNCORRECTED CRITICAL ENGINE	
114 KIAS	FAILURE SPEED (from table)	
	REFERENCE LINE	
20 KT	HEADWIND	
	REFERENCE LINE	
0%	RUNWAY GRADIENT	
	REFERENCE LINE	
OFF	ANTI-ICE	
	REFERENCE LINE	
OFF	ANTI-SKID	
	CORRECTED CRITICAL ENGINE	
109 KIAS	FAILURE SPEED	
	COMPARE V1 WITH VR	

Figure PER-21. Takeoff Speeds—Flaps at 20° and Rudder Boost OFF (Sheet 1 of 2)

FlightSafet

ALTITUDE FEET WEIGHT LB TEMPERATURE—°F -40 -20 0 20 40 60 70 80 90 100 11 10,000 109	120
FEE I LB -40 -20 0 20 40 60 70 80 90 100 111 Image: Sea LEVEL 10,000 109	120
SEA LEVEL 10,000 109 <t< td=""><td>120</td></t<>	120
SEA LEVEL 11,000 109 100 100 <t< td=""><td>109</td></t<>	109
SEA LEVEL 13,000 109 <t< td=""><td>112</td></t<>	112
0.5.2.2.2.2 14,000 109 100 109 109 109 109 109 100 109 100 101 112	114
15,500 109<	115
16,000 109 109 109 109 109 109 109 109 109 110 112 115 117 110 112<	
10,000 109<	
11,000 109 109 109 109 109 109 109 109 109	109
	110
13,000 109 109 109 109 109 109 109 109 109	114
2,000 14,000 109 109 109 109 109 109 109 109 109	114
15,000 109 109 109 109 109 109 109 109 109	
16,000 109 109 109 109 109 109 109 110 113 116 117	
17,000 113 113 113 113 113 113 115 118 120 121	
10,000 109 109 109 109 109 109 109 109 109	
12,000 109 109 109 109 109 109 109 109 109	2
15,500 109 109 109 109 109 109 110 113 116 116	
16,000 109 109 109 109 109 110 113 116 118 17,000 113 113 113 113 113 116 118 121 121	
10,000 109 109 109 109 109 109 109 109 109	,
11,000 109 109 109 109 109 109 109 109 109	
12,000 109 109 109 109 109 109 109 109 109	
6,000 14,000 109 109 109 109 109 109 109 109 109	l I
15,000 109 109 109 109 109 109 110 113 115	
15,500 109 109 109 109 109 111 113 116 116 116 16 109 109 109 109 109 109 109 109 109 114 116 118	
17,000 114 114 114 114 115 118 121 121	
10,000 109 109 109 109 109 109 109 109 109	
12,000 109 109 109 109 109 109 109 109 109	
8,000 13,000 109 109 109 109 109 109 109 111 114 114	
14,000 109 109 109 109 109 109 109 111 113 114	
15,500 109 109 109 109 110 114 117 117	
16,000 109 109 109 109 113 117 118	
12,000 109 109 109 109 109 109 110 111 114	
13,000 109 109 109 109 109 109 109 111 114 114 114 109 109 109 111 114	
MAX CERTIFIED 15,000 109 109 109 109 109 109 114 115	
TAKEOFF 15,500 109 109 109 109 112 116 117	
ALIIIUDE 16,000 109 109 109 112 115 118 17,000 114 114 114 116 120	
10,000 109 109 109 109 109 109 109 109	
11,000 109 109 109 109 109 109 109 111	
13,000 109 109 109 109 109 109 109 111 114 ABOV	
12,000 14,000 109 109 109 109 109 114 114 ENGINE T	EMP
15,000 109 109 109 109 112 116	
	1
17,000 114 114 116 119 122	
10,000 109 109 109 109 109 109 109 111	
114 114 114 114 114 114 114 114 114 114	
13,000 109 109 109 109 114 114	
14,000 109 109 109 109 112 114	
15,500 109 109 111 116 15,500 109 109 111 114 117	
16,000 109 112 113 118	
17,000 114 116 119 122	

Figures in shaded area are provided for interpolation only.

Figure PER-21. Takeoff Speeds—Flaps at 20° and Rudder Boost OFF (Sheet 2 of 2)

V _R /V ₂ —KIAS					
ALTITUDE	WEIGHT	KIAS			
FEET	LB	V _R	V ₂		
	10,000	105	110		
	11,000	105	110		
	12,000	105	110		
SEA LEVEL	13,000	107	110		
	14,000	110	113		
	15,000	113	116		
	15,500	115	118		
	16,000	117	120		
	17,000	120	124		

APPLICABLE AT ALL ALTITUDES

NOTE:

EFFECTIVITY: ALL AIRCRAFT

CRITICAL ENGINE FAILURE SPEED-V1 **ROTATION SPEED**—V_R TAKEOFF SAFETY SPEED-V₂

 $\begin{array}{l} \textbf{CAUTION:} \\ \textbf{V}_{R} \text{ MUST NEVER BE LESS THAN V}_{1}. \text{ IF } \textbf{V}_{R} \text{ FROM FIGURE} \\ \textbf{IS LESS THAN V}_{1} \text{ FROM FIGURE, INCREASE } \textbf{V}_{R} \text{ AND } \textbf{V}_{2} \\ \textbf{BY THE DIFFERENCE BETWEEN } \textbf{V}_{R} \text{ AND } \textbf{V}_{1}. \end{array}$

EXAMPLE:

1. UNCORRECTED CRITICAL ENGINE	
FAILURE SPEED (from table) 109 H	KIAS
2. REFERENCE LINE	
3. HEADWIND 2	0 KT
4. REFERENCE LINE	
5. RUNWAY GRADIENT 1%	6 UP
6. REFERENCE LINE	
7. ANTI-ICE	OFF
8. REFERENCE LINE	
9. ANTI-SKID	OFF
10. CORRECTED CRITICAL ENGINE	
FAILURE SPEED 100 H	KIAS

11. COMPARE V₁ WITH V_R

Figure PER-22. Takeoff Speeds—Flaps at 20° and Rudder Boost ON (Sheet 1 of 2)

FlightSafet

					V ₁ —	KIAS							
ALTITUDE	WEIGHT				1	ТЕМРЕ	RATU	RE—°I	F				
FEET	LB	-40	-20	0	20	40	60	70	80	90	100	110	120
	10,000 11,000	100 100	100 100	100 100	100 100	100 100	100 100	100 100	100 100	100 100	100 100	100 100	100 101
	12,000	100	100	100	100	100	100	100	100	100	100	100	103
SEA LEVEL	13,000	100	100	100	100	100	100	100	100 101	100 103	100 105	102	105 111
	15,000	105	105	105	105	104	104	104	106	108	110	113	114
	15,500	107	107	107	107	106	106	108	108	111	113	116	116
	17,000	114	109	113	113	113	113	114	116	113	120	120	
	10,000	100	100	100	100	100	100	100	100	100	100	100	102
	11,000	100	100	100	100	100	100	100	100	100	100	101	104
	13,000	100	100	100	100	100	100	100	100	100	102	105	107
2,000	14,000	101	101	101	101	100	100	101	103	105	108	111	111
	15,500	105	105	105	105	104	105	100	111	113	115	114	
	16,000	110	109	109	109	109	109	111	113	116	117		
	17,000	114	114	114	114	114	114	116	118	120	120		
	10,000	100	100	100	100	100	100	100	100	100	100 101	101	
	12,000	100	100	100	100	100	100	100	100	101	103	105	
4 000	13,000	100	100	100	100	100	100	100	100	102	104	107	
4,000	14,000	101	101	101	101	100	101	103	105	108	110	111	
	15,500	107	107	107	107	107	109	111	113	116	116		
	16,000	109	109	109	109	109	111	114	116	117			
	17,000	114	114	114	114	114	110	110	120	120	404	400	
	10,000	100	100	100	100	100	100	100	100	100	101	103	
	12,000	100	100	100	100	100	100	100	101	103	105	105	
6.000	13,000	100	100	100	100	100	100	100	102	105	107	107	
0,000	15.000	101	101	101	100	101	104	111	113	114			
	15,500	107	107	107	107	108	112	114	116	116			
	16,000 17,000	110 115	110 115	110 115	110 114	110 115	114 119	116 120	117 120				
	10,000	100	100	100	100	100	100	100	100	101	103		
	11,000	100	100	100	100	100	100	100	101	103	105		
	13,000	100	100	100	100	100	100	103	105	107	107		
8,000	14,000	101	101	101	101	102	106	108	110	111			
	15,000	105	105	105	105	108 110	111 114	113	114				
	16,000	110	110	110	110	113	116	117					
	17,000	115	115	115	115	117	120	120					
	10,000	100	100	100	100	100	100	100 101	101 103	103			
	12,000	100	100	100	100	100	102	103	105	105			
10 000	13,000	100	100	100	100	100	103	105	107	107			
MAX CERTIFIED	14,000	100	100	100	102	105	108	114					
TAKEOFF	15,500	108	108	108	110	113	116	116					
ALIIIUDE	16,000 17,000	110 115	110 115	110 115	112 117	115 120	117						
	10,000	100	100	100	100	100	100	101	103				
	11,000	100	100	100	100	100	101	103	105				
	13,000	100	100	100	100	100	105	103	105		ABC	DVE	
12,000	14,000	100	100	101	104	107	111	111		E	IGINI	Ε ΤΕΓ	MP
	15,000	105	105	106	109	112	114				I IM	ITS	
	16,000	110	110	111	114	117							
	17,000	115	115	116	119	120							
	10,000	100	100	100	100	100	101 103	102 105	104				
	12,000	100	100	100	100	102	105	105	105				
14 000	13,000	100	100	100	101	104	107	107					
14,000	14,000	100	101 107	103 109	106	109 114	111						
	15,500	107	109	111	114	116							
	16,000	110	112	113	117								
	17,000	115	116	118	120								

Figures in shaded area are provided for interpolation only.

Figure PER-22. Takeoff Speeds—Flaps at 20° and Rudder Boost ON (Sheet 2 of 2)

LEARJET 31A PILOT TRAINING MANUAL

UNCORRECTED FIRST SEGMENT NET CLIMB GRADIENT													
	WEIGHT		TEMPERATURE—°F										
FEET	LB	-40	-20	0	20	40	60	70	80	90	100	110	120
SEA LEVEL	10,000 11,000 12,000 13,000 14,000 15,500 15,500 16,000 17,000	15.1 12.8 10.9 9.2 7.7 6.4 5.8 5.1 4.0	15.0 12.7 10.8 9.2 7.7 6.3 5.7 5.1 3.9	15.1 12.8 10.9 9.2 7.7 6.4 5.7 5.1 4.0	15.1 12.9 10.9 9.2 7.7 6.4 5.7 5.1 4.0	15.2 13.0 11.0 9.3 7.8 6.5 5.9 5.2 4.1	15.5 13.2 11.2 9.5 8.0 6.7 6.0 5.4 4.2	15.2 13.0 11.0 9.3 7.8 6.5 5.9 5.2 4.1	13.3 11.2 9.4 7.9 6.5 5.3 4.6 4.0 3.0	11.4 9.5 7.9 6.4 5.2 4.0 3.4 2.9 1.9	9.5 7.8 6.3 5.0 3.8 2.8 2.3 1.7 0.8	7.6 6.1 4.8 3.6 2.5 1.5 1.1 0.6 -0.3	5.7 4.4 3.2 2.2 1.2 0.3 -0.1 -0.8 -1.3
2,000	10,000 11,000 12,000 13,000 14,000 15,500 15,500 16,000 17,000	14.5 12.4 10.5 8.8 7.4 6.1 5.4 4.8 3.7	14.4 12.2 10.3 8.7 7.3 6.0 5.3 4.7 3.6	14.5 12.3 10.4 8.8 7.3 6.0 5.4 4.8 3.6	14.6 12.4 10.5 8.8 7.4 6.1 5.4 4.8 3.7	14.8 12.6 10.7 9.0 7.6 6.2 5.6 5.0 3.8	14.7 12.5 10.6 8.9 7.5 6.2 5.5 4.9 3.8	12.8 10.8 9.1 7.6 6.2 5.0 4.4 3.8 2.7	11.0 9.2 7.6 6.2 4.9 3.8 3.2 2.7 1.7	9.2 7.6 6.1 4.8 3.7 2.6 2.1 1.6 0.7	7.4 5.9 4.6 3.5 2.4 1.4 1.0 0.5 -0.4	5.7 4.3 3.2 2.1 1.1 0.3 -0.2 -0.9	3.9 2.7 1.7 0.7 -0.1 -0.9
4,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	14.3 12.1 10.3 8.6 7.2 5.9 5.3 4.6 3.5	14.2 12.0 10.2 8.6 7.1 5.8 5.2 4.6 3.5	14.2 12.1 10.2 8.6 7.2 5.9 5.2 4.6 3.5	14.3 12.1 10.3 8.7 7.2 5.9 5.3 4.7 3.5	14.5 12.3 10.4 8.8 7.3 6.0 5.4 4.8 3.6	12.5 10.5 8.8 7.3 5.9 4.7 4.2 3.6 2.5	10.8 9.0 7.4 6.0 4.8 3.6 3.1 2.6 1.6	9.1 7.5 6.0 4.7 3.6 2.6 2.0 1.5 0.6	7.5 6.0 4.6 3.5 2.4 1.5 1.0 0.5 -0.3	5.8 4.5 3.3 2.2 1.3 0.4 -0.1 -0.8 -1.3	4.2 3.0 1.9 1.0 0.1 -0.7	
6,000	10,000 11,000 12,000 13,000 14,000 15,500 15,500 16,000 17,000	13.9 11.8 9.9 8.4 6.9 5.7 5.0 4.4 3.3	13.8 11.7 9.9 8.3 6.9 5.6 5.0 4.4 3.3	13.8 11.7 9.8 8.3 6.8 5.6 5.0 4.3 3.3	13.9 11.8 10.0 8.4 7.0 5.7 5.1 4.4 3.4	13.3 11.2 9.4 7.9 6.5 5.3 4.7 4.1 3.0	10.2 8.4 6.9 5.6 4.4 3.3 2.7 2.2 1.3	8.7 7.1 5.7 4.4 3.3 2.3 1.8 1.3 0.4	7.2 5.7 4.4 3.3 2.2 1.3 0.8 0.4 -0.7	5.7 4.4 3.2 2.1 1.2 0.3 -0.1 -0.8 -1.3	4.2 3.0 2.0 1.0 0.1 -0.7	2.7 1.7 0.7 -0.1 -0.9	
8,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	13.2 11.2 9.4 7.9 6.5 5.2 4.6 4.0 3.0	13.1 11.1 9.3 7.8 6.4 5.2 4.6 4.0 2.9	13.2 11.1 9.4 7.8 6.5 5.2 4.6 4.0 3.0	13.3 11.2 9.4 7.9 6.5 5.3 4.7 4.1 3.0	11.1 9.3 7.7 6.3 5.0 3.9 3.3 2.8 1.8	8.4 6.8 5.5 4.2 3.1 2.1 1.6 1.1 0.3	6.9 5.5 4.2 3.1 2.0 1.1 0.6 0.2 -0.9	5.4 4.1 2.9 1.9 1.0 0.1 -0.3 -0.7	3.9 2.7 1.7 0.8 -0.1 -0.9	2.4 1.4 0.5 -0.4		
10,000 MAX CERTIFIED TAKEOFF ALTITUDE	10,000 11,000 12,000 13,000 14,000 15,500 15,500 16,000 17,000	13.2 11.2 9.4 7.8 6.5 5.2 4.6 4.0 2.9	13.2 11.1 9.4 7.8 6.4 5.2 4.6 4.0 2.9	13.1 11.1 9.3 7.8 6.4 5.2 4.6 4.0 2.9	11.6 9.7 8.0 6.6 5.3 4.2 3.6 3.1 2.1	9.1 7.5 6.0 4.8 3.6 2.6 2.1 1.6 0.7	6.5 5.1 3.9 2.8 1.8 0.9 0.4 0.0 -0.8	5.3 4.0 2.8 1.8 0.9 0.0 -0.4 -0.8	4.0 2.8 1.8 0.8 0.0 -0.8	2.7 1.6 0.7 -0.2 -1.0			
12,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	13.2 11.2 9.4 7.9 6.5 5.2 4.6 4.0 3.0	13.1 11.1 9.3 7.8 6.4 5.2 4.6 4.0 2.9	11.8 9.9 8.3 6.8 5.5 4.3 3.8 3.2 2.2	9.5 7.8 6.3 5.0 3.9 2.8 2.3 1.8 0.9	7.2 5.7 4.4 3.3 2.3 1.3 0.8 0.4 -0.4	4.9 3.6 2.5 1.5 0.6 -0.2 -0.7 -1.1 -1.8	3.7 2.5 1.5 0.6 -0.2	2.5 1.5 0.6 -0.3	EN	AB(IGINI LIN	ove E tei IITS	ΜР
14,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	12.7 10.7 9.0 7.5 6.1 4.9 4.3 3.8 2.7	11.2 9.4 7.8 6.4 5.1 4.0 3.4 2.9 1.9	9.7 8.0 6.5 5.2 4.0 3.0 2.4 1.9 1.0	7.6 6.1 4.8 3.6 2.5 1.6 1.1 0.8 -0.2	5.5 4.2 3.0 2.0 1.0 0.2 -0.2 -0.7 -1.4	3.4 2.3 1.3 0.4 -0.4 -1.2	2.3 1.3 0.4 -0.4	1.3 0.3 -0.5				

EFFECTIVITY:	
ALL AIRCRAFT	

FY	Λ Ι	M	DI	E٠

1.	UNCORRECTED NET CLIMB							
	GRADIENT (from table)							
2.	REFERENCE LINE							
3.	HEADWIND	22 KT						
4.	REFERENCE LINE							
5.	ANTI-ICE SYSTEMS	OFF						
6.	CORRECTED NET							
	CLIMB GRADIENT							
CONE	DITIONS:							
•	SINGLE ENGINE							

SINGLE ENGINE	
TUDIICT	

Figures in shaded area are provided for interpolation only.

Figure PER-23. First Segment Climb Gradient—Flaps at 20°

LEARJET 31A PILOT TRAINING MANUAL

UNCORRECTED SECOND SEGMENT NET CLIMB GRADIENT													
	WEIGHT					TEMP	ERATU	RE—°∣	F				
1661		-40	-20	0	20	40	60	70	80	90	100	110	120
SEA LEVEL	10,000 11,000 12,000 13,000 14,000 15,000	17.9 15.4 13.2 11.3 9.7 8.2	17.7 15.2 13.1 11.2 9.6 8.1	17.8 15.3 13.1 11.3 9.6 8.2	17.9 15.4 13.2 11.3 9.7 8.2	18.1 15.5 13.4 11.5 9.8 8.3	18.1 15.5 13.4 11.5 9.8 8.3	16.6 14.2 12.2 10.4 8.8 7.4	14.7 12.5 10.6 90 7.5 6.2	12.9 10.8 9.1 7.6 6.2 5.0	11.0 9.2 7.6 6.2 4.9 3.8	9.2 7.5 6.1 4.8 3.6 2.6	7.4 5.9 4.6 3.4 2.4 1.4
	15,500 16,000 17,000	7.5 6.9 5.7	7.4 6.8 5.7	7.5 6.9 5.7	7.5 6.9 5.8	7.7 7.0 5.9	7.7 7.0 5.9	6.8 6.1 5.0	5.6 5.0 4.0	4.4 3.9 2.9	3.3 2.8 1.9	2.1 1.7 0.9	1.0 0.6 0.2
2,000	11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	15.1 12.9 11.1 9.5 8.0 7.3 6.7 5.6	14.9 12.8 11.0 9.4 7.9 7.2 6.6 5.5	15.0 12.9 11.0 9.4 8.0 7.3 6.7 5.5	15.1 12.9 11.1 9.5 8.0 7.3 6.7 5.6	15.2 13.1 11.2 9.6 8.1 7.5 6.8 5.7	13.8 11.8 10.1 8.5 7.1 6.5 5.9 4.8	12.2 10.4 8.7 7.3 6.0 5.4 4.8 3.8	10.7 9.0 7.4 6.1 4.9 4.3 3.8 2.8	9.1 7.5 6.1 4.9 3.8 3.2 2.8 1.9	7.6 6.1 4.9 3.7 2.6 2.2 1.7 0.9	6.1 4.7 3.6 2.5 1.5 1.1 0.7 -0.1	4.5 3.4 2.3 1.3 0.4 0.0 -0.4 -1.0
4,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	17.2 14.7 12.6 10.8 9.2 7.8 7.1 6.5 5.4	17.1 14.6 12.6 10.8 9.1 7.7 7.1 6.4 5.3	17.1 14.6 12.5 10.7 9.1 7.7 7.0 6.4 5.3	17.2 14.7 12.6 10.8 9.2 7.8 7.1 6.5 5.4	16.7 14.3 12.3 10.5 8.9 7.5 6.8 6.2 5.1	13.9 11.8 9.9 8.4 6.9 5.7 5.1 4.5 3.5	12.3 10.3 8.6 7.2 5.8 4.6 4.1 3.6 2.7	10.7 8.9 7.4 6.0 4.7 3.6 3.1 2.6 1.8	9.2 7.5 6.1 4.8 3.6 2.6 2.1 1.7 0.9	7.6 6.1 4.8 3.6 2.6 1.6 1.1 0.7 0.0	6.1 4.7 3.5 2.5 1.5 0.6 0.2 -0.2 -0.9	
6,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	16.6 14.2 12.1 10.4 8.8 7.4 6.7 6.1 5.0	16.5 14.1 12.0 10.3 8.7 7.3 6.7 6.1 5.0	16.5 14.1 12.1 10.3 8.7 7.3 6.7 6.1 5.0	16.6 14.2 12.2 10.4 8.8 7.4 6.8 6.2 5.1	14.8 12.6 10.7 9.0 7.6 6.2 5.6 5.1 4.1	11.9 10.0 8.4 6.9 5.6 4.4 3.9 3.4 2.5	10.4 8.6 7.1 5.7 4.5 3.4 2.9 2.4 1.6	8.9 7.2 5.8 4.6 3.4 2.4 1.9 1.5 0.7	7.4 5.9 4.6 3.4 2.4 1.4 1.0 0.6 -0.2	5.9 4.5 3.3 2.3 1.3 0.4 0.0 -0.4 -1.0	4.4 3.2 2.1 1.1 0.2 -0.6	
8,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	16.4 14.0 12.0 10.2 8.7 7.3 6.6 6.0 4.9	16.3 14.0 11.9 10.2 8.6 7.2 6.6 6.0 4.9	16.3 13.9 11.9 10.2 8.6 7.2 6.6 6.0 4.9	15.1 12.9 11.0 9.3 7.8 6.5 5.9 5.3 4.3	12.7 10.7 9.0 7.5 6.1 4.9 4.4 3.8 2.9	10.1 8.3 6.8 5.5 4.3 3.2 2.7 2.2 1.4	8.7 7.1 5.7 4.4 3.3 2.3 1.8 1.4 0.6	7.4 5.9 4.6 3.4 2.4 1.4 1.0 0.6 -0.2	6.0 4.6 3.4 2.4 1.4 0.5 0.1 -0.3 -0.9	4.6 3.4 2.3 1.3 0.4 -0.4 -0.8		
10,000 MAX CERTIFIED TAKEOFF ALTITUDE	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	16.4 14.0 12.0 10.2 8.7 7.3 6.6 6.0 4.9	16.3 13.9 11.9 10.1 8.6 7.2 6.6 6.0 4.9	15.3 13.0 11.1 9.4 7.9 6.6 5.9 5.4 4.3	13.1 11.1 9.3 7.8 6.4 5.2 4.6 4.1 3.1	10.7 8.9 7.4 6.0 4.7 3.6 3.1 2.6 1.8	8.3 6.7 5.3 4.1 3.0 2.0 1.6 1.2 0.4	7.1 5.6 4.4 3.2 2.2 1.2 0.8 0.4 -0.3	5.9 4.5 3.4 2.3 1.3 0.4 0.0 -0.3	4.6 3.4 2.3 1.3 0.4 -0.4			
12,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	16.0 13.7 11.7 9.9 8.4 7.0 6.4 5.8 4.8	14.8 12.6 10.7 9.1 7.6 6.3 5.7 5.1 4.1	13.3 11.2 9.5 7.9 6.5 5.3 4.7 4.2 3.3	11.1 9.3 7.7 6.3 5.0 3.9 3.4 2.9 2.0	8.9 7.3 5.9 4.6 3.5 2.4 2.0 1.5 0.8	6.8 5.3 4.1 3.0 1.9 1.0 0.6 0.2 -0.5	5.7 4.3 3.2 2.1 1.2 0.3 -0.1 -0.5	4.6 3.3 2.3 1.3 0.4 -0.4	ABOVE ENGINE TEMP LIMITS			MP
14,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	15.5 13.3 11.3 9.6 8.1 6.8 6.1 5.6 4.6	13.0 11.0 9.2 7.7 6.3 5.1 4.5 4.0 3.1	11.2 9.3 7.7 6.3 5.1 3.9 3.4 2.9 2.1	9.2 7.5 6.1 4.8 3.7 2.6 2.1 1.7 0.9	7.2 5.7 4.4 3.3 2.3 1.3 0.9 0.5 -0.2	5.3 4.0 2.9 1.8 0.9 0.1 -0.3 -0.7 -1.3	4.3 3.1 2.0 1.1 0.2 -0.6	3.3 2.2 1.2 0.3 -0.5				

EFFECTIVITY: ALL AIRCRAFT

EXAMPLE:

1.	UNCORRECTED NET CLIMB	
	GRADIENT (from table)	2.6 %
2.	REFERENCE LINE	
3.	WIND	. 0 KT
4		

4.	REFERENCE LINE
5.	NACELLE HEAT ON
6.	CORRECTED NET

	•••••	
	CLIMB GRADIENT	2.4 %

CONDITIONS:

•	SINGLE ENGINE	
•	THRUST T/	AKEOFF
•	GEAR	UP

•	GEAR	IP
•	FLAPS2	0°
•	SPEED	٧,

Figures in shaded area are provided for interpolation only

Figure PER-24. Second Segment Climb Gradient—Flaps at 20°

FlightSafety

UNCORRECTED FINAL SEGMENT NET CLIMB GRADIENT—%													
ALTITUDE FEET	WEIGHT LB					TEMPE	ERATU	RE—°	F				
		-40	-20	0	20	40	60	70	80	90	100	110	120
SEA LEVEL	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	21.4 18.3 15.8 13.7 12.0 10.4 9.8 9.1 8.0	21.4 18.3 15.8 13.7 12.0 10.5 9.8 9.2 8.0	21.5 18.4 15.8 13.8 12.0 10.5 9.8 9.2 8.0	21.5 18.4 15.9 13.8 12.0 10.5 9.8 9.2 8.1	20.8 17.8 15.3 13.3 11.6 10.1 9.4 8.8 7.7	18.9 16.1 13.8 11.9 10.3 8.9 8.3 7.7 6.7	17.0 14.4 12.3 10.5 9.0 7.7 7.2 6.6 5.7	15.1 12.7 10.7 9.1 7.7 6.5 6.0 5.5 4.6	13.2 11.1 9.3 7.8 6.5 5.4 4.9 4.5 3.6	11.4 9.4 7.8 6.4 5.3 4.3 3.8 3.4 2.6	7.6 6.0 4.7 3.6 2.6 1.8 1.5 1.1 0.5	3.7 2.5 1.5 0.7 0.0 -0.6 -0.9 -1.1 -1.6
2,000	10,000 11,000 12,000 13,000 14,000 15,500 15,500 16,000 17,000	21.0 18.0 15.5 13.4 11.7 10.2 9.5 8.9 7.8	21.0 18.0 15.5 13.4 11.7 10.2 9.5 8.9 7.8	21.0 17.9 15.5 13.4 11.7 10.2 9.5 8.9 7.8	21.0 17.9 15.5 13.4 11.7 10.2 9.5 8.9 7.8	19.4 16.5 14.2 12.3 10.7 9.3 8.6 8.0 7.0	16.7 14.1 12.0 10.3 8.8 7.6 7.0 6.5 5.5	14.9 12.5 10.6 9.0 7.6 6.5 5.9 5.4 4.6	13.2 11.0 9.2 7.7 6.4 5.4 4.9 4.4 3.6	11.5 9.5 7.8 6.4 5.3 4.3 3.8 3.4 2.7	9.8 7.9 6.4 5.2 4.1 3.2 2.8 2.4 1.7	3.3 2.2 1.2 0.4 -0.3 -0.8 -1.1 -1.4 -1.8	-3.0 -3.5 -4.0 -4.3
4,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	20.6 17.6 15.1 13.1 11.4 10.0 9.3 8.7 7.6	20.6 17.6 15.1 13.1 11.4 9.9 9.3 8.7 7.6	20.4 17.4 15.0 13.0 11.3 9.9 9.2 8.6 7.5	10.1 17.2 14.7 12.8 11.1 9.7 9.0 8.4 7.3	17.8 15.1 12.9 11.1 9.6 8.3 7.7 7.1 6.1	14.5 12.2 10.3 8.7 7.4 6.3 5.7 5.3 4.4	12.9 10.8 9.0 7.5 6.3 5.2 4.8 4.3 3.5	11.3 9.4 7.7 6.4 5.2 4.2 3.8 3.4 2.6	9.8 7.9 6.4 5.2 4.1 3.2 2.8 2.4 1.7	7.8 6.2 4.9 3.7 2.8 2.0 1.6 1.3 0.7	-0.1 -0.9 -1.6 -2.2 -2.6 -3.0 -3.2 -3.4 -3.7	
6,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	20.1 17.2 14.8 12.8 11.1 9.7 9.0 8.4 7.3	20.1 17.1 14.7 12.8 11.1 9.6 9.0 8.4 7.3	19.4 16.4 14.2 12.3 10.7 9.3 8.6 8.1 7.0	18.0 15.3 13.1 11.3 9.7 8.4 7.8 7.3 6.2	15.6 13.1 11.2 9.5 8.1 6.9 6.4 5.9 4.9	12.6 10.5 8.8 7.3 6.1 5.1 4.6 4.1 3.3	11.1 9.2 7.6 6.2 5.1 4.1 3.7 3.3 2.5	9.7 7.9 6.4 5.2 4.1 3.2 2.8 2.4 1.7	8.3 6.6 5.2 4.1 3.1 2.3 1.9 1.6 0.9	5.0 3.7 2.6 1.7 0.9 0.2 -0.1 -0.3 -0.9	-1.5 -2.2 -2.7 -3.2 -3.6 -3.9	
8,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	19.7 16.8 14.4 12.5 10.8 9.4 8.7 8.1 7.0	19.6 16.7 14.4 12.4 10.8 9.3 8.7 8.1 7.0	18.4 15.6 13.4 11.6 10.0 8.7 8.1 7.5 6.5	15.9 13.5 11.5 9.8 8.4 7.2 6.6 6.1 5.2	13.4 11.2 9.4 7.9 6.6 5.6 5.1 4.6 3.8	10.7 8.8 7.2 5.9 4.8 3.9 3.4 3.0 2.3	9.4 7.6 6.2 5.0 3.9 3.0 2.6 2.3 1.6	8.1 6.4 5.1 4.0 3.0 2.2 1.8 1.5 0.9	6.8 5.3 4.0 3.0 2.1 1.4 1.0 0.7 0.1	2.3 1.2 0.4 -0.3 -1.0 -1.5 -1.7 -1.9 -2.3		
10,000 MAX CERTIFIED TAKEOFF ALTITUDE	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	18.9 16.0 13.8 11.9 10.3 8.9 8.3 7.7 6.7	18.2 15.5 13.2 11.4 9.8 8.5 7.9 7.3 6.3	16.6 14.1 12.0 10.3 8.8 7.6 7.0 6.5 5.5	14.1 11.8 10.0 8.4 7.1 6.0 5.5 5.0 4.2	11.6 9.6 8.0 6.6 5.4 4.4 4.0 3.6 2.8	9.1 7.4 6.0 4.8 3.8 2.9 2.5 2.1 1.4	7.5 5.9 4.6 3.6 2.6 1.8 1.5 1.1 0.5	5.8 4.5 3.3 12.3 1.5 0.8 0.5 0.2 -0.4	4.2 3.0 2.0 1.1 0.4 -0.2 -0.5 -0.8			
12,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	18.1 15.4 13.2 11.4 9.8 8.5 7.9 7.3 6.3	16.5 14.0 11.9 10.2 8.7 7.5 6.9 6.4 5.4	14.6 12.3 10.4 8.8 7.5 6.3 5.8 5.3 4.4	12.2 10.2 8.5 7.1 5.9 4.8 4.4 3.9 3.2	9.9 8.1 6.6 5.4 4.3 3.4 3.0 2.6 1.9	7.7 6.1 4.8 3.7 2.8 1.9 1.6 1.2 0.6	5.6 4.2 3.1 2.1 1.3 0.6 0.3 0.0 -0.5	3.5 2.3 1.4 0.6 -0.1 -0.7 -1.0 -1.2	ABOVE ENGINE TEMP LIMITS			
14,000	10,000 11,000 12,000 13,000 14,000 15,000 15,500 16,000 17,000	15.2 13.1 11.3 9.7 8.4 7.3 6.8 6.3 5.5	13.2 11.2 9.6 8.2 7.0 6.0 5.5 5.1 4.3	11.2 9.4 7.9 6.7 5.6 4.7 4.3 3.9 3.1	9.2 7.6 6.3 5.2 4.2 3.4 3.0 2.6 2.0	7.3 5.8 4.7 3.7 2.8 2.1 1.7 1.4 0.9	5.3 4.0 3.0 2.1 1.4 0.7 0.4 0.1 -0.4	3.1 2.0 1.2 0.4 -0.2 -0.7 -1.0 -1.2	0.8 0.0 -0.7 -1.2				

EXAMPLE:

1.	UNCORRECTED NET CLIMB

- GRADIENT (from table)..... 4 % 2. WIND.. 0 KT
- REFERENCE LINE NACELLE HEAT...... 3. .. ON 4.
- 5. CORRECTED NET CLIMB GRADIENT... 3.6 %

CONDITIONS:

 SINGLE ENGINE 	
-----------------------------------	--

- THRUST. MAX CONTINUOUS •
- GEAR.. UP
- FLAPS. UP • •
- SPEED. ..1.25 V_{S1}

Figures in shaded area are provided for interpolation only.

Figure PER-25. Final Segment Climb Gradient

LEARJET ω 1 ⊳ PILO -TRAINING MANUA Ē

6,500 FT

(1,981 M)

500 FT

EFFECTIVITY:

ALL AIRCRAFT

EXAMPLE:

1.	OBSTACLE DISTANCE (HORIZONTAL FROM REFERENCE ZERO)	,877 M)
2.	OBSTACLE HEIGHT (ABOVE RUNWAY SURFACE)	950 FT
3.	REQUIRED NET CLIMB GRADIENT	6%

NOTE:

Figure PER-27. Distant Takeoff Flight Path

LEARJET 31A PILOT TRAINING MANUAL

UNCOF	RECTED) ENI	ROU	te se	EGM	ENT	NET	CLIM	BGR	RADIE	ENT-	-%
ALTITUDE	WEIGHT			40		TEMP	ERATU	RE—°	F	90	100	120
FEET	LD	-60	-60	-40	-20	0	20	40	00	00	100	120
	10,000		13.3	13.4	13.4 11.8	13.5 11.9	13.5 11.9	13.6	12.5	9.0 7.8	5.7 4.8	2.5
	12,000		10.4	10.4	10.5	10.5	10.6	10.6	9.7	6.8	4.1	1.4
SEALEVEL	13,000		9.3	9.3	9.3	9.4	9.4	9.4	8.6	5.9	3.4	1.0
OLA LLVLL	14,000		8.3	8.3	8.3	8.4	8.4	8.4 7.5	69	5.2	2.9	0.6
	16,000		6.6	6.6	6.7	6.7	6.7	6.7	6.1	3.9	1.9	-0.1
	17,000		5.9	5.9	5.9	6.0	6.0	6.0	5.4	3.4	1.5	-0.4
	10,000		12.5	12.4	12.4	12.4	12.4	10.7	7.8	5.0	2.2	
	11,000		9.7	9.7	10.9	10.9	9.7	9.4	5.9	4.2	1.0	
5 000	13,000		8.6	8.6	8.6	8.6	8.6	7.3	5.1	2.9	0.7	
5,000	14,000		7.6	7.6	7.6	7.6	7.6	6.4	4.4	2.4	0.4	
	15,000		6.8	6.8	6.8	6.8	6.8 6.0	5.0	3.0	1.9	-0.3	
	17,000		5.4	5.4	5.4	5.4	5.4	4.4	2.7	1.1	-0.6	
	10,000		11.4	11.3	11.3	10.8	8.5	6.2	3.9	1.6	-4.2	
	11,000		10.0	9.9	9.9	9.5	7.4	5.3	3.2	1.2	-4.2	
	13,000		7.8	7.7	7.7	7.4	5.6	3.8	2.1	0.3	-4.2	
10,000	14,000		6.9	6.9	6.8	6.5	4.9	3.2	1.6	0.0	-4.2	
	15,000		6.1	6.1	6.0	5.8	4.2	2.7	1.2	-0.3	-4.2	
	16,000		5.4 4.8	5.4 4.7	5.3 4.7	5.1 4.5	3.6	1.8	0.8	-0.8	-4.3	
	10,000		11.3	10.6	8.6	6.6	4.7	2.8	0.8	-3.1		
	11,000		9.9	9.3	7.5	5.7	3.9	2.2	0.4	-3.1		
	12,000		8.7	8.2	6.5	4.9	3.3	1.7	0.1	-3.2		
15,000	14.000		6.8	6.4	5.0	4.2	2.2	0.8	-0.5	-3.4		
	15,000		6.1	5.6	4.3	3.0	1.7	0.4	-0.8	-3.5		
	16,000 17,000		5.4 4.7	5.0 4.4	3.7 3.2	2.5 2.0	1.3 0.9	0.1 0.2	-1.1 -1.3	-3.5 -3.6		
	10,000		7.8	6.0	4.3	2.7	12	-0.3	-29			
	11,000		6.7	5.1	3.5	2.2	0.8	-0.6	-3.0			
	12,000		5.8	4.4	2.9	1.6	0.4	-0.9	-3.0			
20,000	13,000		5.1	3.7	2.4	1.2	0.0	-1.1	-3.1			
	15,000		3.8	2.6	1.4	0.4	-0.6	-1.6	-3.3			
	16,000		3.2	2.1	1.0	0.1	-0.8	-1.8	-3.4			
L	17,000		2.7	1.7	0.7	-0.2	-1.1	-2.0	-3.5			
	10,000		5.9	4.4	2.8	1.4	0.0	1.9				
	12.000		5.0 4.1	2.8	1.5	0.8	-0.5	2.4				
25.000	13,000		3.4	2.2	1.0	-0.1	-1.2	2.6				
-,	14,000		2.8	1.6	0.5	-0.5	-1.5	2.8				
	15,000		2.2	1.1	0.1	-0.8	-1.8 -2.1	3.0				
	17,000		1.2	0.2	-0.7	-1.5	-2.3	3.4				
	10,000	3.8	2.8	1.6	0.5	-0.6	-1.8					
	11,000	3.0	2.1	1.1 0.6	0.0 -0.4	-0.9	-2.0			ABO	VF	
30.000	13,000	1.7	1.0	0.1	-0.8	-1.6	-2.5					
,	14,000	1.2	0.5	-0.3	-1.2	-1.9	_2.7		ENG	SINE	IEN	IP
	15,000	0.7	0.1	-0.7	-1.5	-2.2	-3.0			LIMI	TS	
	17,000	-0.2	-0.4	-1.4	-2.1	-2.4	-3.2					
	10,000	1.0	0.1	-0.8	-1.8	-2.6						
	11,000	0.5	-0.3	-1.2	-2.0	-2.8						
35.000	12,000	-0.4	-0.7	-1.5	-2.3	-3.0						
33,000	14,000	-0.8	-1.4	-2.1	-2.7	-3.3						
	15,000	-1.2	-1.7	-2.3	-2.9	-3.5						
	16,000 17,000	-1.4 -1.8	-2.0 -2.3	-2.6 -2.8	-3.1 -3.4	-3.7 -3.8						
	10,000	-1.2	-2.0	-2.8	-3.5	-4.1						
1	11,000	-1.5	-2.2	-2.9	-3.6	-4.1						
40.000	12,000	-1.8	-2.4	-3.1	-3.7	-4.2						
40,000	14.000	-2.1	-2.9	-3.2 -3.4	-3.0 -3.9	-4.2						
	15,000	-2.6	-3.0	-3.5	-4.0	-4.4						
1	16,000	-2.8	-3.2	-3.7	-4.1	-4.5						
	17,000	-3.0	-3.4	-3.9	-4.3	-4.6						

14

12

10

GRADIEI

5

Δ

ü

-2

-4

-6

ALTITUDE	WEIGHT	TEN	/IPER	ATUR	E—°F
FEET	LB	-80	-60	-40	-20
	10,000	-2.7	-3.3	-3.9	-4.7
	11,000	-2.8	-3.4	-4.0	-4.6
	12,000	-3.0	-3.5	-4.0	-4.6
45,000	13,000	-3.2	-3.6	-4.1	-4.7
	14,000	-3.3	-3.8	-4.2	-4.7
	15,000	-3.5	-3.9	-4.3	-4.8
	16,000	-3.6	-4.0	-4.4	-4.8
	17,000	-3.8	-4.2	-4.5	-4.9
	10,000	-4.4	-5.1	-6.0	
51 000	11,000	-4.6	-5.2	-6.0	
51,000	12,000	-4.7	-5.3	-6.0	
	13,000	-4.9	-5.4	-6.1	
	14,000	-5.1	-5.5	-6.2	
	15,000	-5.2	-5.7	-6.3	
	16,000	-5.4	-5.8	-6.4	
	17,000	-5.6	-6.0	-6.5	

EFFECTIVITY:

ALL AIRCRAFT

ENROUTE CLIMB SPEED SCHEDULE:

SEA LEVEL TO 21,000 FT	200 KIAS
21,000 TO 29,000 FT	0.45 M _l
29,000 TO 49,000 FT	170 KIAS
49,000 TO 51,000 FT	0.70 M _I

NOTE:

THIS SPEED SCHEDULE APPROXIMATES BEST RATE-OF-CLIMB SPEEDS OR, ABOVE THE SINGLE-ENGINE CEILING, THE MINIMUM SINK-RATE SPEED.

EXAMPLE:

1. UNCORRECTED NET CLIMB	
--------------------------	--

- GRADIENT (from table)..... 1 %
- 2. ANTI-ICE SYSTEMS..... FULL
- 3. CORRECTED NET CLIMB GRADIENT..... -1.4 %

CONDITIONS:

- SINGLE ENGINE
- THRUST..... MAX CONTINUOUS •
- GEAR..... UP
- FLAPS..... UP
- SPEED...... (SEE ENROUTE CLIMB SPEED SCHEDULE)
- _8 OFF NAC HT ANTI-ICE SYSTEMS

Figures in shaded area are provided for interpolation only

Figure PER-28. Enroute Climb Gradient—Single Engine

GRADIEN

CLIMB

Ē

ENT **PEGN**

ENROUTE

CTED

ORR

FULL

THRUST SETTING PROCEDURE

TAKEOFF THRUST

From the applicable Takeoff Thrust (N_1) chart, determine the Fan Speed (N_1) setting for temperature and altitude. Move thrust lever until Fan Speed (N_1) indicator aligns with chart value.

NOTE

During takeoff, Fan Speed (N_1) may decrease slightly from the initial static reading. Therefore, Fan Speed (N_1) should be continuously monitored and adjusted until reaching 80 KIAS. Fan speed may continue to decrease slightly; however, this decrease is accounted for in the Takeoff Thrust Setting charts.

Fan Speed (N_1) is the value where the temperature line intersects the pressure altitude line. N_1 s above this line may exceed the airframe and engine limits. N_1 s below this line will not meet the performance in this section.

Operation at a specific Fan Speed (N_1) should always be within the Turbine Temperature (ITT) Limits. Turbine Temperature ((ITT) Limit must be observed.

MAXIMUM CLIMB THRUST

From the applicable Maximum Continuous Thrust (N_1) table, determine the Fan Speed (N_1) setting for estimated temperature and altitude at the start of the climb. Adjust Fan Speed (N_1) for temperature and altitude during climb. Turbine Temperature (ITT) Limit must be observed.

Alternate Climb Power Management Procedure

An alternate climb power management procedure may be employed for climb above 15,000 feet. This is accomplished by setting the required Fan Speed (N_1) at 15,000 feet and observing the resulting Turbine Temperature (ITT). The digital electronic engine control will maintain N_1 values near the chart values and near constant ITT to altitude. Thrust lever adjustment may be made to maintain the ITT observed at 15,000 feet.

NOTE

A slightly different Fan Speed (N₁) Turbine Temperature (ITT) relationship may exist between engines; however, each engine should be operated at the Turbine Temperature (ITT) which provided the required N₁ at 15,000 feet.

Climb Power Management Procedure For Anti-Ice Operation

A climb power management procedure for anti-ice operation during climb may be accomplished. Using the applicable Maximum Continuous Thrust (N_1) table (Figure PER-32), determine the recommended Full Anti-ice On Fan Speed (N_1) for the estimated temperature and altitude. Prior to reducing power and selecting anti-ice, note the ITT. Select anti-ice on and reset power to determined antiice on N_1 value. If the resulting ITT is higher than the noted anti-ice off ITT, maintain the full anti-ice on N_1 adjusting for ambient temperature and altitude during climb. Operation should always be within the ITT limits. If the resulting ITT is lower than the noted anti-ice off ITT, N_1 can then be reset up to the noted anti-ice off ITT.

FlightSafety

Figure PER-29. Takeoff Thrust Setting (Sheet 1 of 3)

NACELLE HEAT ONLY STANDARD NOZZLE

Figure PER-29. Takeoff Thrust Setting (Sheet 2 of 3)

FlightSafety

ALL ENGINE/STANDARD NOZZLE

EFFECTIVITY: ALL AIRCRAFT

• 250 KIAS TO 32,000 F

XX.X ANTI-ICE OFF OR NACELLE HEAT ONLY XX.X FULL ANTI-ICE ON AL TITUDE-1.000 FFFT 250 KIAS TO 32,000 FT
.70 M₁ TO 51,000 FT

		SL	5	10	15	20	25	30	35	40	45	50	51
	50	87.5 84.8											
	45	88.8 85.0											
	40	90.1 87.1	90.1 87.2										
	35	91.5 88.3	91.5 88.3										
	30	92.8 89.5	92.6 89.5	92.5 89.6									
	25	93.8 90.5	93.7 90.6	93.6 90.7									
	20	94.8 91.5	94.7 91.6	94.5 91.6	94.4 91.7								
ပ္	15	95.5 92.4	95.4 92.5	95.3 92.5	95.2 92.5								
1	10	95.5 93.1	96.1 93.2	96.0 93.2	95.8 93.2	95.6 93.2							
RATU	5	94.5 92.2	96.7 93.8	96.5 93.8	96.4 93.8	96.1 93.7							
MPER	0	93.6 91.2	97.0 94.4	96.9 94.4	96.7 94.4	96.5 94.3	96.2 94.0						
IR TE	-5	92.6 90.4	96.5 94.4	97.3 94.8	97.1 94.7	96.9 94.8	96.1 94.5						
TIC A	-10	91.7 89.4	95.5 93.5	97.5 95.1	97.4 95.0	97.2 94.9	96.9 94.8	96.4 94.4					
STA	-15	90.7 88.5	94.6 92.5	97.7 95.3	97.6 95.2	97.5 95.1	97.3 95.0	96.8 94.7					
-	-20	89.9 87.6	93.6 91.6	97.6 95.5	97.8 95.4	97.7 95.3	97.5 95.2	97.1 94.9	96.3 94.3				
-	-25	88.9 86.7	92.7 90.7	96.8 94.6	98.0 95.5	97.9 95.5	97.7 95.4	97.4 95.1	96.7 94.6				
-	-30	88.1 85.8	91.8 89.8	95.7 93.6	98.2 95.7	98.0 95.6	97.9 95.5	97.6 95.3	97.0 94.9	95.3 90.7	92.9 89.7	91.6 86.2	91.2 86.0
-	-35	87.2 85.0	90.8 88.8	94.7 92.7	98.4 95.8	98.2 95.7	98.0 95.6	97.8 95.4	97.3 95.1	95.7 91.2	94.6 90.4	92.2 89.4	91.9 86.8
-	-40	86.3 84.1	89.9 87.9	93.7 91.7	98.8 95.9	98.5 95.8	98.3 95.7	98.0 95.6	97.5 95.3	96.1 91.6	95.1 90.9	92.8 90.1	92.5 89.9
-	-45	85.4 83.3	89.0 87.0	92.7 90.7	97.8 95.2	98.9 95.9	98.7 95.8	98.3 95.7	97.8 95.4	96.5 93.5	95.6 91.4	94.4 90.7	94.1 90.5
	-50	84.5 82.4	88.1 86.1	91.8 89.8	96.7 94.2	99.3 96.1	99.1 95.9	98.6 95.6	98.1 95.5	97.0 93.8	96.0 91.7	94.9 91.1	94.6 90.9
	-55							99.1 96.0	98.6 95.6	97.4 94.0	96.6 93.4	95.5 91.4	95.2 91.3
	-60							99.6 96.2	99.1 95.9	98.0 94.2	97.2 93.7	96.1 93.0	95.8 92.9
	-65								99.7 96.3	98.8 94.5	97.9 94.0	96.8 93.4	96.6 93.3
	-70										98.8 94.5	97.6 93.9	97.3 93.7

Figure PER-30. Maximum Continuous Thrust for Climb (N₁) (Sheet 1 of 2)

FlightSafety

		1 91	15	I 10	1 15	1 20	1 25	1,0001	1 25	I 40	1 45	50	51
		32	5	10	13	20	25	30	35	40	43	50	51
	50	86.8 84.0											
	45	88.2											
		00.0	90 E										
	40	86.5	86.6										
	35	91.1 87.7	91.0 87.8										
	30	92.4 89.0	92.3 89.0	92.2 89.0									
	25	93.5 90.1	93.4 90.1	93.2 90.1									
	20	94.5 91.2	94.4 91.2	94.2 91.2	94.1 91.2								
,	15	95.4 92.1	95.3 92.1	95.1 92.1	94.9 92.1								
ļ	10	95.3 92.9	96.0 92.9	95.9 92.9	95.7 92.9	95.5 92.9							
	5	94.4 92.0	96.8 93.6	96.4 93.6	96.3	96.1 93.6							
	0	93.5 91.1	97.0 94.2	96.9 94.2	96.7 94.2	96.5 94 1	96.2 93.9						
	-5	92.6 90.1	96.7 94.5	97.2 94.6	97.1 94.6	96.6 94.5	96.6 94.4						
2 -	-10	91.7 89.3	95.7 93.5	97.4 94.9	97.3 94.9	97.2 94.9	96.9	96.3 94.2					
C 5 -	-15	90.7 88.3	94.8 92.5	97.6 95.2	97.5 95.2	97.4 95.1	97.2 95.0	96.7					
_	-20	89.8 87.5	93.8 91.7	97.7 95.4	97.7 95.3	97.6 95.3	97.4 95.2	96.9	96.0 94.1				
_	-25	88.9	92.9 90.7	96.7 94.6	97.9 95.5	97.8 95.4	97.6 95.3	97.2	96.3 94.4				
_	-30	88.0 85.7	92.0 89.8	95.7 93.6	98.1 95.6	97.9 95.6	97.8 95.5	97.4	96.6	94.3	91.7	87.2	86.9
_	-35	87.2 84.8	91.0 88.9	94.7 92.7	98.4 95.7	98.2 95.7	98.0 95.5	97.6 95.3	96.9 94 9	94.8	92.3	90.8	90.3
-	-40	86.3 83.9	90.1 88.0	93.8 91.7	98.8 95.9	98.6 95.8	98.4 95.7	97.9	97.2 95.0	95.3	94.1	91.5	91.1
-	-45	85.4 83.1	89.2 87.1	92.8 90.8	98.8 96.0	99.0 96.0	98.8 95.9	98.4 95.6	97.5 95.2	95.7 93 3	94.6 91 3	92.1	91.8
	-50	84.5 82.3	88.3 86.2	91.9 89.8	97.8 95.0	99.5 96.2	99.2 96.1	98.8 95.9	98.0 95.4	96.2	95.1 93.0	93.8	92.3
	-55							99.4 96.3	98.6 95.7	96.7 93.8	95.7 93 3	94.4	94.1 91 3
	-60							100.0 96.7	99.2 96.2	97.5 94.0	96.3 93.6	95.0 93.0	94.7 92 0
	-65							50	99.8 96.6	98.1 94 5	97.0 94.0	95.7 93.4	95.4 93.3
	-70									04.0	97.8 94.5	96.5 93.9	96.2 93.7
	_												

SINGLE ENGINE/STANDARD NOZZLE ALTITUDE-1.000 FEET

EFFECTIVITY: ALL AIRCRAFT

XX.X ANTI-ICE OFF OR NACELLE HEAT ONLY XX.X FULL ANTI-ICE ON

SPEED SCHEDULE:

• 250 KIAS TO 21,000 FT

٠ .45 M_I FROM 21,000 TO 49,000 FT

٠ 170 KIAS FROM 29,000 TO 49,000 FT

• .70 M_I FROM 49,000 TO 51,000 FT

Figure PER-30. Maximum Continuous Thrust for Climb (N1) (Sheet 2 of 2)

STATIC AIR TEMPERATURE—°C

CLIMB, CRUISE, AND DESCENT

An operational planning form is provided in the Flight Planning section of the *Pilot Manual*.

CLIMB PERFORMANCE

A set of climb performance tables are provided in the *Pilot's Manual* to determine time, distance (no wind), and fuel required for climb from sea level. If climb is started at an altitude above sea level, subtract the values for the starting altitude from the values for the level off altitude to find the time, distance, and fuel required for climb between two altitudes. Each table shows the climb performance data for a specific airplane weight at the start of climb.

CRUISE PERFORMANCE

Cruise performance tables are provided in the airplane checklist or the *Pilot's Manual* for two-engine normal cruise, high-speed cruise, long-range cruise and single-engine long-range cruise.

Normal Cruise

Normal cruise tables provide fuel flows and true airspeed for constant 0.76 MI cruise. Engine power is adjusted to maintain the constant Mach as weight decreases. Enter the appropriate table for the mid-weight between the start cruise weight and the end cruise weight. For example, with a start cruise weight of 15,000 pounds and an estimated fuel burn of 1,000 pounds per hour, enter the normal cruise table to find the hourly fuel flow for a weight of 14,500 pounds.

High-Speed Cruise

High-speed cruise tables provide fuel flows, indicated Mach or airspeed, and true airspeed for an M_{MO}/V_{MO} or V_{MAX} cruise. Power for maximum speed cruise is set for the limiting conditions (M_{MO}/V_{MO} , % rpm, or maximum continuous ITT). Enter the appropriate table for the average airplane weight during each cruise segment.

Long-Range Cruise—Two Engine

The Long-Range Cruise—Two Engine tables provide fuel flow, indicated Mach and true airspeed for 99% maximum range cruise. It can be seen from the chart that as airplane gross weight decreases, the altitude that provides best fuel economy increases. Therefore, when planning for maximum range, the cruise portion of the flight should be divided into segments, with an appropriately higher cruise altitude planned as airplane gross weight decreases.

Long-Range Cruise—One Engine

The Long-Range Cruise—One Engine tables provide the fuel flow, indicated Mach or airspeed and true airspeed for 99% maximum range cruise with a single engine.

DESCENT PERFORMANCE

Descent Performance schedules are provided in the *Pilot's Manual* to provide time, distance (no wind), and fuel used for descent to sea level. The descent speed schedules presented at the bottom of the table should be followed to achieve the desired results.

APPROACH AND LANDING

The charts on the following pages (Figures PER-33 through PER-35) present approach and landing climb gradients, maximum landing weights as limited by approach and landing climb performance, and landing weights as limited by maximum brake energy.

MAXIMUM ALLOWABLE LANDING WEIGHT

Landings must be made within the limitations of the maximum landing weight as governed by the Landing Weight Limits chart and by the performance determined from the Actual Landing Distance and Factored Landing Distance (if applicable) charts. The heaviest weight at which the aircraft can land is the lowest of the following weights:

- The maximum landing weight (design structural limit for landing) is 15,300 pounds (6,940 kg).
- The landing weight limit for airport altitude and reported surface temperature as determined from the Landing Weight Limits chart.
- The maximum landing weight for the runway and ambient conditions as determined from the Actual Landing Distance and Factored Landing Distance (if applicable) charts.

The landing worksheet, Figure PER-36, can be used to record these limits after they have been computed.

NOTE

If the aircraft weight over the destination is greater than the lowest of the above weights, fuel must be burned off until the proper weight is achieved.

MAXIMUM LANDING WEIGHT (APPROACH CLIMB OR BRAKE ENERGY LIMITED)

The landing weight limit chart defines the maximum weight for temperature and pressure altitude that meets the minimum climb requirement for a single engine missed approach. This requirement is for a 2.1% gross climb gradient in the approach climb configuration. A section of the chart shows the maximum weight for brake energy limits if applicable.

LANDING DISTANCE

The Actual Landing Distance chart shows the demonstrated landing distance in terms of altitude, outside air temperature, weight, wind, runway gradient, and anti-skid on or off. The Factored Landing Distance chart shows the operational landing field length when a factored landing distance is required by applicable regulations. These charts may be used to determine either of the following:

- The landing field length required given the airplane weight, runway gradient, pressure altitude, reported surface temperature, and wind.
- The maximum landing weight corresponding to a specific runway length, runway gradient, pressure altitude, reported surface temperature, and wind. Landing weight for runway length available may be determined by working through the chart in the opposite manner as finding landing distance. Landing weight determined in this manner may not be the limiting landing weight; refer to Maximum Landing Weight.

Landing on Wet or Contaminated Runway

Refer to the Wet/Contaminated Runway Data for guidance material pertaining to landing on a wet or contaminated runway.

Landing Procedure

The landing distances on the Actual Landing Distance chart (Figure PER-34) can be realized when the following procedure is used.

- 1. Approach over the end of the runway on a 3° glideslope to the normal touchdown point (approximately 1,000 feet from end of runway) at V_{REF} with flaps and gear down, using thrust for a 3° glideslope.
- 2. After passing through the 50-foot point, reduce thrust until thrust levers are at IDLE at 30 feet above the runway.
- 3. Maintain existing attitude until touchdown.
- 4. Wheel Brakes—Apply as soon as practical.
 - Anti-skid operative—Apply maximum anti-skid braking until the airplane stops.
 - Anti-skid inoperative—Apply brakes judiciously to prevent tire skid or failure. Modulating brake pressures will improve feel and reduce the probability of tire skid.

NOTE

• Pulling the control column aft will shift weight to the main wheels and improve braking efficiency. Pull control column as far aft as possible *do not lift nosewheel*.

• On wet or icy runway surfaces, full aft control column movement may not be practical due to the possibility of nosewheel lift-off.

The landing distance chart is based upon smooth, dry, hard-surfaced runways. The landing field length is equal to the horizontal distance from a point 50 feet above the runway surface to the point at which the airplane comes to a full stop on the runway.

Wet Runway Landing Factor

NOTE

The wet runway landing factors presented here are based on estimates and are provided for information only.

The distances presented on the Actual Landing Distance and Factored Landing Distance charts are based upon smooth, dry, hard-surface runways. The appropriate correction to be applied for wet runway (less than 0.1 inch [3 mm] of standing water) operations is as follows.

NOTE

The correction to be applied to account for more than 0.1 inch (3 mm) of standing water or the presence of solid ice, snow, or slush is unknown.

Actual Landing Distance Correction

Field elevation above 4,000 feet, apply a 1.6 wet runway factor to the Actual Landing Distance (Figure PER-34). For example, if the actual landing distance is 2,000 feet, the landing distance corrected for wet runway will be 3,200 feet.

Field elevation 4,000 feet or less, apply a 1.4 wet runway factor to the Actual Landing Distance (Figure PER-34). For example, if the actual landing distance is 2,000 feet, the landing distance corrected for wet runway will be 2,800 feet.

If it is not known whether the water on a wet runway may be in the process of freezing, a factor of at least 2.5 should be applied to the dry runway Actual Landing Distance if the field elevation is below 8,000 feet. A factor of at least 3.0 should be applied for field elevations of 8,000 feet and above.

Factored Landing Distance Correction

Apply a 1.15 wet runway factor to the Factored Landing Distance (Figure PER-35). For example, if the factored landing distance is 3,000 feet, the factored landing distance corrected for wet runway will be 3,450 feet.

LANDING APPROACH SPEED (V_{REF})

 V_{REF} is computed from the landing speeds table (Figure PER-37) and is determined by airplane weight.

These are the minimum speeds for final approach:

- No-flaps—V_{REF} + 20 KIAS
- FLAPS 8°—V_{REF} + 15 KIAS
- FLAPS 20°—V_{REF} + 10 KIAS
- FLAPS 40°—V_{REF}

For maneuvering, and before final approach, 10 KIAS should be added to the above speeds.

APPROACH CLIMB SPEED (VAPP)

The approach climb speed is based on 1.3 V_{S1} and is the speed used to establish the approach climb weight limit. This speed will give the maximum climb in the event of a single engine missed approach. Approach climb speed is also computed from the landing speeds table.

APPROACH AND LANDING CLIMB GRADIENT CHARTS

Approach and Landing Climb Gradient charts is given in the AFM and are read at the airport temperature and pressure altitude. The gradients will be achieved using the speeds shown in the Landing Speeds chart.

FlightSafe

EFFECTIVITY: ALL AIRCRAFT

LANDING APPROACH SPEED— V_{REF} APPROACH CLIMB SPEED— V_{APP}

WEIGHT	KIAS			
LB	V _{REF}	V _{APP}		
10,000	99	104		
11,000	104	110		
12,000	108	114		
13,000	112	119		
14,000	116	123		
15,000	120	127		
15,300	121	128		
15,500	122	128		
16,000	124	131		
17,000	127	134		

WEIGHT	KIAS				
KG	V_{REF}	V _{APP}			
4500	99	104			
5000	104	110			
5500	110	115			
6000	114	120			
6500	118	125			
6940	122	128			
7000	122	129			
7500	126	133			
7711	127	134			

Figure PER-31. Landing Speeds

UNCORRECTED APPROACH GROSS CLIMB GRADIENT—%													
ALTITUDE	ALTITUDE WEIGHT TEMPERATURE—°F												
FEEI	LD	-40	-20	0	20	40	60	70	80	90	100	110	120
	10,000	20.0	19.9	20.0	20.1	20.2	20.4	20.1	18.1	16.2	14.2	12.3	10.3
	11,000	16.9	16.8	16.9	17.0	17.1	17.3	17.1	15.3	13.5	11.8	10.0	8.3
	13.000	12.4	12.3	12.4	14.5	12.5	14.8	12.5	11.0	9.6	8.1	6.7	5.2
SEA LEVEL	14,000	10.6	10.6	10.6	10.7	10.7	10.9	10.7	9.4	8.0	6.7	5.4	4.1
	15,000	9.1	9.1	9.1 8.4	9.2	9.2	9.4 8 7	9.2	8.0 7.3	6.7	5.5	4.3	3.0
	16,000	7.8	7.8	7.8	7.8	7.9	8.1	7.9	6.7	5.6	4.4	3.3	2.2
	17,000	6.7	6.6	6.7	6.7	6.7	6.9	6.8	5.7	4.6	3.5	2.5	1.4
	10,000	19.5 16.4	19.3 16.3	19.4 16.4	19.5	19.7	19.7	17.7	15.8	14.0 11.5	12.1	10.2	8.4
	12,000	14.0	13.9	13.9	14.0	14.2	14.1	12.6	11.1	9.6	8.1	6.6	5.1
2.000	13,000	12.0	11.9	11.9	12.0	12.2	12.1	10.7	9.3	6.9	6.5	5.2	3.8
_,	14,000	8.8	8.7	8.7	10.3	10.4	10.3	7.7	6.5	5.3	4.2	4.0 3.0	1.8
	15,500	8.1	8.0	8.1	8.1	8.3	8.2	7.0	5.9	4.8	3.7	2.6	1.4
	16,000 17,000	7.5 6.4	7.4 6.3	7.5 6.4	7.5 6.4	7.7 6.5	7.6 6.5	6.5 5.4	5.4 4.5	4.3 3.4	3.2 2.4	2.1 1.4	1.0 0.4
	10,000	19.4	19.1	19.2	19.2	19.4	17.3	15.5	13.8	12.1	10.4	8.7	
	11,000	16.3	16.1	16.2	16.2	16.4	14.5	13.0	11.4	9.9	8.4	6.8	
	12,000	13.9 11.8	13.7 11 7	13.8 11.7	13.8 11.8	13.9 11 9	12.3	10.9 9.1	9.5 7.8	8.1 6.6	6.7 5.3	5.3 4.0	
4,000	14,000	10.1	10.0	10.0	10.1	10.2	8.8	7.6	6.5	5.3	4.1	3.0	
	15,000	8.6	8.5	8.6	8.6	8.7	7.5	6.4	5.3	4.2	3.1	2.0	
	15,500	8.0 7.3	7.9	7.9	8.0 7.4	8.1 7.5	6.8	5.8	4.7	3.2	2.7	1.0	
	17,000	6.2	6.2	6.2	6.2	6.3	5.2	4.3	3.4	2.5	1.5	0.5	
	10,000	18.8	18.7	18.7	18.8	18.1	15.0	13.4	11.9	10.3	8.8	7.2	
	11,000	15.9	15.8	15.7	15.9 13.5	15.3 12.9	12.4	9.1	9.7 7.9	8.3 6.6	6.9 5.4	5.5 4.1	
6 000	13,000	11.5	11.4	11.4	11.5	11.0	8.7	7.5	6.4	5.2	4.1	2.9	
0,000	14,000	9.8 8.4	9.8	9.7	9.8	9.4	7.2	6.2 5.0	5.1 4.0	4.1	3.0 2 1	2.0	
	15,500	7.7	7.7	7.7	7.8	7.4	5.5	4.5	3.6	2.6	1.7	0.7	
	16,000 17.000	7.1 6.0	7.1 6.0	7.1 6.0	7.2 6.1	6.8 5.8	4.9 4.1	4.0 3.1	3.1 2.3	2.2 1.4	1.3 0.6	0.4 -0.3	
	10.000	18.1	18.0	18.0	18.1	15.9	13.1	11.5	10.0	8.4	6.9		
	11,000	15.2	15.1	15.2	15.2	13.2	10.8	9.4	8.0	6.6	5.2		
	12,000	12.9	12.8	12.9	12.9	11.1	8.9	7.6	6.3 5.0	5.1	3.8		
8,000	14,000	9.4	9.3	9.3	9.4	7.9	6.0	4.9	3.8	2.8	1.7		
	15,000	8.0	7.9	8.0	8.0	6.6	4.8	3.9	2.9	1.9	0.9		
	15,500	6.8	6.7	6.7	6.8	6.0 5.5	4.3	2.9	2.4	1.5	0.5		
	17,000	5.7	5.6	5.7	5.7	4.6	3.0	2.1	1.2	0.4	-0.5		
	10,000	18.1	18.1 15 2	18.0 15 1	16.3	13.8	11.1	9.8 7.8	8.5 6.6	7.1			
	12,000	12.9	12.9	12.8	11.5	9.5	7.3	6.2	5.2	4.1			
10 000	13,000	11.0	10.9	10.9	9.7	7.9	5.9	4.9	3.9	2.9			
	14,000	9.3 7.9	9.3 7.9	9.3 7.9	8.2	6.5 5.3	4.7	3.8	2.9	1.9			
TAKEOFF	15,500	7.3	7.3	7.2	6.3	4.8	3.2	2.3	1.5	0.7			
ALITUDE	16,000 17,000	6.7 5.6	6.7 5.6	6.6 5.6	5.8 4.8	4.3 3.4	2.7 1.9	1.9 1.2	1.2 0.5	0.3 -0.3			
	10,000	18.1	17.9	16.5	14.1	11.7	9.3	8.2	7.0				
	11,000	15.2	15.1	13.9 11 7	11.7 0 9	9.8 7 8	7.4 5 0	6.4 ⊿ o	5.3 3 9				
	13,000	11.0	10.9	9.9	8.1	6.4	4.6	3.7	2.8		ABO	OVE	
12,000	14,000	9.3	9.3	8.4	6.8	5.1	3.5	2.6	1.8	EN	IGINI	Ε ΤΕΙ	MP
	15,000	7.9	7.9	7.1	5.6	4.1	2.5	1.7	0.6			IITS	
	16,000	6.7	6.7	5.9	4.5	3.1	1.7	1.0	0.3				
	17,000	5.7	5.6	4.9	3.6	2.3	1.0	0.3	-0.4				
	10,000 11.000	17.4 14.7	15.9 13.3	14.3 11.9	12.1 9.9	10.0 8.0	7.8 6.1	6.8 5.1	5.7 4.1				
	12,000	12.5	11.2	9.9	8.2	6.4	4.6	3.8	2.9				
14,000	13,000	10.6 9.0	9.5 8 0	8.3 6 9	6.7 5 4	5.0 3 0	3.4	2.6 1 7	1.8				
	15,000	7.7	6.7	5.7	4.3	2.9	1.6	0.8	0.1				
	15,500	7.1	6.1	5.2	3.8	2.5	1.2	0.5	-0.2				
	17,000	5.5	4.6	3.7	3.4	1.3	0.8	-0.5	-0.5				

EXAMPLE:

1.	UNCORRECTED GROSS CLIMB	
	GRADIENT (from table)	15.4 %
2.	WIND	. 0 KT
3.	REFERENCE LINE	
4.	ANTI-ICE SYSTEMS	. FULL
_		

5. CORRECTED GROSS CLIMB GRADIENT 11.3 %

CONDITIONS:

•	SINGLE ENGINE	
---	---------------	--

•	THRUST	TAKEOFF
	GEAR	I ID

•	GEAR	UP
•	FLAPS	20°

 SPEED. 1.3 V_{S1}

Figures in shaded area are provided for interpolation only.

Figure PER-32. Approach Climb Gradient

ALTITUDE FEET WEIGHT LB	UNCORRECTED LANDING GROSS CLIMB GRADIENT													
LLC1 LD -40 -20 0 20 40 60 70 80 90 100 110 120 SEA 10000 152 461 471 473 473 423 475 423 373 327 823 245 245 13,000 286 284 285 286 283 282 287 255 223 181 183		WEIGHT					TEMP	ERATU	RE—°	F				
91000 972 953 934 954 943 975 433 975 923 934 936 935 </th <th>r L L I</th> <th>LD</th> <th>-40</th> <th>-20</th> <th>0</th> <th>20</th> <th>40</th> <th>60</th> <th>70</th> <th>80</th> <th>90</th> <th>100</th> <th>110</th> <th>120</th>	r L L I	LD	-40	-20	0	20	40	60	70	80	90	100	110	120
11.000 33.3 33.1 33.2 34.4 35.6 40.2 38.6 40.2 38.6 40.2 38.6 40.2 38.6 40.2 38.6 40.2 38.6 40.2 38.6 40.2 38.6 40.2 38.6 40.2 38.6 40.2 38.6 40.2 38.6 40.2 38.6 40.3 31.6 31.6 11.6 <		10,000	47.2	46.9	47.1	47.3	47.5	48.3	47.5	42.3	37.3	32.7	28.2	24.0
SEA LEVEL 12,000 14,000 23.3 24.2 24.7 23.5 24.2 24.7 24.5 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7 14.7 16.8 16.8 16.7 16.8 16.7 16.8 16.7 16.8 16.7 16.8 16.7 16.8 16.7 16.8 15.7 16.3 34.7 27.7 28.7 28.8 18.8 17.7 15.8		11,000	39.3	39.1	39.2	39.4	39.6	40.2	39.6	35.2	31.1	27.1	23.3	19.5
SEA LEVEL 1100 22.7 22.8 22.6 22.8 22.9 21.9 150 15.0		12,000	33.3	33.1	33.2	33.4	33.5	34.0	33.5	29.8	26.2	22.7	19.3	16.0
15:00 21.4 21.3 21.4 21.5 21.6 21.6 16.3 13.7 11.1 8.7 15:00 10.0 45.7 45.8 16.8 18.7 18.6 16.8 18.7 18.6 16.2 16.3 11.1 8.7 5.7 5.8 11.1 8.7 5.7 5.8 11.1 8.7 5.8 11.1 8.7 5.8 11.1 8.8 8.8 8.4 18.8 16.2 11.1 8.7 5.8 5.8 3.4 3.6 8.2 12.7 18.7 18.8 18.7 12.7 18.7 18.8 12.7 18.7 15.8 13.8 18.7 13.8 13.8 18.8 13.7 13.8 13.8 13.7 13.8 <t< td=""><td>SEA LEVEL</td><td>14,000</td><td>24.7</td><td>26.4</td><td>24.6</td><td>20.0</td><td>20.0</td><td>29.2</td><td>24.9</td><td>21.9</td><td>19.0</td><td>16.2</td><td>13.4</td><td>10.7</td></t<>	SEA LEVEL	14,000	24.7	26.4	24.6	20.0	20.0	29.2	24.9	21.9	19.0	16.2	13.4	10.7
15:500 20.0 19.3 20.0 20.1 20.2 20.5 20.2 17.6 11.1 12.7 12.7 12.6 12.7 23.5 53 2.000 11.000 35.1 37.7 37.9 38.1 38.6 32.5 23.0 24.8 21.7 18.7 15.3 13.0 14.6 15.3 14.6 15.3 14.6 13.0 14.6 13.0 14.6 14.6 14.8 14.6 14.8 14.6 14.8 14.6 14.8 14.6 14.8 14.6 14.8 14.6 14.8 14.8 14.8 14.8 14.7 14.8 14.8 14.7 14.8 14.8 14.7 14.8 14.8 14.8 14.8 14.8 14.8 14.8 <td< td=""><td></td><td>15,000</td><td>21.4</td><td>21.3</td><td>21.4</td><td>21.5</td><td>21.6</td><td>22.0</td><td>21.6</td><td>18.9</td><td>16.3</td><td>13.7</td><td>11.1</td><td>8.6</td></td<>		15,000	21.4	21.3	21.4	21.5	21.6	22.0	21.6	18.9	16.3	13.7	11.1	8.6
15000 16.7 16.8 16.8 16.4 16.8 16.8 16.4 16.8 16.4 16.4 16.4 16.4 16.4 16.4 16.8 16.3 16.2 16.3 16.2 16.3 16.2 16.3 16.2 16.3 16.2 16.3 16.2 16.3 16.2 16.3 16.2 16.3 16.3 16.2 16.3 <th16.3< th=""> 16.3 16.3 <t< td=""><td></td><td>15,500</td><td>20.0</td><td>19.9</td><td>20.0</td><td>20.1</td><td>20.2</td><td>20.5</td><td>20.2</td><td>17.6</td><td>15.1</td><td>12.6</td><td>10.1</td><td>7.7</td></t<></th16.3<>		15,500	20.0	19.9	20.0	20.1	20.2	20.5	20.2	17.6	15.1	12.6	10.1	7.7
10.000 45.7 45.3 45.7 46.3 46.2 41.3 36.6 32.1 27.9 23.8 138.1 2.000 11.000 32.1 32.2 32.3 32.3 32.3 32.3 32.4 32.4 22.5 12.3 12.1 11.1		17.000	16.7	16.2	16.3	16.4	16.4	19.2	16.5	14.2	11.9	9.7	9.2 7.5	5.3
10000 15.1 13.27		40.000	45.7	45.0	45 F	45.7	40.0	40.0	44.2	26.6	22.4	27.0	22.0	40.0
12,000 322 31.9 32.1 32.2 32.6 32.5 39.0 25.6 22.2 19.0 15.0		11.000	45.7 38.1	45.3 37.7	45.5 37.9	45.7 38.1	46.3	46.2	34.4	30.0	26.6	27.9	23.0 19.4	15.9
2,000 13,000 27.6 27.4 27.5 27.6 28.0 27.9 24.8 21.7 18.7 15.8 13.2 10.6 8.0 15,000 13,000 20.7 20.5 20.6 20.7 21.0 20.9 13.3 15.8 13.3 10.9 7.6 6.5 6.5 15,000 18.7 17.7 17.8 18.5 15.5 11.5 44.7 3 5.2 3.2 10,000 45.1 44.8 45.0 45.1 45.6 46.0 15.9 13.8 11.6 11.5 13.2 10.6 15.5 13.2 10.6 15.5 13.2 10.6 15.5 13.2 10.6 16.4 13.2 13.4 13.9 13.2 16.4 13.5 11.2 10.6 14.6 15.5 13.2 11.6 15.6 13.2 11.5 13.2 11.6 13.5 11.2 13.6 15.5 13.2 11.6 15.7 13.2 10.6 15.6 13.2 11.3 11.6 15.7 13.2 10.6 13.6		12,000	32.2	31.9	32.1	32.2	32.6	32.5	29.0	25.6	22.2	19.0	15.8	12.7
10.00 10.00 23.9 23.0 23.0 23.0 24.2 24.0 21.3 12.0 12.0 10.0	2 000	13,000	27.6	27.4	27.5	27.6	28.0	27.9	24.8	21.7	18.7	15.8	13.0	10.1
15,500 193, 191, 192, 193, 196, 194, 170, 146, 122, 90, 66, 64, 64, 115, 150, 115, 112, 90, 66, 64, 64, 115, 150, 115, 112, 90, 66, 64, 64, 115, 150, 115, 115, 114, 115, 114, 115, 114, 115, 114, 115, 114, 115, 114, 115, 114, 115, 114, 115, 114, 115, 114, 115, 114, 115, 114, 115, 114, 115, 114, 115, 114, 115, 114, 115, 114, 115, 114, 114	2,000	14,000	23.9	23.6	23.7	23.9	24.2	24.0	21.3	18.5	15.8	13.2	10.6	8.0
16.000 18.0 17.8 17.8 17.8 18.0 18.1 15.8 15.5 15.7 15.5 15.7 15.5 15.7 15.5 15.7 15.5 15.7 15.5 15.7 15.5 15.7 15.5 15.7 15.5 15.7 15.5 15.7 15.5 15.7 15.5 15.7 15.5 15.7 17.7 15.7 17.7 17.7 15.7 17.7 17.7 17.7 17.8 17.7 17.8 17.7 17.8 17.7 17.8 17.7 17.8 17.7 17.8 17.7 17.8 17.7 17.7 17.7 17.8 17.7 17.8 17.7 17.8 17.7 17.8 17.7 17.8 17.7 17.8 17.7 17.8 17.7 17.8 17.7 17.8 17.7 17.8 17.7 17.8 17.7 17.8 17.7		15,500	19.3	19.1	19.2	19.3	19.6	19.4	17.0	14.6	12.2	9.9	7.6	5.3
4.000 15,7 15,5 15,6 15,7 16,0 15,8 13,6 15,9 13,8 27,9 24,1 22,0 15,7 16,0 15,7 16,0 15,7 16,0 15,7		16,000	18.0	17.8	17.9	18.0	18.3	18.1	15.8	13.5	11.2	9.0	6.8	4.6
4.000 45.1 44.8 45.0 45.1 37.9 37.8 23.8 23.0 19.7 15.4 4.000 11.000 31.8 31.6 31.8 31.9 32.2 22.0 19.7 15.1 13.2 13.000 22.5 22.4 23.2 13.3 15.5 13.2 11.0 8.7 55.7 15.2 15.5 15.2 11.0 8.7 57.7 15.6 17.6 17.7 16.7 17.7 16.0 15.4 13.2 11.1 9.0 7.4 7.4 3.5 15.6 13.2 11.0 15.7 15.6 13.8 15.9 13.2 11.0 15.0 12.8 15.0 12.8 16.5 13.8 15.9 13.1 15.7 13.6 13.8 15.7 13.6 15.6 13.8 15.7		17,000	15.7	15.5	15.6	15.7	16.0	15.8	13.6	11.5	9.4	7.3	5.2	3.2
		10,000	45.1	44.8	45.0	45.1	45.6	40.1	35.9	31.8	27.9	24.1	20.4	
$ \begin{array}{c} 13,000 \\ 13,000 \\ 14,000 \\ 14,000 \\ 15,00 \\ 10,00 \\ 10,00 \\ 12,00 \\ 10,00 \\ 14,00 \\ 12,00 \\ 14,00 \\ 14,00 \\ 14,00 \\ 14,0 \\ 10,00 \\ 14,0 \\ 14,00 \\ 12,00 \\ 14,00 \\ 14,00 \\ 14,00 \\ 14,00 \\ 15,00 \\ 14,00 \\ 15,00 \\ 16,00 \\ 16,0 \\ 15,00 \\ 16,0 \\ 16,0 \\ 16,0 \\ 16,0 \\ 16,0 \\ 16,0 \\ 16,0 \\ 16,0 \\ 16,0 \\ 16,0 \\ 16,0 \\ 16,0 \\ 16,0 \\ 16,0 \\ 16,0 \\ 16,0 \\ 16,0 \\ 16,0 \\ 10,0 \\ 10,0 \\ 14,00 \\ 21,0 \\ 22,0 \\ 22,0 \\ 22,0 \\ 15,0 \\ 10,0 \\ 14,00 \\ 21,0 \\ 22,0 \\ 22,0 \\ 15,0 \\ 10,0 \\ 14,00 \\ 21,0 \\ 22,0 \\ 22,0 \\ 15,0 \\ 10,$		11,000	37.6	37.3	37.4	37.6	37.9	33.4	29.8 25 1	26.3 22 0	23.0 10 n	19.7 16 1	16.4 13 2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12,000	27.2	27.1	27.2	27.3	27.6	20.2	21.3	18.5	15.9	13.2	10.6	
15,000 20.3 20.2 20.3 20.4 20.6 17.8 15.5 13.2 11.0 8.7 6.5 15,000 17.6 17.5 17.6 17.7 18.0 15.4 15.5 13.2 11.1 9.0 7.0 4.9 10,000 15.4 15.5 15.3 15.4 15.6 13.2 11.3 9.3 7.4 5.4 3.5 6,000 11,000 36.7 36.5 36.4 38.7 35.2 22.7 25.6 22.5 12.9 21.6 13.6 <t< td=""><td>4,000</td><td>14,000</td><td>23.5</td><td>23.4</td><td>23.5</td><td>23.6</td><td>23.8</td><td>20.7</td><td>18.1</td><td>15.7</td><td>13.2</td><td>10.8</td><td>8.4</td><td></td></t<>	4,000	14,000	23.5	23.4	23.5	23.6	23.8	20.7	18.1	15.7	13.2	10.8	8.4	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		15,000	20.3	20.2	20.3	20.4	20.6	17.8	15.5	13.2	11.0	8.7	6.5	
17,000 15.4 15.2 15.3 15.4 15.6 13.2 11.3 9.3 7.4 5.4 3.5 6,000 44.0 3.8 43.7 44.0 42.2 34.5 30.9 27.4 23.9 20.6 17.3 11,000 36.7 36.5 36.4 38.7 35.2 26.6 22.5 15.6 13.6 12,000 31.0 30.9 30.8 31.0 29.7 24.0 21.3 18.6 15.9 13.3 10.7 8.3 14,000 22.9 22.8 22.6 22.9 21.9 17.3 15.0 12.8 16.6 6.6 4.6 15,000 18.8 19.7 18.6 18.6 14.7 12.7 16.6 8.7 7.5 5.0 3.1 10,000 12.1 11.4 14.9 14.2 10.6 8.9 7.1 5.3 3.6 1.9 11,000 25.5 25.5 21.9 12.6 12.8 12.8 10.2 13.0 2.6 13.0 12.6 12.8<		15,500	17.6	18.9	17.6	19.0	19.2	16.5	14.3	11.1	9.0	7.0	4.9	
6,000 10,000 12,000 14,000 14,000 14,000 14,000 14,000 14,000 17,000 44.0 36.7 36.5 36.4 36.4 36.7 36.5 36.4 36.7 35.2 26.7 26.0 21.7 26.0 21.7 26.0 21.7 26.0 21.7 26.0 21.7 26.0 21.7 26.0 21.7 26.0 21.7 26.0 21.7 26.0 21.7 26.0 21.7 26.0 21.7 27.0 26.0 21.7 27.0 26.0 27.0 26.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27		17,000	15.4	15.2	15.3	15.4	15.6	13.2	11.3	9.3	7.4	5.4	3.5	
6.000 31.0 30.5 36.4 38.7 35.2 28.7 25.6 22.5 19.5 16.5 13.6 6.000 31.0 20.9 30.8 30.0 20.8 22.4 22.4 17.3 15.6 15.5 13.8 10.7 8.3 14,000 22.9 22.8 22.6 22.9 21.9 17.3 15.0 12.8 10.6 8.4 6.3 15,000 18.8 19.7 19.6 19.8 18.7 17.2 16.4 8.6 7.7 5.8 3.8 16,000 17.2 17.1 17.0 17.1 17.0 17.2 17.4 18.8 15.3 18.6 1.9 1.0 11,000 35.1 34.4 35.0 35.2 36.7 24.9 21.8 18.8 15.9 13.0 10.2 7.8 3.1 11.9 13.0 25.5 25.4 24.9 21.8 18.8 15.9 13.0 10.2 7.8 13.0 13.0 15.0 13.4 13.0 25.7 25.8 13.1 13		10,000	44.0	43.8	43.7	44.0	42.2	34.5	30.9	27.4	23.9	20.6	17.3	
6,000 13,000 265 264 263 264 263 264 263 264 263 264 263 264 263 264 263 264 263 264 263 264 263 229 127 106 86 67 58 38 16 144 144 125 106 87 67 58 31 11 11 11 100 351 344 935 352 352 249 218 188 153 164 162	6,000	11,000	36.7	36.5	36.4	38.7	35.2	28.7	25.6	22.5	19.5	16.5	13.6	
6,000 6,000 14,000 14,000 18,000 18,1 11,000 11,000 11,000 11,000 14,2 14,1 14,0 11,000 12,000 14,2 14,0 14,1 14,1 14,2 14,1 14,2 14,1 14,2 14,1 14,2 14,1 14,2 14,1 14,2 14,1 14,2 14,1 14,2 14,1 14,2 14,1 14,2 14,2 14,1 14,1 14,2 14,1 14,2 14,1 14,		12,000	31.0	30.9	30.8	31.0	29.7	24.0	21.3	18.6	15.9	13.3	10.7	
15,000 19,8 19,7 19,6 19,8 18,7 12,7 10,6 8,6 6,6 4,6 15,000 17,2 17,1 17,0 17,2 16,4 12,5 10,6 8,7 6,9 5,0 3,1 17,000 14,9 14,8 15,0 14,2 10,6 8,7 6,9 5,0 3,1 10,000 42.1 14,19 42,2 36,7 30,1 26,6 22,2 19,8 15,9 10,0 13,00 25,5 25,3 25,4 25,7 20,8 11,0 14,2 10,2 10,2 10,2 7,8 10,2 7,8 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,3 11,2 10,3 11,2 10,3 11,2 10,3 11,2 10,3 11,2 10,3 11,2 10,3 11,2 10,3 11,1 11,1 14,2		14,000	22.9	22.8	22.6	22.9	21.9	17.3	15.0	12.8	10.6	8.4	6.3	
15,500 18,4 18,4 18,3 17,6 13,6 11,6 9,6 7,7 5,8 3,8 17,000 14,9 14,9 14,8 15,0 14,2 10,6 8,7 6,8 7,7 5,8 3,1 17,000 14,9 14,9 14,8 15,0 14,2 10,6 8,7 6,8 7,7 5,3 3,6 1,9 10,000 35,1 34,9 35,0 35,2 30,5 24,9 21,8 18,8 15,9 12,0 12,000 25,5 25,3 25,4 21,8 18,8 15,9 12,0 10,0 7,8 5,9 13,000 25,5 25,3 25,4 21,5 12,6 10,2 7,8 3,5 13,0 14,0 13,000 25,5 25,3 21,5 12,6 12,4 10,3 8,2 6,5 4,6 2,7 2,8 19,0 15,0 14,2 14,2 11,7 13,5 5,0 3,2 1,5		15,000	19.8	19.7	19.6	19.8	18.9	14.7	12.7	10.6	8.6	6.6	4.6	
10,000 11.2 11.3 11.2 10.3 12.3 10.3 0.1 0.3 0.3 0.1 0.3 0.3 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 <t< td=""><td></td><td>15,500</td><td>18.4</td><td>18.4</td><td>18.3</td><td>18.5</td><td>17.6</td><td>13.6</td><td>11.6</td><td>9.6</td><td>7.7</td><td>5.8</td><td>3.8</td><td></td></t<>		15,500	18.4	18.4	18.3	18.5	17.6	13.6	11.6	9.6	7.7	5.8	3.8	
8,000 42.1 41.9 42.0 42.2 36.7 30.1 26.6 23.2 19.8 16.6 11,000 35.1 34.9 35.0 35.2 30.5 24.9 21.8 16.8 15.9 15.9 12,000 25.8 25.5 25.2 27.9 28.8 25.7 20.8 18.1 15.4 12.8 10.2 7.8 14,000 21.9 32.8 21.9 17.5 15.0 12.6 10.2 7.8 15,000 15.0 16.5 16.5 15.7 10.3 8.4 6.5 4.6 2.7 16.5 16.5 16.5 16.5 10.7 11.3 9.3 7.4 5.5 3.2 1.5 11,000 42.3 42.2 42.0 37.7 31.8 25.7 22.8 19.9 17.1 12,000 25.5 25.3 25.2 25.4 25.3 3.6 4.6 4.6 13,000		17,000	14.9	14.9	14.8	15.0	14.2	10.6	8.9	7.1	5.3	3.6	1.9	
8,000 11,000 25.1 34.9 35.0 35.2 30.5 24.9 21.8 18.8 15.9 13.0 12,000 25.8 25.5 25.3 25.4 25.5 21.9 72.5 15.0 12.6 10.2 7.8 14,000 21.9 32.8 21.9 22.0 18.7 14.7 12.5 10.2 8.0 5.9 15,000 17.7 17.5 17.6 17.7 10.3 8.4 6.5 4.6 2.4 2.5 16,000 16.5 16.4 16.5 13.7 10.3 8.4 6.5 4.6 2.7 11,000 35.2 35.1 35.0 31.4 26.3 21.0 18.5 10.8 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 14.2 14.2 14.2 14.2 14.2 14.2		10.000	42.1	41.9	42.0	42.2	36.7	30.1	26.6	23.2	19.8	16.6		
10,000 12,000 25.5 25.5 25.4 25.5 25.6 17.5 15.0 12.6 10.2 7.8 11,000 25.5 25.3 25.4 25.5 21.9 17.5 15.0 12.6 10.2 8.0 5.9 15,000 19.0 18.8 18.9 19.0 16.0 12.4 10.3 8.2 6.2 4.2 4.5 3.5 16,000 16.5 16.4 16.5 16.4 16.5 13.7 10.3 8.4 6.5 4.6 2.7 10,000 14.2 14.1 14.2 14.2 11.7 8.5 6.7 5.0 3.2 1.5 10,000 14.20 22.8 29.7 22.6 26.5 22.0 17.4 15.1 12.9 10.6 11,000 21.9 21.8 21.8 18.4 15.8 11.9 10.0 8.2 6.3 14.20 14.3 18.9 18.8 16.7 <td< td=""><td></td><td>11,000</td><td>35.1</td><td>34.9</td><td>35.0</td><td>35.2</td><td>30.5</td><td>24.9</td><td>21.8</td><td>18.8</td><td>15.9</td><td>13.0</td><td></td><td></td></td<>		11,000	35.1	34.9	35.0	35.2	30.5	24.9	21.8	18.8	15.9	13.0		
8,000 14,000 21.9 23.3 23.3 21.9 12.9 13.5 12.0 10.2		12,000	29.8	29.5	29.7	29.8	25.7	20.8	18.1	15.4	12.8	10.2		
15,000 19.0 18.8 19.0 16.0 12.4 10.3 8.2 6.2 4.2 15,000 16.5 16.5 16.3 16.4 16.5 13.7 13.3 3.3 7.4 5.4 3.5 16,000 16.5 16.3 16.4 16.5 13.7 10.3 8.4 6.5 4.6 2.7 10,000 42.3 42.2 42.0 37.7 31.8 25.7 22.8 19.9 17.1 11,000 35.2 35.1 35.0 31.4 26.3 12.0 16.5 16.0 13.4 12,000 25.5 25.4 25.3 22.6 16.4 14.2 10.3 8.2 6.3 MAX CERTIFIED 15.500 17.6 17.5 15.5 12.3 8.9 7.2 5.5 3.8 3.1 4.4 4.6 15.000 16.4 16.3 16.3 16.3 11.3 10.3 11.4 11.3 10.7	8,000	14,000	21.9	32.8	21.9	25.5	18.7	14.7	12.5	10.2	8.0	5.9		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		15,000	19.0	18.8	18.9	19.0	16.0	12.4	10.3	8.2	6.2	4.2		
16,000 16.3 16.4 16.3 16.4 16.3 16.4 16.3 16.4 16.3 16.4 16.3 16.4 16.3 16.4 16.3 16.4 16.3 16.4 16.3 <		15,500	17.7	17.5	17.6	17.7	14.9	11.3	9.3	7.4	5.4	3.5		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		17,000	14.2	14.1	14.2	14.2	11.7	8.5	6.7	5.0	3.2	1.5		
10,000 12,000 12,000 25.5 25.4 25.6 25.4 25.6 25.6 22.0 26.7 15.6 11.4 12.3 10.3 26.3 8.2 26.3 26.3 MAX CERTIFIED TAKEOFF ALITTUDE 15.500 17.6 17.5 15.5 12.3 8.9 7.2 5.5 3.8 10,000 42.1 41.1 14.1 12.3 9.4 6.4 4.9 3.4 1.9 12,000 35.1 34.8 31.8 26.9 27.1 21.8 19.2 16.7 13.0 1.9 1.9 12,000 25.4 25.2 23.0 19.2 15.4 11.7 9.8 0.0 1.4 1.9 1.0 1.0 1.0 1.0		10.000	42.3	42.2	42.0	37.7	31.8	25.7	22.8	19.9	17.1			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		11,000	35.2	35.1	35.0	31.4	26.3	21.0	18.5	16.0	13.4			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		12,000	29.8	29.7	29.6	26.5	22.0	17.4	15.1	12.9	10.6			
MAX CERTIFIED TAKEOFF 15,000 15,500 18.9 17.6 19.9 17.6 18.8 17.5 19.3 18.8 16.7 15.5 13.3 18.3 9.8 18.3 6.1 6.4 6.4 4.8 4.6 3.1 17,000 14.2 14.1 14.1 12.3 9.4 6.4 4.9 3.4 1.9 12,000 17.0 14.2 14.1 14.1 12.3 9.4 6.4 4.9 3.4 1.9 12,000 14.2 14.1 14.1 12.3 9.4 6.4 4.9 3.4 1.9 12,000 25.4 22.7 29.5 27.0 22.7 18.5 14.4 12.3 10.3 ABOVE 12,000 25.4 22.7 29.5 27.0 22.7 18.5 14.4 12.3 10.3 ABOVE 13,000 25.4 22.7 19.2 15.4 12.7 13.8 10.7 7.5 6.0 4.4 15.000 16.4 16.3 12.7 9.7 6.7 5.2	10,000	14.000	25.5	25.4	25.5	22.6	18.6	14.4	10.0	8.2	6.2			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MAX CERTIFIED	15,000	18.9	18.9	18.8	16.7	13.3	9.8	8.1	6.4	4.6			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	TAKEOFF	15,500	17.6	17.5	17.5	15.5	12.3	8.9	7.2	5.5	3.8			
10,000 42.1 41.8 38.2 32.5 27.1 21.8 19.2 16.7 12,000 35.1 34.8 31.8 26.9 22.3 17.6 15.4 13.3 12,000 25.7 25.5 27.0 22.7 18.6 15.4 13.3 10.3 13,000 25.4 25.2 23.0 19.2 15.4 11.7 9.8 8.0 15,000 18.9 18.8 17.0 13.8 10.7 7.5 6.0 4.4 3.0 15,500 17.6 17.5 15.8 12.7 9.4 7.7 6.7 5.2 3.6 16.4 16.3 14.7 13.8 5.9 4.4 3.0 17.0 14.4 12.6 9.7 2.4 3.1 1.7 6.0 14.9 11.000 3.7 30.5 27.3 2.3 18.5 16.4 10.8 14.9 11.000 12.2 18.5 14.1 10.3 12.8	ALITODE	16,000	16.4	16.3	16.3	14.3	9.4	8.0 6.4	6.4 4.9	4.8 3.4	3.1			
11,000 35.1 34.8 31.8 22.9 22.3 17.6 15.4 13.1 12,000 29.7 29.5 27.0 22.7 18.5 14.4 12.3 10.3 12,000 25.4 25.2 23.0 12.1 17.6 15.4 13.1 12,000 25.4 25.2 23.0 12.2 15.4 14.4 12.3 10.3 14,000 21.9 21.7 19.2 15.4 11.7 9.8 8.0 15,000 18.9 18.8 17.0 15.8 12.9 9.4 7.7 6.1 16,000 16.4 16.3 14.7 11.7 8.8 5.9 4.4 3.0 17,000 14.2 14.4 12.6 9.9 7.2 4.4 3.1 1.7 12,000 28.7 25.8 23.0 18.8 14.8 12.8 10.8 12,000 28.7 25.8 23.0 19.2 15.1 <t< td=""><td></td><td>10.000</td><td>42.1</td><td>41.8</td><td>38.2</td><td>32.5</td><td>27.1</td><td>21.8</td><td>19.2</td><td>16.7</td><td></td><td></td><td>_</td><td></td></t<>		10.000	42.1	41.8	38.2	32.5	27.1	21.8	19.2	16.7			_	
12,000 12,000 27 29.5 27.0 22.7 18.5 14.4 12.3 10.3 ABOVE 12,000 14,000 25.4 25.2 23.0 19.2 15.4 14.7 19.8 8.0 15,000 14.000 21.9 21.7 19.8 16.3 12.9 9.4 7.7 6.1 15,000 17.6 17.7 15.8 12.7 9.8 5.9 4.4 3.1 1.7 16,000 16.4 16.3 12.7 9.7 6.7 5.2 3.6 LIMITS 17.00 14.2 14.1 12.6 9.9 7.2 4.4 3.1 1.7 11,000 37.7 30.5 27.3 23.0 18.8 14.8 12.8 10.8 12,000 28.7 25.8 23.0 19.2 15.1 18.0 8.2 14,000 21.2 18.9 16.6 13.4 10.3 7.7 6.0 1		11,000	35.1	34.8	31.8	26.9	22.3	17.6	15.4	13.1				
12,000 13,000 24.9 25.2 2.3.0 19.2 15.4 11.7 9.8 8.0 14,000 14.9 21.9 21.7 19.8 16.3 12.9 9.4 7.7 6.1 15,000 18.9 18.8 17.0 13.8 10.7 7.5 6.0 4.4 15,000 16.4 16.3 12.9 9.4 7.5 6.0 4.4 15,000 16.4 16.3 12.7 9.7 6.7 6.5 2.3.6 LIMITS 16,000 16.4 16.3 14.7 11.7 8.8 5.9 4.4 3.1 1.7 11,000 33.7 30.6 32.3 23.0 18.8 14.8 12.8 10.8 12.2 10.9 10.2 11.2 14.4 11.2 12.1 18.2 11.2 14.4 12.2 11.2 18.4 10.8 12.2 11.2 12.1 12.1 12.1 12.1 12.1 12.2		12,000	29.7	29.5	27.0	22.7	18.5	14.4	12.3	10.3		AB	OVE	
10,000 41.3 10.3 10.3 10.3 10.5 11.6 4.4 ENGINE TEMP 15,000 17.6 17.5 15.8 17.0 13.8 10.7 7.5 6.7 5.2 3.6 10.7 11.5 11.5 11.7	12,000	13,000	25.4	25.2 21 7	23.0	19.2	15.4	11.7 9.4	9.8 77	8.0			E TE	MD
15,500 17.6 17.5 15.8 12.7 9.7 6.7 5.2 3.6 LIMITS 16,000 16.4 16.3 14.7 11.7 8.8 5.9 4.4 3.0 1.7 17,000 14.2 14.1 12.6 9.9 7.2 4.4 3.1 1.7 10,000 40.4 36.6 32.9 27.9 23.1 18.5 16.2 14.0 12,000 28.7 25.8 23.0 18.8 14.8 12.8 10.8 8.2 13,000 24.7 22.0 19.2 15.1 18.10 8.2 10.0 8.2 14,000 14.2 14.8 16.4 11.2 7.3 5.8 4.2 15,000 18.3 16.2 14.1 11.2 8.4 5.5 4.1 2.7 15,000 18.3 16.2 14.1 11.2 8.4 5.5 4.1 2.7 15,000 15.1 13.0		15,000	18.9	18.8	17.0	13.8	10.7	7.5	6.0	4.4	Er			
16,000 16.4 16.3 14.7 11.7 8.8 5.9 4.4 3.0 17,000 14.2 14.1 12.6 9.9 7.2 4.4 3.1 1.7 10,000 30.7 30.5 27.3 23.0 18.8 14.8 12.8 10.0 12,000 28.7 25.8 23.0 18.8 14.8 12.8 10.0 13,000 24.5 22.0 19.2 15.5 18.1 10.0 8.2 14,000 21.2 18.9 16.6 13.4 10.3 7.3 5.8 4.2 15,000 18.3 16.2 14.1 11.2 8.4 5.5 4.1 2.7 15,000 15.1 13.0 10.2 7.5 4.8 3.4 2.0 16,000 15.8 14.0 12.0 9.3 6.6 4.0 2.7 1.3 15,000 15.8 14.0 12.0 9.3 6.4 4.0		15,500	17.6	17.5	15.8	12.7	9.7	6.7	5.2	3.6		LIN	IITS	
10,000 40.4 36.6 32.9 27.9 23.1 18.5 16.2 14.0 11,000 33.7 30.5 27.3 23.0 18.8 14.8 12.8 10.8 12,000 28.7 25.8 23.0 19.2 15.5 11.8 10.0 8.2 13,000 24.5 22.0 19.5 16.1 12.7 9.4 7.7 6.0 14,000 18.3 16.2 13.4 10.3 7.3 5.8 4.2 15,000 18.3 16.2 14.1 11.2 8.4 5.5 4.1 2.7 15,500 17.0 15.1 13.0 10.2 7.5 4.8 3.4 2.0 16,000 15.8 14.0 12.0 9.3 6.6 4.0 2.7 1.3 17,000 13.7 12.0 10.1 7.6 5.2 2.7 1.4 0.2		16,000 17,000	16.4 14.2	16.3 14.1	14.7 12.6	11.7 9.9	8.8 7.2	5.9 4.4	4.4 3.1	3.0 1.7				
14,000 21.7 21.8 21.7 <		10.000	40.4	36.6	32 9	27 0	23.1	18 5	16.2	14.0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		11,000	33.7	30.5	27.3	23.0	18.8	14.8	12.8	10.8				
14,000 13,000 24.5 22.0 19.5 16.1 12.7 9.4 7.7 6.0 14,000 21.2 18.9 16.6 13.4 10.3 7.3 5.8 4.2 15,000 18.3 16.2 14.1 11.2 8.4 5.5 4.1 2.7 15,500 17.0 15.1 13.0 10.2 7.5 4.8 3.4 2.0 16,000 15.8 14.0 12.0 9.3 6.6 4.0 2.7 1.3 17,000 13.7 12.0 10.1 7.6 5.2 2.7 1.4 0.2		12,000	28.7	25.8	23.0	19.2	15.5	11.8	10.0	8.2				
19,000 18.2 16.2 14.1 11.2 8.4 5.5 4.1 2.7 15,000 15.8 16.2 14.1 11.2 8.4 5.5 4.1 2.7 15,000 15.8 15.1 13.0 10.2 7.5 4.8 3.4 2.0 16,000 15.8 14.0 12.0 9.3 6.6 4.0 2.7 1.3 17,000 13.7 12.0 10.1 7.6 5.2 2.7 1.4 0.2	14,000	13,000	24.5	22.0	19.5	16.1	12.7	9.4 7 2	7.7	6.0				
15,500 17.0 15.1 13.0 10.2 7.5 4.8 3.4 2.0 16,000 15.8 14.0 12.0 9.3 6.6 4.0 2.7 1.3 17,000 13.7 12.0 10.1 7.6 5.2 2.7 1.4 0.2	,	15,000	18.3	16.2	14.1	11.2	8.4	5.5	3.o 4.1	2.7				
16,000 15.8 14.0 12.0 9.3 6.6 4.0 2.7 1.3 17,000 13.7 12.0 10.1 7.6 5.2 2.7 1.4 0.2		15,500	17.0	15.1	13.0	10.2	7.5	4.8	3.4	2.0				
17,000 13.7 12.0 10.1 7.0 3.2 2.7 1.4 0.2		16,000	15.8	14.0	12.0	9.3	6.6	4.0	2.7	1.3				
		17,000	13.7	12.0	10.1	7.0	5.2	2.1	1.4	0.2				

EFFECTIVITY:

A	LL A	IRCF	RAFT	

EXAMPLE:

1.	UNCORRECTED GROSS CLIMB	
	GRADIENT (from table)	12.5 %
2.	WIND	0 KT
3.	REFERENCE LINE	
4.	NACELLE HEAT	ON
5.	CORRECTED GROSS	
	CLIMB GRADIENT	

CONDITIONS:

•	SINGLE ENGINE	
•	THRUST	TAKEOFE
•	GEAR	DOWN
•	FLAPS	40°
•	SPEED	13V-
	0. 225	

Figure PER-33. Landing Climb Gradient

ANTI-ICE-OFF

Figure PER-34. Landing Weight Limit (Sheet 1 of 2)

0 -20 NACELLE HEAT ONLY FULL ANTI-ICE ·20 -30 -13 14 15 16 17 GROSS WEIGHT-1,000 LB TEMPERATURE 0 60 65 70 75 GROSS WEIGHT-100 KG 10 SLONX-QNIM 30 EFFECTIVITY: ALL AIRCRAFT EXAMPLE (FULL ANTI-ICE): 1. TEMPERATURE... 30°F (-1.1°C) 2. ALTITUDE 14,000 FT 3. APPROACH CLIMB WEIGHT LIMIT.. 14,000 LB (6,350 KG) 2 4. REFERENCE LINE 5. WIND... 0 KT %-6. REFERENCE LINE 7. RUNWAY GRADIENT. 2.2 % DN **GRADIENT**-

8. BRAKE ENERGY WEIGHT LIMIT. 15,700 LB (7,121 KG)

THE MOST LIMITING CONDITION IS APPROACH CLIMB.

 LANDING WEIGHT LIMIT.. . 14,000 LB (6,350 KG)

NOTE:

THE VALUE OBTAINED FROM THIS CHART MAY NOT BE THE LIMITING WEIGHT. LAND-ING WEIGHT IS ALSO LIMITED BY THE MAXIMUM CERTIFIED LANDING WEIGHT AND THE LANDING WEIGHT FOR THE RUNWAY AVAILABLE.

Figure PER-34. Landing Weight Limit (Sheet 2 of 2)

n

14

65

15

GROSS WEIGHT-1,000 LB

70

GROSS WEIGHT-100 KG

16

RUNWAY

75

17

Т

REFERENCE LIN

UNCORRECTED LANDING DISTANCE—FT													
ALTITUDE	WEIGHT	TEMPERATURE—°F											
FEEI	LB	-40	-20	0	20	40	60	70	80	90	100	110	120
	10,000	1950	1990	2040	2080	2120	2160	2180	2210	2230	2250	2270	2290
	11,000	2050	2100	2140	2190	2230	2280	2300	2320	2350	2370	2390	2420
	12,000	2150	2200	2250	2300	2350	2400	2420	2450	2470	2490	2520	2540
SEA LEVEL	13,000	2250	2300	2360	2520	2460	2510	2660	2690	2590	2010	2040	2800
	15,000	2450	2510	2570	2630	2690	2750	2780	2800	2830	2860	2890	2930
	15,500	2480	2540	2600	2660	2720	2780	2810	2840	2870	3910	2940	2980
	16,000	2550	2610	2680	2740	2800	2870	2910	2940	2980	3020	3050	3090
	17,000	2000	2120	2130	2070	2340	5020	0000	5100	5140	5100	5220	3210
	10,000	2020	2060	2110 2220	2160	2200	2250	2390	2290	2310 2440	2340 2470	2360 2490	2380
	12,000	2230	2280	2330	2390	2440	2490	2520	2550	2570	2600	2620	2650
2 000	13,000	2330	2390	2450	2500	2560	2620	2640	2670	2700	2730	2760	2780
2,000	14,000	2440	2500	2560	2620	2680	2740	2770	2800	2830	2860	2890	2920
	15,500	2580	2610	2700	2770	2830	2900	2940	2980	3020	3050	3040	3130
	16,000	2650	2720	2780	2860	2930	3010	3050	3090	3130	3180	3220	3220
	17,000	2760	2840	2920	3010	3090	3180	3220	3270	3310	3360	3400	3450
	10,000	2100	2150	2200	2250	2290	2340	2370	2390	2420	2440	2470	
	11,000	2210	2260	2310	2370	2420	2470	2500	2520	2550	2580	2600	
	13,000	2430	2490	2550	2610	2670	2730	2760	2790	2820	3850	2880	
4,000	14,000	2540	2600	2670	2730	2800	2860	2900	2930	2960	2990	3030	
	15,000	2650	2720	2790	2860	2930	3010	3050	3090	3130	3170	3210	
	16,000	2000	2750	2920	3010	3090	3180	3230	3140	3320	3250	3410	
	17,000	2890	2990	3080	3170	3270	3360	3410	3460	3510	3560	3610	
	10,000	2190	2240	2300	2350	2410	2460	2490	2510	2540	2570	2590	
	11,000	2310	2360	2420	2480	2540	2590	2620	2650	2680	2710	2740	
	12,000	2420	2490	2550	2610	2670	2730	2760	2800	2830	2860	2890	
6,000	14,000	2540	2010	2800	2740	2000	3010	3050	2940	3130	3000	3030	
	15,000	2770	2850	2920	3010	3100	3190	3230	3280	3320	3370	3410	
	15,500	2810	2880	2970	3060	3150	3240	3290	3340	3380	3430	3480	
	16,000 17.000	2900 3050	2990 3160	3090 3260	3180 3360	3280 3470	3380 3580	3430 3630	3480 3690	3530 3750	3580 3800	3630 3860	
	10 000	2300	2360	2420	2480	2540	2590	2620	2650	2680	2710		
	11,000	2420	2480	2550	2610	2670	2740	2770	3800	2830	2860		
	12,000	2550	2610	2680	2750	2820	2880	2920	2950	2980	3020		
8.000	13,000	2670	2740	2810	2880	2960	3030	3060	3100	3140	3170		
.,	15.000	2910	3000	3100	3200	3300	3400	3450	3500	3550	3600		
	15,500	2960	3050	3150	3250	3350	3460	3510	3560	3620	3670		
	16,000	3070	2170	3280	3390	3500	3610	3660	3720	3780	3840		
	17,000	3240	3350	3470	3390	3/10	3030	0700	3900	4020	4090		
	10,000	2430	2500	2560 2700	2630 2770	2690	2760	2790	2820 2970	2850 3010			
	12.000	2690	2030	2840	2910	2990	3060	3100	3130	3170			
40.000	13,000	2820	2900	2970	3050	3130	3210	3260	3310	3350			
10,000	14,000	2950	3030	3120	3220	3320	3420	3470	3530	3580			
TAKEOFF	15,000	3150	3200	3370	3420	3600	3640	3770	3830	3890			
ALTITUDE	16,000	3270	3390	3510	3630	3750	3880	3940	4010	4080			
	17,000	3460	3590	3720	3860	3990	4130	4220	4320	4420			
	10,000	2590	2660	2730	2810	2880	2950	2990	3020				
	11,000	2720	2800	2880	2950	3030	3110	3140	3180		ABC	OVE	
	12,000	2000	2940	3020	3260	3360	3460	3520	3570				MD.
12,000	14,000	3130	3240	3350	3470	3580	3700	3760	3820	Er	Gilli		VIF
	15,000	3320	3440	3560	3690	3820	3950	4010	4080		LIM	ITS	
	15,500	3380	3500	3630	3760	3890	4030	4090	4160				
	17,000	3730	3870	4030	4180	4380	4620	4740	4870				
	10,000	2780	2860	2940	3030	3110	3190	3230	3270				
	11,000	2920	3000	3090	3180	3260	3350	3390	3440				
	12,000	3060	3150	3250	3330	3430	3530	3580	3630				
14,000	14.000	3200	3510	3640	3770	3000	4040	4100	4170				
	15,000	3590	3730	3870	4020	4170	4320	4400	4480				
	15,500	3660	3800	3950	4100	4250	4410	4490	4580				
	16,000	3810	3970	4130	4290	4460	4690	4810	4940				
	17,000	4050	4230	4440	4/10	4990	5510	5470	2020				

EFFECTIVITY:

ALL AIRCRAFT	
ALL AIRCRAFT	

EXAMPLE:

1.	UNCORRECTED LANDING	
	DISTANCE (from table)	4,400 FT (1,341 M)
2.	REFERENCE LINE	
3.	HEADWIND	30 KT
4.	REFERENCE LINE	
5.	RUNWAY GRADIENT	–1% DN
6.	REFERENCE LINE	
7.	ANTI-SKID	ON
8.	REFERENCE LINE	
9.	ALTITUDE	5,000 FT
10.	CORRECTED LANDING DISTANCE	4,000 FT (1,220 M)

Figures in shaded area are provided for interpolation only.

Figure PER-35. Actual Landing Distance

Figure PER-36. Factored Landing Distance

FlightSafety

FlightSafety

Page

CREW RESOURCE MANAGEMENT CONTENTS

CREW RESOURCE MANAGEMENT (CRM)	CRM-1
CREW CONCEPT BRIEFING GUIDE	CRM-1
Introduction	CRM-1
Common Terms	CRM-1
Pretakeoff Briefing (IFR/VFR)	CRM-3
Crew Coordination Approach Sequence	CRM-3
ALTITUDE CALLOUTS	CRM-6
Enroute	. CRM-6
Approach—Precision	. CRM-6
Approach—Nonprecision	. CRM-7
Significant Deviation Callouts	. CRM-8

ILLUSTRATIONS

Figure	Title	Page
CRM-1	Situational Awareness in the Cockpit	CRM-2
CRM-2	Command and Leadership	CRM-2
CRM-3	Communication Process	CRM-4
CRM-4	Decision Making Process	CRM-4

FlightSafety

CREW RESOURCE MANAGEMENT (CRM)

CREW CONCEPT BRIEFING GUIDE

INTRODUCTION

Experience has shown that adherence to SOPs helps to enhance individual and crew cockpit situational awareness and will allow a higher performance level to be attained. Our objective is for standards to be agreed upon prior to flight and then adhered to, such that maximum crew performance is achieved. These procedures are not intended to supercede any individual company SOP, but rather are examples of good operating practices.

COMMON TERMS

PIC Pilot in Command

Designated by the company for flights requiring more than one pilot. Responsible for conduct and safety of the flight. Designates pilot flying and pilot not flying duties.

PF Pilot Flying

Controls the aircraft with respect to assigned airway, course, altitude, airspeed, etc., during normal and emergency conditions. Accomplishes other tasks as directed by the PIC.

PNF Pilot Not Flying

Maintains ATC communications, copies clearances, accomplishes checklists and other tasks as directed by the PIC.

B Both

Figure CRM-1. Situational Awareness in the Cockpit

Figure CRM-2. Command and Leadership

PRETAKEOFF BRIEFING (IFR/VFR)

NOTE

The following briefing is to be completed during item 1 of the Pretakeoff checklist. The pilot flying will accomplish the briefing.

- 1. Review the departure procedure (route and altitude, type of takeoff, significant terrain features, etc.).
- 2. Review anything out of the ordinary.
- 3. Review required callouts, unless standard calls have been agreed upon, in which case a request for "Standard Callouts" may be used.
- 4. Review the procedures to be used in case of an emergency on departure.
- 5. As a final item, ask if there are any questions.
- 6. State that the pretakeoff briefing is complete.

CREW COORDINATION APPROACH SEQUENCE

NOTE

The following crew coordination approach sequence should be completed as early as possible, prior to initiating an IFR approach. These items are accomplished during the "APPROACH (IN RANGE)" checklist.

- PF—Requests the pilot not flying to obtain destination weather. (Transfer of communication duties to the pilot flying may facilitate the accomplishment of this task.)
- PNF—Advises the pilot of current destination weather, approach in use, and special information pertinent to the destination.

- PF—Requests the pilot not flying to perform the approach setup.
- PNF—Accomplishes the approach setup and advises of frequency tuned, identified and course set.
 - PF—Transfers control of the aircraft to the pilot not flying, advising, "You have control, heading ______, altitude ______" and special instructions. (Communications duties should be transferred back to the pilot not flying at this point.)
- PNF—Responds, "I have control, heading _____, altitude _____."
 - PF—Advises, "Approach Briefing."
 - PF—At the completion of the approach briefing, the pilot flying advises, "Approach Briefing Complete."
 - PF—Advises, "I have control, heading _____, altitude _____."
- PNF—Confirms "You have control, heading _____, altitude _____."
 - PF—"Before Landing checklist."

PNF—"Before Landing checklist complete."

NOTE

The above sequence should be completed prior to the FAF.

NOTE

During the above sequence, the terms F and N have not been reversed during the time that transfer of control occurs.

PF

LEARJET 31A PILOT TRAINING MANUAL

ALTITUDE CALLOUTS

PNF

ENROUTE

1000 ft Prior to Level Off

State altitude leaving and assigned level off altitude	"ROGER"
"100 ft above/below"	
APPROACH—PRECISION	
PNF	PF
At 1,000 ft abo	ve minimums
"1,000 feet above minimums"	"DH"
At 500 ft abov	re minimums
"500 feet above minimums"	"NO FLAGS"
At 100 ft abov	e minimums
"100 feet above minimums"	"APPROACHING MINIMUMS"
At decision h	eight (DH)
"Minimums, approach lights at (clock position)"	"CONTINUING"
OR	
"Minimums, runway at (clock position)" "CONTINUING"
OR	
"Minimums, runway not in sight"	"GO AROUND"

APPROACH—NONPRECISION

PNF	PF				
At 1,000 ft above minimums					
"1,000 feet above minimums"	"MDA"				
At 500 ft above minimums					
"500 feet above minimums"	"NO FLAGS"				
At 100 ft above minimums					
"100 feet above minimums"	"APPROACHING MINIMUMS"				
At minimum descer	nt altitude (MDA)				
"Minimums"	"LEVEL"				
At missed approa	ch point (MAP)				
"Approach lights at (clock position)"	"CONTINUING"				
OR					
"Runway at (clock position)"	"CONTINUING"				
OR					
"Runway not in sight"	"GO AROUND"				

SIGNIFICANT DEVIATION CALLOUTS

PNF

PF

IAS \pm 10 KIAS

" $V_{REF} \pm$ _____"

"CORRECTING TO _____"

 $\begin{array}{l} Heading \ \pm \ 10^{\circ} \ enroute \\ 5^{\circ} \ on \ approach \end{array}$

"Heading _____ degrees left/right "CORRECTING TO _____"

Altitude ±100 ft enroute

+50/-0 ft on final approach

"Altitude _____ high/low" "CORRECTING TO _____"

CDI left or right one dot

"Left/right of course _____ dot" "CORRECTING"

RMI course left or right $\pm 5^{\circ}$

"Left/right of course _____ degrees" "CORRECTING"

Vertical descent speed greater than 1,000 fpm on final approach

"Sink rate _____"

"CORRECTING"

Bank in excess of 30°

"Bank _____ degrees"

CRM-8

"CORRECTING"