AIRPLANE FLIGHT MANUAL DA 62 **Airworthiness Category**: Normal | Requirement | : AWM 523 | |--|---| | Serial Number | : | | Registration | : | | Doc. No. | : 11.01.05-E | | Date of Issue | : 24-October-2019 | | be found in the List of Effective | n the aircraft at all times. Scope and revision status can e Pages and in the Record of Revisions. | | Signature: | ANDREAS HARTONO | | Authority: | Chief Flight Test | | | Transport Canada Civil Aviation | | Date of approval: | | | in accordance with the Canadian approved for U.S. registered air | been approved by the Canadian Department of Transport
in Aviation Regulations. This airplane flight manual is FAA
craft in accordance with the provisions of 14 CFR Section
Type Certificate Data Sheet no.: A00012NY. | ## Introduction Intentionally left blank. Introduction #### **FOREWORD** We congratulate you on the acquisition of your new DIAMOND DA 62. Skillful operation of an airplane increases both safety and the enjoyment of flying. Please take the time therefore, to familiarize yourself with your new DIAMOND DA 62. This airplane may only be operated in accordance with the procedures and operating limitations of this Airplane Flight Manual. Before this airplane is operated for the first time, the pilot must familiarize himself with the complete contents of this Airplane Flight Manual. In the event that you have obtained your DIAMOND DA 62 second-hand, please let us know your address, so that we can supply you with the publications necessary for the safe operation of your airplane. This document is protected by copyright. All associated rights, in particular those of translation, reprinting, radio transmission, reproduction by photo-mechanical or similar means and storing in data processing facilities, in whole or part, are reserved. Copyright © by: DIAMOND AIRCRAFT INDUSTRIES INC. 1560 Crumlin Sideroad, London, Ontario, Canada N5V 1S2 Phone.: +1 519 457 4000 E-Mail: <u>Techpubs@diamondair.com</u> ## 0.1 APPROVAL The content of approved chapters is approved by Transport Canada Civil Aviation. ## 0.2 RECORD OF REVISIONS All revisions of this manual, with the exception of: - · Temporary Revisions, - updates of the modification level (Section 1.1), - updated mass and balance information (Section 6.3), - · updates of the Equipment Inventory (Section 6.5), and - updates of the List of Supplements (Section 9.2) must be recorded in the following table. The new or amended text is indicated by a vertical black line at the left hand side of the revised page, with the revision number and date appearing at the bottom of the page. If pages are revised which contain information valid for your particular serial number (modification level of the airplane, weighing data, Equipment Inventory, List of Supplements), then this information must be transferred to the new pages in hand-writing. Temporary Revisions, if applicable, are inserted behind the cover page of this manual. Temporary Revisions are used to provide information on systems or equipment until the next 'permanent' revision of the Airplane Flight Manual. When a 'permanent' revision covers a Mandatory Design Change Advisory or Optional Design Change Advisory (MÄM or OÄM), then the corresponding Temporary Revision is superseded. For example: If Revision 1 covers OÄM 62-039, then the Temporary Revision TR OÄM-62-039 is superseded by the 'permanent' Revision 1. | Page 0 - 2 Rev. 0 | 11-Jan-2019 | Doc. # 11.01.05-E | |-------------------|-------------|-------------------| |-------------------|-------------|-------------------| | Rev.
No. | Reason | Chapter(s) | Page(s) | Date of
Revision | Approval | |-------------|---|------------|-----------------------------|----------------------|--| | 4 | FAA approval statement
on cover page.
Approved fuel grades for
operation in USA. | 0, 2 | 0-0, 0-3, 0-4,
0-5, 2-27 | 24-Oct-2019
For D | ANDREAS HARTONG Chief, Flight Test rector, National Aircra Certification ANSPORT CANADA | Doc. # 11.01.05-E | Rev. 1 | 24-Oct-2019 | | Page 0 - 3 | |-------------------|--------|-------------|--|------------| |-------------------|--------|-------------|--|------------| # 0.3 LIST OF EFFECTIVE PAGES | Ch. | Page | Date | |-----|------|-------------| | 0 | 0-0 | 24-Oct-2019 | | | 0-0a | 11-Jan-2019 | | | 0-1 | 11-Jan-2019 | | | 0-2 | 11-Jan-2019 | | | 0-3 | 24-Oct-2019 | | | 0-4 | 24-Oct-2019 | | | 0-5 | 24-Oct-2019 | | | 0-6 | 11-Jan-2019 | | | 0-7 | 11-Jan-2019 | | | 0-8 | 11-Jan-2019 | | | 0-9 | 11-Jan-2019 | | | 0-10 | 11-Jan-2019 | | | 0-11 | 11-Jan-2019 | | | 0-12 | 11-Jan-2019 | | | 0-13 | 11-Jan-2019 | | | 0-14 | 11-Jan-2019 | | | 0-15 | 11-Jan-2019 | | Ch. | Page | Date | |-----|------|-------------| | 1 | 1-1 | 11-Jan-2019 | | | 1-2 | 11-Jan-2019 | | | 1-3 | 11-Jan-2019 | | | 1-4 | 11-Jan-2019 | | | 1-5 | 11-Jan-2019 | | | 1-6 | 11-Jan-2019 | | | 1-7 | 11-Jan-2019 | | | 1-8 | 11-Jan-2019 | | | 1-9 | 11-Jan-2019 | | | 1-10 | 11-Jan-2019 | | | 1-11 | 11-Jan-2019 | | | 1-12 | 11-Jan-2019 | | | 1-13 | 11-Jan-2019 | | | 1-14 | 11-Jan-2019 | | | 1-15 | 11-Jan-2019 | | | 1-16 | 11-Jan-2019 | | | 1-17 | 11-Jan-2019 | | | 1-18 | 11-Jan-2019 | | | 1-19 | 11-Jan-2019 | | | 1-20 | 11-Jan-2019 | | | 1-21 | 11-Jan-2019 | | | 1-22 | 11-Jan-2019 | | Page 0 - 4 | Rev. 1 | 24-Oct-2019 | Doc. # 11.01.05-E | |------------|--------|-------------|-------------------| |------------|--------|-------------|-------------------| # Introduction | Ch. | Page | Date | |-----|----------------|-------------| | 2 | DOT-appr. 2-1 | 11-Jan-2019 | | | DOT-appr. 2-2 | 11-Jan-2019 | | | DOT-appr. 2-3 | 11-Jan-2019 | | | DOT-appr. 2-4 | 11-Jan-2019 | | | DOT-appr. 2-5 | 11-Jan-2019 | | | DOT-appr. 2-6 | 11-Jan-2019 | | | DOT-appr. 2-7 | 11-Jan-2019 | | | DOT-appr. 2-8 | 11-Jan-2019 | | | DOT-appr. 2-9 | 11-Jan-2019 | | | DOT-appr. 2-10 | 11-Jan-2019 | | | DOT-appr. 2-11 | 11-Jan-2019 | | | DOT-appr. 2-12 | 11-Jan-2019 | | | DOT-appr. 2-13 | 11-Jan-2019 | | | DOT-appr. 2-14 | 11-Jan-2019 | | | DOT-appr. 2-15 | 11-Jan-2019 | | | DOT-appr. 2-16 | 11-Jan-2019 | | | DOT-appr. 2-17 | 11-Jan-2019 | | | DOT-appr. 2-18 | 11-Jan-2019 | | | DOT-appr. 2-19 | 11-Jan-2019 | | | DOT-appr. 2-20 | 11-Jan-2019 | | | DOT-appr. 2-21 | 11-Jan-2019 | | | DOT-appr. 2-22 | 11-Jan-2019 | | | DOT-appr. 2-23 | 11-Jan-2019 | | | DOT-appr. 2-24 | 11-Jan-2019 | | | DOT-appr. 2-25 | 11-Jan-2019 | | | DOT-appr. 2-26 | 11-Jan-2019 | | | DOT-appr. 2-27 | 24-Oct-2019 | | Ch. | Page | Date | |-----|----------------|-------------| | 2 | DOT-appr. 2-28 | 11-Jan-2019 | | | DOT-appr. 2-29 | 11-Jan-2019 | | | DOT-appr. 2-30 | 11-Jan-2019 | | | DOT-appr. 2-31 | 11-Jan-2019 | | | DOT-appr. 2-32 | 11-Jan-2019 | | | DOT-appr. 2-33 | 11-Jan-2019 | | | DOT-appr. 2-34 | 11-Jan-2019 | | | DOT-appr. 2-35 | 11-Jan-2019 | | | DOT-appr. 2-36 | 11-Jan-2019 | | | DOT-appr. 2-37 | 11-Jan-2019 | | | DOT-appr. 2-38 | 11-Jan-2019 | | | DOT-appr. 2-39 | 11-Jan-2019 | | | DOT-appr. 2-40 | 11-Jan-2019 | | | DOT-appr. 2-41 | 11-Jan-2019 | | | DOT-appr. 2-42 | 11-Jan-2019 | | | DOT-appr. 2-43 | 11-Jan-2019 | | | DOT-appr. 2-44 | 11-Jan-2019 | | Doc. # 11.01.05-E | Rev. 1 | 24-Oct-2019 | Page 0 - 5 | |-------------------|--------|-------------|------------| | Doc. # 11.01.05-E | Rev. 1 | 24-Oct-2019 | Page 0 - 5 | | Ch. | Page | Date | |-----|------|-------------| | 3 | 3-1 | 11-Jan-2019 | | | 3-2 | 11-Jan-2019 | | | 3-3 | 11-Jan-2019 | | | 3-4 | 11-Jan-2019 | | | 3-5 | 11-Jan-2019 | | | 3-6 | 11-Jan-2019 | | | 3-7 | 11-Jan-2019 | | | 3-8 | 11-Jan-2019 | | | 3-9 | 11-Jan-2019 | | | 3-10 | 11-Jan-2019 | | | 3-11 | 11-Jan-2019 | | | 3-12 | 11-Jan-2019 | | | 3-13 | 11-Jan-2019 | | | 3-14 | 11-Jan-2019 | | | 3-15 | 11-Jan-2019 | | | 3-16 | 11-Jan-2019 | | | 3-17 | 11-Jan-2019 | | | 3-18 | 11-Jan-2019 | | | 3-19 | 11-Jan-2019 | | | 3-20 | 11-Jan-2019 | | | 3-21 | 11-Jan-2019 | | | 3-22 | 11-Jan-2019 | | | 3-23 | 11-Jan-2019 | | | 3-24 | 11-Jan-2019 | | | 3-25 | 11-Jan-2019 | | | 3-26 | 11-Jan-2019 | | | 3-27 | 11-Jan-2019 | | Ch. | Page | Date | |-----|------|-------------| | 3 | 3-28 | 11-Jan-2019 | | | 3-29 | 11-Jan-2019 | | | 3-30 | 11-Jan-2019 | | | 3-31 | 11-Jan-2019 | | | 3-32 | 11-Jan-2019 | | | 3-33 | 11-Jan-2019 | | | 3-34 | 11-Jan-2019 | | | 3-35 | 11-Jan-2019 | | | 3-36 | 11-Jan-2019 | | | 3-37 | 11-Jan-2019 | | | 3-38 | 11-Jan-2019 | | | 3-39 | 11-Jan-2019 | | | 3-40 | 11-Jan-2019 | | | 3-41 | 11-Jan-2019 | | | 3-42 | 11-Jan-2019 | | | 3-43 | 11-Jan-2019 | | | 3-44 | 11-Jan-2019 | | | 3-45 | 11-Jan-2019 | | | 3-46 | 11-Jan-2019 | | | 3-47 | 11-Jan-2019 | | | 3-48 | 11-Jan-2019 | | | 3-49 | 11-Jan-2019 | | | 3-50 | 11-Jan-2019 | | | 3-51 | 11-Jan-2019 | | | 3-52 | 11-Jan-2019 | | | 3-53 | 11-Jan-2019 | | | 3-54 | 11-Jan-2019 | | Page 0 - 6 | Rev. 0 | 11-Jan-2019 | Doc. # 11.01.05-E | |------------|--------|-------------|-------------------| | | | | | | Ch. | Page | Date | |-----|------|-------------| | 3 | 3-55 | 11-Jan-2019 | | | 3-56 | 11-Jan-2019 | | | 3-57 | 11-Jan-2019 | | | 3-58 | 11-Jan-2019 | | | 3-59 | 11-Jan-2019 | | | 3-60 | 11-Jan-2019 | | | 3-61 | 11-Jan-2019 | | | 3-62 | 11-Jan-2019 | | | 3-63 | 11-Jan-2019 | | | 3-64 | 11-Jan-2019 | | | 3-65 | 11-Jan-2019 | | | 3-66 | 11-Jan-2019 | | | 3-67 | 11-Jan-2019 | | | 3-68 | 11-Jan-2019 | | | 3-69 | 11-Jan-2019 | | | 3-70 | 11-Jan-2019 | | | 3-71 | 11-Jan-2019 | | | 3-72 | 11-Jan-2019 | | | 3-73 | 11-Jan-2019 | | | 3-74 | 11-Jan-2019 | | Ch. | Page | Date | |-----|-------|-------------| | 4A | 4A-1 |
11-Jan-2019 | | | 4A-2 | 11-Jan-2019 | | | 4A-3 | 11-Jan-2019 | | | 4A-4 | 11-Jan-2019 | | | 4A-5 | 11-Jan-2019 | | | 4A-6 | 11-Jan-2019 | | | 4A-7 | 11-Jan-2019 | | | 4A-8 | 11-Jan-2019 | | | 4A-9 | 11-Jan-2019 | | | 4A-10 | 11-Jan-2019 | | | 4A-11 | 11-Jan-2019 | | | 4A-12 | 11-Jan-2019 | | | 4A-13 | 11-Jan-2019 | | | 4A-14 | 11-Jan-2019 | | | 4A-15 | 11-Jan-2019 | | | 4A-16 | 11-Jan-2019 | | | 4A-17 | 11-Jan-2019 | | | 4A-18 | 11-Jan-2019 | | | 4A-19 | 11-Jan-2019 | | | 4A-20 | 11-Jan-2019 | | | 4A-21 | 11-Jan-2019 | | | 4A-22 | 11-Jan-2019 | | | 4A-23 | 11-Jan-2019 | | | 4A-24 | 11-Jan-2019 | | | 4A-25 | 11-Jan-2019 | | | 4A-26 | 11-Jan-2019 | | | 4A-27 | 11-Jan-2019 | | Doc. # 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 0 - 7 | |-------------------|--------|-------------|------------| |-------------------|--------|-------------|------------| | Ch. | Page | Date | |-----|-------|-------------| | 4A | 4A-28 | 11-Jan-2019 | | | 4A-29 | 11-Jan-2019 | | | 4A-30 | 11-Jan-2019 | | | 4A-31 | 11-Jan-2019 | | | 4A-32 | 11-Jan-2019 | | | 4A-33 | 11-Jan-2019 | | | 4A-34 | 11-Jan-2019 | | | 4A-35 | 11-Jan-2019 | | | 4A-36 | 11-Jan-2019 | | | 4A-37 | 11-Jan-2019 | | | 4A-38 | 11-Jan-2019 | | | 4A-39 | 11-Jan-2019 | | | 4A-40 | 11-Jan-2019 | | | 4A-41 | 11-Jan-2019 | | | 4A-42 | 11-Jan-2019 | | | 4A-43 | 11-Jan-2019 | | | 4A-44 | 11-Jan-2019 | | | 4A-45 | 11-Jan-2019 | | | 4A-46 | 11-Jan-2019 | | | 4A-47 | 11-Jan-2019 | | | 4A-48 | 11-Jan-2019 | | | 4A-49 | 11-Jan-2019 | | | 4A-50 | 11-Jan-2019 | | | 4A-51 | 11-Jan-2019 | | | 4A-52 | 11-Jan-2019 | | | 4A-53 | 11-Jan-2019 | | | 4A-54 | 11-Jan-2019 | | Ch. | Page | Date | |-----|-------|-------------| | 4A | 4A-55 | 11-Jan-2019 | | | 4A-56 | 11-Jan-2019 | | | 4A-57 | 11-Jan-2019 | | | 4A-58 | 11-Jan-2019 | | | 4A-59 | 11-Jan-2019 | | | 4A-60 | 11-Jan-2019 | | | 4A-61 | 11-Jan-2019 | | | 4A-62 | 11-Jan-2019 | | | 4A-63 | 11-Jan-2019 | | | 4A-64 | 11-Jan-2019 | | | 4A-65 | 11-Jan-2019 | | | 4A-66 | 11-Jan-2019 | | | 4A-67 | 11-Jan-2019 | | | 4A-68 | 11-Jan-2019 | | | 4A-69 | 11-Jan-2019 | | | 4A-70 | 11-Jan-2019 | | | 4A-71 | 11-Jan-2019 | | Page 0 - 8 Rev. 0 11- | |-----------------------| |-----------------------| | Ch. | Page | Date | |-----|-------|-------------| | 4B | 4B-1 | 11-Jan-2019 | | | 4B-2 | 11-Jan-2019 | | | 4B-3 | 11-Jan-2019 | | | 4B-4 | 11-Jan-2019 | | | 4B-5 | 11-Jan-2019 | | | 4B-6 | 11-Jan-2019 | | | 4B-7 | 11-Jan-2019 | | | 4B-8 | 11-Jan-2019 | | | 4B-9 | 11-Jan-2019 | | | 4B-10 | 11-Jan-2019 | | | 4B-11 | 11-Jan-2019 | | | 4B-12 | 11-Jan-2019 | | | 4B-13 | 11-Jan-2019 | | | 4B-14 | 11-Jan-2019 | | | 4B-15 | 11-Jan-2019 | | | 4B-16 | 11-Jan-2019 | | | 4B-17 | 11-Jan-2019 | | | 4B-18 | 11-Jan-2019 | | | 4B-19 | 11-Jan-2019 | | | 4B-20 | 11-Jan-2019 | | | 4B-21 | 11-Jan-2019 | | | 4B-22 | 11-Jan-2019 | | | 4B-23 | 11-Jan-2019 | | | 4B-24 | 11-Jan-2019 | | | 4B-25 | 11-Jan-2019 | | | 4B-26 | 11-Jan-2019 | | | 4B-27 | 11-Jan-2019 | | Ch. | Page | Date | |-----|-------|-------------| | 4B | 4B-28 | 11-Jan-2019 | | | 4B-29 | 11-Jan-2019 | | | 4B-30 | 11-Jan-2019 | | | 4B-31 | 11-Jan-2019 | | | 4B-32 | 11-Jan-2019 | | | 4B-33 | 11-Jan-2019 | | | 4B-34 | 11-Jan-2019 | | | 4B-35 | 11-Jan-2019 | | | 4B-36 | 11-Jan-2019 | | | 4B-37 | 11-Jan-2019 | | | 4B-38 | 11-Jan-2019 | | | 4B-39 | 11-Jan-2019 | | | 4B-40 | 11-Jan-2019 | | | 4B-41 | 11-Jan-2019 | | | 4B-42 | 11-Jan-2019 | | | 4B-43 | 11-Jan-2019 | | Rev. 0 | 11-Jan-2019 | Page 0 - 9 | |--------|-------------|--------------------| | | Rev. 0 | Rev. 0 11-Jan-2019 | | Ch. | Page | Date | |-----|------|-------------| | 5 | 5-1 | 11-Jan-2019 | | | 5-2 | 11-Jan-2019 | | | 5-3 | 11-Jan-2019 | | | 5-4 | 11-Jan-2019 | | | 5-5 | 11-Jan-2019 | | | 5-6 | 11-Jan-2019 | | | 5-7 | 11-Jan-2019 | | | 5-8 | 11-Jan-2019 | | | 5-9 | 11-Jan-2019 | | | 5-10 | 11-Jan-2019 | | | 5-11 | 11-Jan-2019 | | | 5-12 | 11-Jan-2019 | | | 5-13 | 11-Jan-2019 | | | 5-14 | 11-Jan-2019 | | | 5-15 | 11-Jan-2019 | | | 5-16 | 11-Jan-2019 | | | 5-17 | 11-Jan-2019 | | | 5-18 | 11-Jan-2019 | | | 5-19 | 11-Jan-2019 | | | 5-20 | 11-Jan-2019 | | | 5-21 | 11-Jan-2019 | | | 5-22 | 11-Jan-2019 | | | 5-23 | 11-Jan-2019 | | | 5-24 | 11-Jan-2019 | | | 5-25 | 11-Jan-2019 | | | 5-26 | 11-Jan-2019 | | | 5-27 | 11-Jan-2019 | | Ch. | Page | Date | |-----|------|-------------| | 5 | 5-28 | 11-Jan-2019 | | | 5-29 | 11-Jan-2019 | | | 5-30 | 11-Jan-2019 | | | 5-31 | 11-Jan-2019 | | | 5-32 | 11-Jan-2019 | | | 5-33 | 11-Jan-2019 | | | 5-34 | 11-Jan-2019 | | | 5-35 | 11-Jan-2019 | | | 5-36 | 11-Jan-2019 | | | 5-37 | 11-Jan-2019 | | | 5-38 | 11-Jan-2019 | | | 5-39 | 11-Jan-2019 | | | 5-40 | 11-Jan-2019 | | | 5-41 | 11-Jan-2019 | | | 5-42 | 11-Jan-2019 | | | 5-43 | 11-Jan-2019 | | | 5-44 | 11-Jan-2019 | | | 5-45 | 11-Jan-2019 | | | 5-46 | 11-Jan-2019 | | | 5-47 | 11-Jan-2019 | | | 5-48 | 11-Jan-2019 | | | 5-49 | 11-Jan-2019 | | | 5-50 | 11-Jan-2019 | | | 5-51 | 11-Jan-2019 | | | 5-52 | 11-Jan-2019 | | | 5-53 | 11-Jan-2019 | | | 5-54 | 11-Jan-2019 | | Page 0 - 10 | Rev. 0 | 11-Jan-2019 | Doc. # 11.01.05- | Ε | |-------------|--------|-------------|------------------|---| | | | | | | | Ch. | Page | Date | |-----|------|-------------| | 5 | 5-55 | 11-Jan-2019 | | | 5-56 | 11-Jan-2019 | | | 5-57 | 11-Jan-2019 | | | 5-58 | 11-Jan-2019 | | | 5-59 | 11-Jan-2019 | | | 5-60 | 11-Jan-2019 | | | 5-61 | 11-Jan-2019 | | | 5-62 | 11-Jan-2019 | | | 5-63 | 11-Jan-2019 | | | 5-64 | 11-Jan-2019 | | | 5-65 | 11-Jan-2019 | | | 5-66 | 11-Jan-2019 | | | 5-67 | 11-Jan-2019 | | | 5-68 | 11-Jan-2019 | | | 5-69 | 11-Jan-2019 | | | 5-70 | 11-Jan-2019 | | | 5-71 | 11-Jan-2019 | | | 5-72 | 11-Jan-2019 | | | 5-73 | 11-Jan-2019 | | | 5-74 | 11-Jan-2019 | | | 5-75 | 11-Jan-2019 | | | 5-76 | 11-Jan-2019 | | | 5-77 | 11-Jan-2019 | | | 5-78 | 11-Jan-2019 | | | 5-79 | 11-Jan-2019 | | | 5-80 | 11-Jan-2019 | | | 5-81 | 11-Jan-2019 | | Ch. | Page | Date | |-----|------|-------------| | 5 | 5-82 | 11-Jan-2019 | | | 5-83 | 11-Jan-2019 | | | 5-84 | 11-Jan-2019 | | | 5-85 | 11-Jan-2019 | | | 5-86 | 11-Jan-2019 | | | 5-87 | 11-Jan-2019 | | | 5-88 | 11-Jan-2019 | | | 5-89 | 11-Jan-2019 | | | 5-90 | 11-Jan-2019 | | | 5-91 | 11-Jan-2019 | | | 5-92 | 11-Jan-2019 | | Doc. # 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 0 - 11 | |-------------------|--------|-------------|-------------| | Doc. # 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 0 - 11 | | Ch. | Page | Date | |-----|------|-------------| | 6 | 6-1 | 11-Jan-2019 | | | 6-2 | 11-Jan-2019 | | | 6-3 | 11-Jan-2019 | | | 6-4 | 11-Jan-2019 | | | 6-5 | 11-Jan-2019 | | | 6-6 | 11-Jan-2019 | | | 6-7 | 11-Jan-2019 | | | 6-8 | 11-Jan-2019 | | | 6-9 | 11-Jan-2019 | | | 6-10 | 11-Jan-2019 | | | 6-11 | 11-Jan-2019 | | | 6-12 | 11-Jan-2019 | | | 6-13 | 11-Jan-2019 | | | 6-14 | 11-Jan-2019 | | | 6-15 | 11-Jan-2019 | | | 6-16 | 11-Jan-2019 | | | 6-17 | 11-Jan-2019 | | | 6-18 | 11-Jan-2019 | | | 6-19 | 11-Jan-2019 | | | 6-20 | 11-Jan-2019 | | | 6-21 | 11-Jan-2019 | | | 6-22 | 11-Jan-2019 | | | 6-23 | 11-Jan-2019 | | | 6-24 | 11-Jan-2019 | | | 6-25 | 11-Jan-2019 | | | 6-26 | 11-Jan-2019 | | | 6-27 | 11-Jan-2019 | | | 6-28 | 11-Jan-2019 | | Ch. | Page | Date | |-----|------|-------------| | 6 | 6-29 | 11-Jan-2019 | | Ch. | Page | Date | |-----|------|-------------| | 7 | 7-1 | 11-Jan-2019 | | | 7-2 | 11-Jan-2019 | | | 7-3 | 11-Jan-2019 | | | 7-4 | 11-Jan-2019 | | | 7-5 | 11-Jan-2019 | | | 7-6 | 11-Jan-2019 | | | 7-7 | 11-Jan-2019 | | | 7-8 | 11-Jan-2019 | | | 7-9 | 11-Jan-2019 | | | 7-10 | 11-Jan-2019 | | | 7-11 | 11-Jan-2019 | | | 7-12 | 11-Jan-2019 | | | 7-13 | 11-Jan-2019 | | | 7-14 | 11-Jan-2019 | | | 7-15 | 11-Jan-2019 | | | 7-16 | 11-Jan-2019 | | | 7-17 | 11-Jan-2019 | | | 7-18 | 11-Jan-2019 | | | 7-19 | 11-Jan-2019 | | | 7-20 | 11-Jan-2019 | | | 7-21 | 11-Jan-2019 | | | 7-22 | 11-Jan-2019 | | | 7-23 | 11-Jan-2019 | | | 7-24 | 11-Jan-2019 | | | 7-25 | 11-Jan-2019 | Page 0 - 12 Rev. 0 11-Jan-2019 Doc. # 11.01.05-E | Ch. | Page | Date | |-----|------|-------------| | 7 | 7-26 | 11-Jan-2019 | | | 7-27 | 11-Jan-2019 | | | 7-28 | 11-Jan-2019 | | | 7-29 | 11-Jan-2019 | | | 7-30 | 11-Jan-2019 | | | 7-31 | 11-Jan-2019 | | | 7-32 | 11-Jan-2019 | | | 7-33 | 11-Jan-2019 | | | 7-34 | 11-Jan-2019 | | | 7-35 | 11-Jan-2019 | | | 7-36 | 11-Jan-2019 | | | 7-37 | 11-Jan-2019 | | | 7-38 | 11-Jan-2019 | | | 7-39 | 11-Jan-2019 | | | 7-40 | 11-Jan-2019 | | | 7-41 | 11-Jan-2019 | | | 7-42 | 11-Jan-2019 | | | 7-43 | 11-Jan-2019 | | | 7-44 | 11-Jan-2019 | | | 7-45 | 11-Jan-2019 | | | 7-46 | 11-Jan-2019 | | | 7-47 | 11-Jan-2019 | | | 7-48 | 11-Jan-2019 | | | 7-49 | 11-Jan-2019 | | | 7-50 | 11-Jan-2019 | | | 7-51 | 11-Jan-2019 | | | 7-52 | 11-Jan-2019 | | | 7-53 | 11-Jan-2019 | | Ch. | Page | Date | |-----|------|-------------| | 7 | 7-54 | 11-Jan-2019 | | | 7-55 | 11-Jan-2019 | | | 7-56 | 11-Jan-2019 | | | 7-57 | 11-Jan-2019 | | | 7-58 | 11-Jan-2019 | | | 7-59 | 11-Jan-2019 | | | 7-60 | 11-Jan-2019 | | | 7-61 | 11-Jan-2019 | | | 7-62 | 11-Jan-2019 | | | 7-63 | 11-Jan-2019 | | | 7-64 | 11-Jan-2019 | | | 7-65 | 11-Jan-2019 | | | 7-66 | 11-Jan-2019 | | | 7-67 | 11-Jan-2019 | | | 7-68 | 11-Jan-2019 | | | 7-69 | 11-Jan-2019 | | | 7-70 | 11-Jan-2019 | | | 7-71 | 11-Jan-2019 | | | 7-72 | 11-Jan-2019 | | | 7-73 | 11-Jan-2019 | | | 7-74 | 11-Jan-2019 | | | 7-75 | 11-Jan-2019 | | | 7-76 | 11-Jan-2019 | | | 7-77 | 11-Jan-2019 | | | 7-78 | 11-Jan-2019 | | | 7-79 | 11-Jan-2019 | | | 7-80 | 11-Jan-2019 | | | 7-81 | 11-Jan-2019 | | Doc. # 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 0 - 13 | |-------------------|--------|-------------|-------------| | | | | | | Ch. | Page | Date | |-----|------|-------------| | 7 | 7-82 | 11-Jan-2019 | | | 7-83 | 11-Jan-2019 | | | 7-84 | 11-Jan-2019 | | | 7-85 | 11-Jan-2019 | | | 7-86 | 11-Jan-2019 | | | 7-87 | 11-Jan-2019 | | | 7-88 | 11-Jan-2019 | | | 7-89 | 11-Jan-2019 | | | 7-90 | 11-Jan-2019 | | | 7-91 | 11-Jan-2019 | | | 7-92 | 11-Jan-2019 | | | 7-93 | 11-Jan-2019 | | | 7-94 | 11-Jan-2019 | | Ch. | Page | Date | |-----|------|-------------| | 8 | 8-1 | 11-Jan-2019 | | | 8-2 | 11-Jan-2019 | | |
8-3 | 11-Jan-2019 | | | 8-4 | 11-Jan-2019 | | | 8-5 | 11-Jan-2019 | | | 8-6 | 11-Jan-2019 | | | 8-7 | 11-Jan-2019 | | | 8-8 | 11-Jan-2019 | | | 8-9 | 11-Jan-2019 | | | 8-10 | 11-Jan-2019 | | | 8-11 | 11-Jan-2019 | | | 8-12 | 11-Jan-2019 | | | 8-13 | 11-Jan-2019 | | | 8-14 | 11-Jan-2019 | | | 8-15 | 11-Jan-2019 | | | 8-16 | 11-Jan-2019 | | Ch. | Page | Date | |-----|------|-------------| | 9 | 9-1 | 11-Jan-2019 | | | 9-2 | 11-Jan-2019 | | | 9-3 | 11-Jan-2019 | | | 9-4 | 11-Jan-2019 | | Page 0 - 14 Rev. 0 11-Jan-2019 Doc. # 11.01.05-E | |--| |--| # **TABLE OF CONTENTS** | GENERAL | Chapter | |---|---------| | (a non-approved chapter) | 1 | | OPERATING LIMITATIONS (an approved chapter) | 2 | | EMERGENCY PROCEDURES (a non-approved chapter) | 3 | | NORMAL OPERATING PROCEDURES (a non-approved chapter) | 4A | | ABNORMAL OPERATING PROCEDURES (a non-approved chapter) | 4B | | PERFORMANCE (a non-approved chapter) | 5 | | MASS AND BALANCE / EQUIPMENT LIST (a non-approved chapter) | 6 | | DESCRIPTION OF THE AIRPLANE AND ITS SYSTEMS (a non-approved chapter) | 7 | | AIRPLANE HANDLING, CARE AND MAINTENANCE (a non-approved chapter) | 8 | | SUPPLEMENTS | 9 | # CHAPTER 1 GENERAL | | | Page | |-----|--|------| | 1.1 | INTRODUCTION | 1-2 | | 1.2 | CERTIFICATION BASIS | 1-4 | | 1.3 | WARNINGS, CAUTIONS AND NOTES | 1-4 | | 1.4 | DIMENSIONS | 1-5 | | 1.5 | DEFINITIONS AND ABBREVIATIONS | 1-7 | | 1.6 | UNITS OF MEASUREMENT | 1-16 | | | 1.6.1 CONVERSION FACTORS | 1-16 | | | 1.6.2 CONVERSION CHART LITERS / US GALLONS | 1-18 | | 1.7 | THREE-VIEW DRAWING | 1-19 | | 1.8 | G1000 AVIONICS SYSTEM | 1-20 | | 1.9 | SOURCE DOCUMENTATION | 1-21 | | | 1.9.1 ENGINE | 1-21 | | | 1.9.2 PROPELLER | 1-21 | | | 1.9.3 AVIONICS SYSTEM | 1-22 | #### 1.1 INTRODUCTION This Airplane Flight Manual has been prepared in order to provide pilots and instructors with all the information required for the safe and efficient operation of the airplane. The Airplane Flight Manual includes all the data which must be made available to the pilot according to the AWM 523 requirement. Beyond this, it contains further data and operating instructions which, in the manufacturer's opinion, could be of value to the pilot. Equipment and modification level (design details) of the airplane may vary from serial number to serial number. Therefore, some of the information contained in this manual is applicable depending on the respective equipment and modification level. The exact equipment of your serial number is recorded in the Equipment Inventory in Section 6.5. The modification level is recorded in the following table (as far as necessary for this manual). | Modification | Source | Insta | alled | |---|------------|-------|-------| | MTOM 2300 kg/5071 lb | MÄM 62-001 | □ yes | □ no | | Maximum Zero Fuel Mass
2200 kg (4850 lb) | MÄM 62-063 | □ yes | □ no | | Engine Software VC33_2P_05_19* | MÄM 62-168 | □ yes | □ no | | Garmin Hard- and Software
Upgrade I (Garmin G1000 NXi) | MÄM 62-254 | □ yes | □ no | | Auxiliary Fuel Tanks | OÄM 62-001 | □ yes | □ no | | Continuous Flow Oxygen System (77 cuft cylinder) | OÄM 62-004 | □ yes | □ no | | Garmin GWX 70 Weather Radar | OÄM 62-009 | □ yes | □ no | | Avidyne TAS 600 Series | OÄM 62-011 | □ yes | □ no | | MTOM 1999 kg/4407 lb | OÄM 62-018 | □ yes | □ no | | 7 Seated Configuration | OÄM 62-019 | □ yes | □ no | | Page 1 - 2 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |------------|--------|-------------|---------------------| |------------|--------|-------------|---------------------| | Modification | Source | Insta | alled | |---|-------------|-------|-------| | WX-500 Storm Scope | OÄM 62-021 | □ yes | □ no | | Continuous Flow Oxygen
System (50 cuft cylinder) | OÄM 62-028 | □ yes | □ no | | Removal of Unfeathering
Akkumulator | OÄM 62-030 | □ yes | □ no | | Heated Static Ports | OÄM 62-037 | □ yes | □ no | | On Top Exhaust System | OÄM 62-038 | □ yes | □ no | | 28V Power Outlet Option | OÄM 62-1002 | □ yes | □ no | ^{*} Or later approved software This Airplane Flight Manual must be kept on board the airplane at all times. Its designated place is the side bag of the forward left seat. The designated place for the Garmin G1000 Cockpit Reference Guide is the bag on the rear side of the forward right seat. #### **CAUTION** The DA 62 is a twin engine airplane. When the operating limitations and maintenance requirements are complied with, it has the high degree of reliability which is required by the certification basis. Nevertheless, an engine failure is not completely impossible. For this reason it is highly recommended for flights during the night, on top, under IMC, or above terrain which is unsuitable for a landing, to select flight times and flight routes such that reduced performance in case of single engine operation does not constitute a risk. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 1 - 3 | |---------------------|--------|-------------|------------| |---------------------|--------|-------------|------------| ## 1.2 CERTIFICATION BASIS The DA 62 has been approved by Transport Canada in accordance with the Canadian Airworthiness Manual (AWM) Chapter 523, Type Certificate No. A-273 Category of Airworthiness: **NORMAL** ## 1.3 WARNINGS, CAUTIONS AND NOTES Special statements in the Airplane Flight Manual concerning the safety or operation of the airplane are highlighted by being prefixed by one of the following terms: #### **WARNING** means that the non-observation of the corresponding procedure leads to an immediate or important degradation in flight safety. #### CAUTION means that the non-observation of the corresponding procedure leads to a minor or to a more or less long term degradation in flight safety. #### NOTE draws the attention to any special item not directly related to safety but which is important or unusual. | Page 1 - 4 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |------------|--------|-------------|---------------------| | | | | | # 1.4 DIMENSIONS #### **NOTE** All dimensions shown below are approximate. ## **Overall Dimensions** Span : 14.57 m 47 ft 10 in Length : 9.17 m 30 ft 1 in Height : 2.82 m 9 ft 3 in Wing Airfoil : Wortmann FX 63-137/20 - W4 Wing Area : 17.10 m² 184.1 sq.ft. Mean aerodynamic chord : 1.247 m 4 ft 1 in Aspect ratio : 12.8 Dihedral : 5.2° Leading edge sweep : 1° <u>Aileron</u> Area (total, left + right) : 0.65 m² 7 sq.ft. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 1 - 5 | |---------------------|--------|-------------|------------| | | | | i | Wing Flaps Area (total, left + right) : 2.16 m² 23.25 sq.ft. **Horizontal Tail** Area : 2.91 m^2 31.32 sq.ft. Elevator area : 0.82 m² 8.83 sq.ft. Angle of incidence : -2° relative to longitudinal axis of airplane Vertical Tail Area : 2.31 m² 24.86 sq.ft. Rudder area : 0.74 m² 7.97 sq.ft. **Landing Gear** Track : 2.95 m (9 ft 8 in) Wheelbase : 1.91 m (6 ft 3 in) Nose wheel : 6.00-6, for details refer to AMM Main wheel : 6.00-6, for details refer to AMM ## 1.5 DEFINITIONS AND ABBREVIATIONS #### (a) Airspeeds CAS: Calibrated Airspeed. Indicated airspeed, corrected for installation and instrument errors. CAS equals TAS at standard atmospheric conditions (ISA) at MSL. IAS: Indicated Airspeed as shown on an airspeed indicator. KCAS: CAS in knots. KIAS: IAS in knots. TAS: True Airspeed. The speed of the airplane relative to the air. TAS is CAS corrected for errors due to altitude and temperature. v_o: Operating Maneuvering Speed. Full or abrupt control surface movement is not permissible above this speed. v_{FE}: Maximum Flaps Extended Speed. This speed must not be exceeded with the given flap setting. v_{LE}: Maximum Landing Gear Extended Speed. This speed may not be exceeded if the landing gear is extended. v_{LOE}: Maximum Landing Gear Operating Speed for Extension. This speed may not be exceeded during the extension of the landing gear. v_{LOR}: Maximum Landing Gear Operating Speed for Retraction. This speed may not be exceeded during the retraction of the landing gear. v_{MCA}: Minimum Control Speed - Airborne. Minimum speed necessary to be able to control the airplane in case of one engine inoperative. v_{NE} : Never Exceed Speed in smooth air. This speed must not be exceeded in any operation. | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 1 - 7 | |---| |---| **DA 62 AFM** v_{NO}: Maximum Structural Cruising Speed. This speed may be exceeded only in smooth air, and then only with caution. v_R: Rotation Speed. ${\rm v_s}$: Stalling Speed, or the minimum continuous speed at which the airplane is still controllable in the given configuration. v_{so}: Stalling Speed, or the minimum continuous speed at which the airplane is still controllable in the landing configuration. v_{s1}: Stalling Speed, or the minimum continuous speed at which the airplane is still controllable with flaps and landing gear retracted. v_{SSE}: Minimum Control Speed for Schooling. Minimum speed necessary in case of one engine intentionally inoperative/idle (training purposes). v_x: Best Angle-of-Climb Speed. v_v: Best Rate-of-Climb Speed. v_{yse}: Best Rate of-Climb Speed for one engine inoperative. v_{50ft} : Speed at 50 ft above take-off surface. #### (b) Meteorological Terms ISA: International Standard Atmosphere. Conditions at which air is identified as an ideal dry gas. The temperature at mean sea level is 15 °C (59 °F), air pressure at MSL is 1013.25 hPa (29.92 inHg); the temperature gradient up to the altitude at which the temperature reaches -56.5 °C (-69.7 °F) is -0.0065 °C/m (-0.00357 °F/ft), and above this 0 °C/m (0 °F/ft).
MSL: Mean Sea Level. OAT: Outside Air Temperature. | Page 1 - 8 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |------------|--------|-------------|---------------------| |------------|--------|-------------|---------------------| QNH: Theoretical atmospheric pressure at MSL, calculated from the elevation of the of the measuring point above MSL, and the actual atmospheric pressure at the measuring point. #### Density Altitude: Altitude in ISA conditions at which the air density is equal to the current air density. #### **Indicated Pressure Altitude:** Altitude reading with altimeter set to 1013.25 hPa (29.92 inHg). #### Pressure Altitude: Altitude indicated by a barometric altimeter, which is set to 1013.25 hPa (29.92 inHg). The Pressure Altitude is the Indicated Pressure Altitude corrected for installation and instrument errors. In this Airplane Flight Manual, altimeter instrument errors are regarded as zero. Wind: The wind speeds which are shown as variables in the diagrams and tables in this manual should be regarded as headwind or tailwind components of the measured wind. #### (c) Flight Performance and Flight Planning AGL: Above Ground Level. #### **Demonstrated Crosswind Component:** The speed of the crosswind component at which adequate maneuverability for take-off and landing has been demonstrated during type certification. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 1 - 9 | |---------------------|--------|-------------|------------| | | | | | **DA 62 AFM** MET: Weather, weather advice. NAV: Navigation, route planning. RoC: Rate of Climb. #### (d) Mass and Balance CG: Center of Gravity, also called 'center of mass'. Imaginary point in which the airplane mass is assumed to be concentrated for mass and balance calculations. Its distance from the Datum Plane is equal to the Center of Gravity Moment Arm. Center of Gravity Moment Arm: The Moment Arm which is obtained if one divides the sum of the individual moments of the airplane by its total mass. Center of Gravity Limits: The Center of Gravity range within which the airplane, at a given mass, must be operated. DP: Datum Plane; an imaginary vertical plane from which all horizontal distances for center of gravity calculations are measured. Empty Mass: The mass of the airplane including unusable fuel, all operating fluids and the maximum quantity of oil. Maximum Take-off Mass: The maximum permissible mass for take-off. #### Maximum Landing Mass: The highest mass for landing conditions at the maximum descent velocity. This velocity was used in the strength calculations to determine the landing gear loads during a particularly hard landing. Moment Arm: The horizontal distance from the Datum Plane to the Center of Gravity of a component. Moment: The mass of a component multiplied by its moment arm. Usable fuel: The quantity of fuel available for flight planning. Unusable fuel: The quantity of fuel remaining in the tank which cannot be used for flight. Useful load: The difference between take-off mass and empty mass. #### (e) Engine EECU: Electr. Engine Control Unit RPM: Revolutions per minute (rotational speed of the propeller) Engine starting fuel temperature: Above this fuel temperature, the engine may be started. Take-off fuel temperature: Above this fuel temperature, take-off power setting is permitted. OEI: One engine inoperative DA 62 AFM ## (f) Designation of the Circuit Breakers on the Instrument Panel #### LH MAIN BUS: COM1 COM Radio No. 1 GPS/NAV1 Global Positioning System and NAV Receiver No. 1 XPDR Transponder ENG INST Engine Instruments PITOT Pitot Heating System DE-ICE De-Icing System TAXI/MAP/ACL Taxi-, Map-, Anti Collision Light PFD Primary Flight Display ADC Air Data Computer AHRS Attitude Heading Reference System GEAR WRN Landing Gear Annunciation GEAR Landing Gear Control AUX PUMPS Aux Fuel Pumps #### RH MAIN BUS: MFD Multi Function Display SAM Standby Altitude Module STALL WRN Stall Warning System FLAP Flap System LDG LT/START Landing Light/Start NAV LT/FLOOD Navigation (Position) Light, Flood Light AV/GDU/FAN Avionic-, GDU-Cooling Fans AVIONIC BUS AV CONT AVIONIC BUS AVIONIC Control INST LT Instrument Light STATIC HT/PEDALS Static Heating System/Adjustable Rudder Pedals | Page 1 - 12 Rev. 0 11-Jan-2019 Doc. No. 11.01.09 | 5-E | |--|-----| |--|-----| #### **AVIONICS BUS:** COM2 COM Radio No. 2 GPS/NAV2 Global Positioning System and NAV Receiver No. 2 AUDIO Audio Panel AFCS/ESP/USP Auto Pilot System TWX Lightning Detection System ADF Automatic Direction Finder DME Distance Measuring Equipment Wx RDR Weather Radar TAS Traffic Advisory System DATA LINK Data Link System IRIDIUM Satellite Receiver EVS Enhanced Vision System GCU/FLT STRM Control Unit (Keypad)/Flight Stream #### LH ENG ECU BUS: ECU BUS ECU B LH ECU B ECU A LH ECU A #### LH BUS: ALT.LH LH Alternator BATT Battery ## LH ENGINE: FUEL PUMP A LH ECU A Fuel Pump FUEL PUMP B LH ECU B Fuel Pump **DA 62 AFM** #### RH ENG ECU BUS: ECU BUS RH ECU Bus ECU B RH ECU B RH ECU A RH BUS: ALT.RH RH Alternator BATT Battery RH ENGINE: FUEL PUMP A RH ECU A Fuel Pump FUEL PUMP B RH ECU B Fuel Pump (g) Equipment ELT: Emergency Locator Transmitter (h) Design Change Advisories MÄM: Mandatory Design Change Advisory OÄM: Optional Design Change Advisory VÄM: Variant Design Change Advisory General #### (i) Miscellaneous AFM: Airplane Flight Manual AMM: Airplane Maintenance Manual ATC: Air Traffic Control AWM: Airworthiness Manual CAR: Canadian Airworthiness Regulation CFRP: Carbon Fiber Reinforced Plastic DOT: Department of Transport EASA: European Aviation Safety Agency EPU: External Power Unit GIA: Garmin Integrated Avionics GFRP: Glass Fiber Reinforced Plastic GPS: Global Positioning System IFR: Instrument Flight Rules JC/VP: Joint Certification/Validation Procedure PCA: Primary Certification Authority TCCA: Transport Canada Civil Aviation VFR: Visual Flight Rules ## 1.6 UNITS OF MEASUREMENT ## 1.6.1 CONVERSION FACTORS | Dimension | S | I Units | US | S Units | Conversion | |-------------------|--------------------------|--|---------------------------|---|--| | Length | [mm]
[m]
[km] | millimeters
meters
kilometers | [in]
[ft]
[NM] | inches
feet
nautical
miles | [mm] / 25.4 = [in]
[m] / 0.3048 = [ft]
[km] / 1.852 = [NM] | | Volume | [l]
[ml] | liters
milliliter | [US gal]
[qts]
[oz] | US gallons US quarts ounce | [l] / 3.7854 = [US gal]
[l] / 0.9464 = [qts]
[ml] x 0.033814 = [oz] | | Speed | [km/h]
[m/s] | kilometers
per hour
meters per
second | [kts]
[mph]
[fpm] | knots miles per hour feet per minute | [km/h] / 1.852 = [kts]
[km/h] / 1.609 = [mph]
[m/s] x 196.85 = [fpm]
[fpm] / 196.85 = [m/s] | | Speed of rotation | | [RPM] revolutions per minute | | | | | Mass | [kg] | kilograms | [lb] | pounds | [kg] x 2.2046 = [lb] | | Force,
weight | [N] | Newtons | [lbf] | pounds
force | [N] x 0.2248 = [lbf] | | Pressure | [hPa]
[mbar]
[bar] | hecto-
pascals
millibars
bars | [inHg] | inches of
mercury
pounds per
square inch | [hPa] = [mbar]
[hPa] / 33.86 = [inHg]
[bar] x 14.504 = [psi] | | Tempera-
ture | [°C] | degrees
Celsius | [°F] | degrees
Fahrenheit | [°C]x1.8 + 32 = [°F]
([°F] - 32)/1.8 = [°C] | | Page 1 - 16 Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |--------------------|-------------|---------------------| |--------------------|-------------|---------------------| ## General | Dimension | | SI Units | US Units | Conversion | |---|-------------|------------------|----------|------------| | Intensity of electric current | [A] ampères | | -1- | | | Electric
charge
(battery
capacity) | [Ah] | Ah] ampère-hours | | | | Electric potential | [V] | volts | | - | | Time | [sec] | seconds | | | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | | Page 1 - 17 | |---------------------|--------|-------------|--|-------------| |---------------------|--------|-------------|--|-------------| ## 1.6.2 CONVERSION CHART LITERS / US GALLONS | Liters | US Gallons | | |--------|------------|--| | 5 | 1.3 | | | 10 | 2.6 | | | 15 | 4.0 | | | 20 | 5.3 | | | 25 | 6.6 | | | 30 | 7.9 | | | 35 | 9.2 | | | 40 | 10.6 | | | 45 | 11.9 | | | 50 | 13.2 | | | 60 | 15.9 | | | 70 | 18.5 | | | 80 | 21.1 | | | 90 | 23.8 | | | 100 | 26.4 | | | 110 | 29.1 | | | 120 | 31.7 | | | 130 | 34.3 | | | 140 | 37.0 | | | 150 | 39.6 | | | 160 | 42.3 | | | 170 | 44.9 | | | 180 | 47.6 | | | US Gallons | Liters | |------------|--------| | 1 | 3.8 | | 2 | 7.6 | | 4 | 15.1 | | 6 | 22.7 | | 8 | 30.3 | | 10 | 37.9 | | 12 | 45.4 | | 14 | 53.0 | | 16 | 60.6 | | 18 | 68.1 | | 20 | 75.7 | | 22 | 83.3 | | 24 | 90.9 | | 26 | 98.4 | | 28 | 106.0 | | 30 | 113.6 | | 32 | 121.1 | | 34 | 128.7 | | 36 | 136.3 | | 38 | 143.8 | | 40 | 151.4 | | 45 | 170.3 | | 50 | 189.3 | | Page 1 - 18 Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |--------------------|-------------|---------------------| |--------------------|-------------|---------------------| # 1.7 THREE-VIEW DRAWING | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 1 - 19 | |---------------------|--------|-------------|-------------| | | | | | #### 1.8 G1000 AVIONICS SYSTEM - 1. The G1000 Integrated Avionics System is a fully integrated flight, engine, communication, navigation and surveillance instrumentation system. The system consists of a Primary Flight Display (PFD), Multi-Function Display (MFD), audio panel, Air Data Computer (ADC), Attitude and Heading Reference System (AHRS), engine sensors and processing unit (GEA), and integrated avionics (GIA) containing VHF communications, VHF navigation, and GPS (Global Positioning System). - 2. The primary
function of the PFD is to provide attitude, heading, air data, navigation, and alerting information to the pilot. The PFD may also be used for flight planning. The primary function of the MFD is to provide engine information, mapping, terrain information, autopilot operation, and for flight planning. The audio panel is used for selection of radios for transmitting and listening, intercom functions, and marker beacon functions. - 3. The primary function of the VHF Communication portion of the G1000 is to enable external radio communication. The primary function of the VOR/ILS Receiver portion of the equipment is to receive and demodulate VOR, Localizer, and Glide Slope signals. The primary function of the GPS portion of the system is to acquire signals from the GPS satellites, recover orbital data, make range and Doppler measurements, and process this information in real-time to obtain the user's position, velocity, and time. - 4. If the Garmin GWX 70 weather radar system is installed, it can be used to aid the pilot in avoiding thunderstorms and associated turbulence or for ground mapping. The GWX 70 shall be used to avoid severe weather and not for penetrating severe weather. Pulse type weather radar systems like the GWX 70 detect precipitation only, not clouds or turbulence. The display may indicate clear areas between intense returns, but this does not necessarily mean it is safe to fly between them. As installed on the DA 62, the Garmin GWX 70 has a demonstrated range of 160 nautical miles. Refer to Garmin G1000 Pilot's Guide for the DA 62, P/N 190-01895-() for Garmin G1000 or P/N 190-01904-() for G1000 NXi in the latest effective issue for further information. | Page 1 - 20 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| # 1.9 SOURCE DOCUMENTATION This section lists documents, manuals and other literature that were used as sources for the Airplane Flight Manual, and indicates the respective publisher. However, only the information given in the Airplane Flight Manual is valid. #### **1.9.1 ENGINE** Address: Austro Engine GmbH Rudolf Diesel-Str. 11 A-2700 Wiener Neustadt **AUSTRIA** Phone: +43-2622-23 000 Fax: +43-2622-23 000 - 2711 Internet: www.austroengine.at Documents: Operation Manual, E4.01.02, latest revision #### 1.9.2 PROPELLER Address: mt-propeller Airport Straubing Wallmühle D-94348 Atting **GERMANY** Phone: +49-9429-9409-0 E-mail: sales@mt-propeller.com Website: www.mt-propeller.de **DA 62 AFM** Documents: E-124, Operation and Installation Manual Hydraulically controlled variable pitch propeller MTV -5, -6, -9, -11, -12, -14, -15, -16, -21, -22, -25 #### 1.9.3 AVIONICS SYSTEM Address: Garmin International, Inc. 1200 East 151st Street Olathe, Kansas 66062 **USA** Phone: +1-(913)-3978200 Fax: +1-(913)-3978282 Website: www.garmin.com Documents: G1000 Cockpit Reference Guide P/N 190-01896-(), latest revision G1000 Pilot's Guide P/N 190-01895-(), latest revision G1000 NXi Cockpit Reference Guide P/N 190-01905-(), latest revision G1000 NXi Pilot's Guide P/N 190-01904-(), latest revision # CHAPTER 2 OPERATING LIMITATIONS | | | | | | Page | |----------|------------|------------------------|-----------------|-----------------|------------| | 2.1 | INTRODU | JCTION | | | 2-3 | | 2.2 | AIRSPEE | <u>:</u> D | | | 2-4 | | 2.3 | AIRSPEE | ED INDICATO | R MARKINGS | | 2-6 | | 2.4 | POWER- | PLANT LIMIT | ATIONS | | 2-7 | | 2.5 | ENGINE | INSTRUMEN ⁻ | T MARKINGS | | 2-13 | | 2.6 | WARNIN | G, CAUTION | AND ADVISORY A | ALERTS | 2-14 | | | | • | ITION AND ADVIS | | | | | ON | THE G1000 | | | 2-14 | | | 2.6.2 OT | HER WARNII | NG ALERTS | | 2-18 | | 2.7 | MASS (W | /EIGHT) | | | 2-19 | | 2.8 | CENTER | OF GRAVITY | <i>(</i> | | 2-20 | | 2.9 | APPROV | ED MANEUV | ERS | | 2-21 | | 2.10 |) MANEUV | ERING LOAD | FACTORS | | 2-22 | | 2.11 | | | E | | | | 2.12 | 2 FLIGHT (| CREW | | | 2-23 | | 2.13 | | | N | | | | 2.14 | | | | | | | 2.15 | ; LIMITATI | ON PLACARI | DS | | 2-30 | | 2.16 | | | | | | | | | | RATURE | | | | | _ | | ARGE | | | | | | | IG DEVICE | | | | | | | EQUIPMENT | | | | | 2.16.5 G | ARMIN G1000 | 0 AVIONICS SYST | EM | 2-38 | | Doc. No. | 11.01.05-E | Rev. 0 | 11-Jan-2019 | DOT
approved | Page 2 - 1 | # **Operating Limitations** # DA 62 AFM | 2.16.6 AUTOPILOT LIMITATIONS | 2-42 | |--|------| | 2.16.7 SMOKING | 2-43 | | 2.16.8 GROUND OPERATION | 2-43 | | 2.16.9 GARMIN GWX 70 WEATHER RADAR OPERATION | 2-43 | | 2.16.10 USE OF THE SUN VISORS | 2-44 | | 2.16.11 PDF/MFD CONTROL UNIT (KEYPAD) | 2-44 | # 2.1 INTRODUCTION Chapter 2 of this Airplane Flight Manual provides operating limitations, instrument markings and placards necessary for the safe operation of the airplane, its powerplants, standard systems and standard equipment. The limitations included in this Chapter are approved. #### **WARNING** Operation of the airplane outside of the approved operating limitations is not permissible. # 2.2 AIRSPEED | | Airspeed | | KIAS | Remarks | |-----------------|----------------------------------|--|----------|--| | v _o | Operating maneuvering | above 2200 kg
(4850 lb) to
2300 kg (5071 lb) | 141 KIAS | Do not make full or abrupt control surface movement above this | | | speed | above 2100 kg
(4630 lb) to
2200 kg (4850 lb) | 138 KIAS | speed. | | | | above 1999 kg
(4407 lb) to
2100 kg (4630 lb) | 135 KIAS | | | | | above 1900 kg
(4189 lb) to
1999 kg (4407 lb) | 131 KIAS | | | | | above 1800 kg
(3968 lb) to
1900 kg (4189 lb) | 128 KIAS | | | | | up to 1800 kg
(3968 lb) | 120 KIAS | | | V _{FE} | Max. flaps | LDG | 119 KIAS | Do not exceed these | | | extended speed | T/O | 136 KIAS | speeds with the given flap setting. | | V _{LO} | Max. landing gear operating | Extension v _{LOE} | 205 KIAS | Do not operate the landing gear above this | | | speed | Retraction v _{LOR} | 162 KIAS | speed. | | V _{LE} | Max. landing gear extended speed | | 205 KIAS | Do not exceed this speed with the landing gear extended. | | Page 2 - 4 | Rev. 0 | 11-Jan-2019 | DOT | Doc. No. 11.01.05-E | |------------|--------|-------------|----------|---------------------| | | | | approved | | # **Operating Limitations** | | Airspeed | | KIAS | Remarks | |------------------|----------------------------------|-----|----------|--| | V _{MCA} | Minimum
control speed | T/O | 70 KIAS | With one engine inoperative, keep | | | airborne | UP | 76 KIAS | airspeed above this limit. | | V _{NO} | Max. structural cruising speed | | 162 KIAS | Do not exceed this speed except in smooth air, and then only with caution. | | V _{NE} | Never exceed speed in smooth air | | 205 KIAS | Do not exceed this speed in any operation. | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | DOT
approved | Page 2 - 5 | | |---------------------|--------|-------------|-----------------|------------|--| |---------------------|--------|-------------|-----------------|------------|--| # 2.3 AIRSPEED INDICATOR MARKINGS | Marking | KIAS | Significance | |-------------|---|---| | White arc | 64 -119 KIAS | Operating range with flaps fully extended. | | | If MÄM 62-001 is
carried out:
69 - 119 KIAS | | | Green arc | 70 - 162 KIAS | Normal operating range. | | Green arc | If MÄM 62-001 is
carried out:
73 - 162 KIAS | Nomial operating range. | | Yellow arc | 162 - 205 KIAS | 'Caution' range - "Only in smooth air". | | Blue radial | 87 KIAS If MÄM 62-001 is carried out: 89 KIAS | Best rate of climb speed, single engine. | | Red radial | 76 KIAS | Minimum control speed, single engine. | | Red radial | 205 KIAS | Maximum speed for all operations - v_{NE} . | | Page 2 - 6 Rev. 0 11-Jan-2019 | DOT
approved | Doc. No. 11.01.05-E | |-------------------------------|-----------------|---------------------| |-------------------------------|-----------------|---------------------| ## **2.4 POWER-PLANT LIMITATIONS** a) Number of engines : 2 b) Engine manufacturer : Austro Engine c) Engine designation : E4P-C d) RPM limitations (shown as propeller RPM) Maximum take-off (rpm) : 2300 RPM Maximum continuous (rpm) : 2200 RPM Maximum overspeed : 2500 RPM max. 20 sec e) Engine power Max. take-off power : 100% (132 kW) max. 5 min Max. continuous power : 95% (126 kW) f) Oil pressure (absolute) Minimum < 1500 RPM : 0.9 bar (13.05 psi) Minimum \geq 1500 RPM : 2.5 bar (36.26 psi) Maximum : 6.5 bar (94.25 psi) Normal range : 2.5 bar - 6 bar (36.26 psi - 87.02 psi) g) Oil quantity Minimum : 5.0 l (5.28 qts) Maximum : 7.0 l (7.40 qts) Maximum oil consumption : 0.1 liter/h (0.11 qts/h) | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | DOT
approved | Page 2 - 7 | |---------------------|--------|-------------|-----------------|------------| |---------------------|--------|-------------|-----------------|------------| #### **Operating Limitations** **DA 62 AFM** h) Oil temperature Minimum : $-30 \, ^{\circ}\text{C} \, (-22 \, ^{\circ}\text{F})$ Maximum : 139 °C (282 °F) Normal range : 50 °C - 135 °C (122 °F - 275 °F) i) Gearbox temperature Minimum : $-30 \,^{\circ}\text{C} \, (-22 \,^{\circ}\text{ F})$ Minimum (full load) : 35 °C (95 °F) Maximum : 120 °C (248 °F) #### NOTE A cautionary (yellow) gearbox temperature range is not imposed by the engine manufacturer. However, there is a delay between power changes and gearbox temperature. Therefore, a cautionary range has been added to the G1000 gearbox temperature instrument solely to make the pilot attentive to the gearbox temperature approaching the maximum allowable limit. There is no specific time limit associated with operating in the cautionary gearbox temperature range.
j) Coolant temperature Minimum (at start-up) : -30 °C (-22 °F) Minimum (full load) : 60 °C (140 °F) Maximum : 100 °C (212 °F) | Page 2 - 8 | Rev. 0 | 11-Jan-2019 | DOT
approved | Doc. No. 11.01.05-E | |------------|--------|-------------|-----------------|---------------------| |------------|--------|-------------|-----------------|---------------------| #### DA 62 AFM #### **Operating Limitations** k) Fuel temperature Minimum : $-30 \,^{\circ}\text{C} \, (-22 \,^{\circ}\text{F})$ Maximum : 60 °C (140 °F) I) Fuel pressure (absolute) Minimum : 4 bar (58.0 psi) Maximum : 7 bar (101.5 psi) #### NOTE The fuel pressure is not indicated on the G1000; a fuel pressure warning will illuminate on the PFD if the pressure is below limit. m) Voltage Minimum : 24.1 V Maximum : 32.0 V n) Amperage Maximum : 70 A o) Propeller manufacturer : mt-Propeller p) Propeller designation : MTV-6-R-C-F/CF 194-80 q) Propeller diameter : 194 cm (76.38 in) r) Prop. pitch angle (@ 0.75 R) : $11^{\circ} \pm 0.2^{\circ}$ (low pitch) $80^{\circ} \pm 1^{\circ}$ (feathered position) s) Governor : mt-Propeller P-877-16 electrical governor with feather position | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | DOT | Page 2 - 9 | |---------------------|--------|--------------|----------|------------| | 200. No. 11.01.00 L | 1101.0 | 11 July 2010 | approved | 1 ago 2 o | t) Oil specification: SAE Grade 5W-30: SHELL HELIX ULTRA ADDINOL SUPER POWER MV 0537 BP VISCO 5000 REPSOL ELITE COMMON RAIL **GULF FORMULA GMX** AEROSHELL Oil Diesel Ultra CASTROL Edge 5W-30 A3 CASTROL Edge Professional A3 G-Energy F Synth TOTAL Quartz 9000 Energy SAE Grade 5W-40: SHELL HELIX ULTRA LIQUI MOLY LEICHTLAUF HIGH TECH MEGOL MOTORENOEL HIGH CONDITION PETRONAS Syntium 3000 LUKOIL LUXE SYNTHETIC CASTROL Edge Professional A3 CASTROL Magnatec Professional A3 VALVOLINE SynPower HST VALVOLINE SynPower **GULF Formula GX** **AUSTRO ENGINE Aero** produced by Liqui Moly recommended by Austro Engine GmbH SAE Grade 0W-40: CASTROL SLX PROFESSIONAL LONGTEC CASTROL Edge 0W-40 A3/B4 CASTROL Edge Professional A3 SHELL Helix Ultra | Page 2 - 10 | Rev. 0 | 11-Jan-2019 | DOT | Doc. No. 11.01.05-E | |-------------|--------|-------------|----------|---------------------| | | | | approved | | #### **CAUTION** Only engine oils conforming to MB 229.5 specification are approved by Austro Engine GmbH to be used for operation. Use only one type of approved E4 engine oil for an oil change. #### **NOTE** It is not recommended to mix different SAE grades. u) Gearbox oil (propeller gearbox) : SHELL SPIRAX GSX 75W-80 SHELL SPIRAX S6 GXME 75W-80 v) Coolant : Distilled water/cooler protection (BASF Glysantin Protect Plus / G48) 1/1. The freezing point of the coolant is -38°C (-36.4 °F). #### **CAUTION** If the coolant or gearbox oil level is low the reason must be determined and the problem must be corrected by authorized personnel. w) Maximum restart altitude : 20,000 ft pressure altitude for immediate restarts 10,000 ft pressure altitude for restarts within two minutes If MÄM 62-168 (engine software VC33_2P_05_19 or later approved software) is installed: 15,000 ft pressure altitude for immediate restart | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | DOT | Page 2 - 11 | |---------------------|---------|-------------|----------|-------------| | 200111011101100 2 | 1.071.0 | 11 Gan 2010 | approved | 1 490 = 11 | Up to 10,000 ft pressure altitude: | 0/ | Max. engine
OFF time | | |-------------|-------------------------|-----------| | [° C] [° F] | | [minutes] | | below -15 | below 5 | 2 | | -15 to -5 | 5 to 23 | 5 | | above -5 | above 23 | 10 | x) Restart airspeed (starter) : max. 80 KIAS or airspeed for a stationary propeller, whichever is lower. #### **WARNING** V_{MCA} is 76 KIAS and should be considered when attempting to engine restart with the starter and obtaining a stationary propeller. This limitation should be observed. Restart airspeed (windmilling) : Maximum: 115 KIAS Minimum: 110 KIAS below 10,000 ft 100 KIAS above 10,000 ft y) No intentional shutdown below 3,000 ft AGL and above 10,000 ft pressure altitude. | Page 2 - 12 | Rev. 0 | 11-Jan-2019 | DOT
approved | Doc. No. 11.01.05-E | |-------------|--------|-------------|-----------------|---------------------| | | | | approved | | # 2.5 ENGINE INSTRUMENT MARKINGS Engine instrument markings and their color code significance are shown in the tables below. | Indi-
cation | Red arc/bar = lower prohibited range | Yellow
arc/bar
=
caution
range | Green arc/bar = normal operating range | Yellow
arc/bar
=
caution
range | Red arc/bar = upper prohibited range | |-----------------|--------------------------------------|--|--|--|--------------------------------------| | RPM | | | up to
2200 RPM | 2200 to 2300
RPM | above
2300 RPM | | Oil
pressure | below 0.9 bar | 0.9 to 2.5 bar | 2.5 to 6.0 bar | 6.0 to 6.5 bar | above
6.5 bar | | Oil
temp. | below -30°C | -30° to 50°C | 50° to 135°C | 135° to
139°C | above 139°C | | Coolant temp. | below -30°C | -30° to 60°C | 60° to 95°C | 95° to 100°C | above 100°C | | Gearbox temp. | below -30°C | -30° to 35°C | 35° to 115°C | 115° to
120°C | above 120°C | | Load | | | up to 95% | 95 - 100% | | | Fuel
temp. | below -30°C | - | -30° to 55°C | 55° to 60°C | above 60°C | | Ammeter | | | up to 60A | 60 to 70A | above 70A | | Volt-
meter | below 24.1V | 24.1 to 25V | 25 to 30V | 30 to 32V | above 32V | | Fuel qty. | below
1 US gal | | 1 to 25
US gal | | | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | DOT
approved | Page 2 - 13 | |---------------------|--------|-------------|-----------------|-------------| |---------------------|--------|-------------|-----------------|-------------| # 2.6 WARNING, CAUTION AND ADVISORY ALERTS #### 2.6.1 WARNING, CAUTION AND ADVISORY ALERTS ON THE G1000 #### **NOTE** The alerts described in the following are displayed on the Garmin G1000. Section 7.10 includes a detailed description of the alerts. The following tables show the color and significance of the warning, caution and advisory alerts lights on the G1000. #### Color and Significance of the Warning Alerts on the G1000 | Warning Alerts
(Red) | Meaning/Cause | | |---|---|--| | WARNING | One of the warnings listed below is being indicated. | | | L/R ENG TEMP | Left/Right engine coolant temperature is in the upper red range (too high/> 100 °C [212 °F]). | | | L/R OIL TEMP | Left/Right engine oil temperature is in the upper red range (too high/> 139 °C [282 °F]). | | | L/R OIL PRES | Left/Right engine oil pressure is in the lower red range (too low/< 0.9 bar [13.05 psi]). | | | L/R FUEL TEMP Left/Right fuel temperature is in the upper red range (high/> 60 °C [140 °F]) | | | | L/R GBOX TEMP Left/Right engine gearbox temperature is in the upper range (too high/> 120 °C [248 °F]). | | | | L/R FUEL PRESS | Left/Right engine fuel pressure is low. | | | Page 2 - 14 Rev. 0 11-Jan-2019 | DOT
approved | Doc. No. 11.01.05-E | |--------------------------------|-----------------|---------------------| |--------------------------------|-----------------|---------------------| | Warning Alerts
(Red) | Meaning/Cause | | | |-------------------------|---|--|--| | L/R ALTN AMPS | Left/Right engine alternator output is in the upper red range (too high/> 70 A). | | | | L/R ENG FIRE | Left/Right engine fire detected. | | | | L/R STARTER | Left/Right engine starter is engaged. | | | | L/R DOOR OPEN | Left/Right pilot door is/are not closed and locked. | | | | REAR DOOR
OPEN | Passenger door is not closed and locked. | | | | FWD DOOR
OPEN | Left/Right baggage door is/are not closed and locked. | | | | ATTITUDE FAIL | The display system is not receiving attitude reference information from the AHRS. | | | | AIRSPEED FAIL | The display system is not receiving airspeed input from the air data computer. | | | | ALTITUDE FAIL | The display system is not receiving altitude input from the air data computer. | | | | VERT SPEED
FAIL | The display system is not receiving vertical speed input from the air data computer. | | | | HDG | The display system is not receiving valid heading input from the AHRS. | | | | WARN | RAIM position warning. The nav deviation bar is removed. | | | | Red X or
yellow X | A red or yellow (if MÄM 62-254 is installed) X through any display field, such as com frequencies, nav frequencies, or engine data, indicates that the display field is not receiving valid data. | | | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | DOT
approved | Page 2 - 15 | |---------------------|--------|-------------|-----------------|-------------| |---------------------|--------|-------------|-----------------|-------------| # **Operating Limitations** # Color and Significance of the Caution Alerts on the G1000 | Caution Alerts (Amber) | Meaning/Cause | | | |---------------------------------|---|--|--| | , , | A fault was detected by the left/right engine ECU A (one reset of minor faults is possible) | | | | L/R ECU A FAIL | or | | | | | ECU A is being tested during FADEC-test procedure during the 'Before Take-Off Check'. | | | | | A fault was detected by the left/right engine ECU B (one reset of minor faults is possible) | | | | L/R ECU B FAIL | or | | | | | ECU B is being tested during FADEC-test procedure during the 'Before Take-Off Check'. | | | | L/R FUEL LOW | Left/Right
main tank fuel quantity is low. | | | | L/R ALTN FAIL | Left/Right engine alternator has failed. | | | | L/R VOLTS LOW | Left/Right engine bus voltage is too low (< 25 V). | | | | L/R COOL LVL | Left/Right engine coolant level is low. | | | | PITOT FAIL | Pitot heat has failed. | | | | PITOT HT OFF | Pitot heat is OFF. | | | | STAL HT FAIL | Stall warning heat has failed. | | | | STAL HT OFF | Stall warning heat is OFF. | | | | LOI | GPS integrity is insufficient for the current phase of flight. | | | | AHRS ALIGN:
Keep Wings Level | The AHRS (Attitude and Heading Reference System) is aligning. | | | | L/R AUX FUEL E | Left/Right auxiliary fuel tank empty (if installed). | | | | CHECK GEAR | Landing gear is not down and locked. | | | | DEICE LVL LO | De-icing fluid level is low (if installed). | | | | Page 2 - 16 | Rev. 0 | 11-Jan-2019 | DOT
approved | Doc. No. 11.01.05-E | |-------------|--------|-------------|-----------------|---------------------| |-------------|--------|-------------|-----------------|---------------------| # **Operating Limitations** | Caution Alerts
(Amber) | Meaning/Cause | |---------------------------|---| | DEIC PRES HI | De-icing pressure is high (if installed). | | DEIC PRES LO | De-icing pressure is low (if installed). | # Color and Significance of the Advisory Alerts on the G1000 | Advisory Alerts
(White) | Meaning/Cause | |----------------------------|--| | L/R GLOW ON | Left/Right engine glow plug active. | | L/R AUXPUMP
ON | Fuel transfer from auxiliary to main tank is in progress (if installed). | | PFD FAN FAIL | Cooling fan for the PFD is inoperative. | | MFD FAN FAIL | Cooling fan for the MFD is inoperative. | | GIA FAN FAIL | Cooling fan for the GIAs is inoperative. | # 2.6.2 OTHER WARNING ALERTS # Warning Alerts on the Instrument Panel | Warning Alert
(Red) | Meaning/Cause | |------------------------------|---| | GEAR UNSAFE
WARNING LIGHT | Illuminates if the landing gear is neither in the final up nor in the down & locked position. | # **Audible Warning Alerts** | Audible Warning
Alert | Meaning/Cause | |---------------------------------------|--| | GEAR RETRACTED CHIME TONE (repeating) | Resounds if the landing gear is in retracted configuration and the flaps move into LDG position or when the power lever is placed in a position below approximately 25%. | | Page 2 - 18 | Rev. 0 | 11-Jan-2019 | DOT
approved | Doc. No. 11.01.05-E | |-------------|--------|-------------|-----------------|---------------------| |-------------|--------|-------------|-----------------|---------------------| # 2.7 MASS (WEIGHT) | | Value | Mass (V | Mass (Weight) | | |---|--|---------|---------------|--| | Minimum fli | ght mass | 1600 kg | 3329 lb | | | Maximum ta | ake-off mass (if MÄM 62-001 is carried out) | 2300 kg | 5071 lb | | | Maximum ta | ake-off mass | 1999 kg | 4407 lb | | | (if MÄM 62-
or if OÄM 6 | -001 is NOT carried out
2-018 AND MÄM 62-001 are carried out) | | | | | Maximum z | ero fuel mass | 2036 kg | 4489 lb | | | Maximum la | anding mass | 2300 kg | 5071 lb | | | Maximum z | ero fuel mass (if MÄM 62-063 is carried out) | 2200 kg | 4850 lb | | | Max. load ii | n LH nose baggage compartment | 30 kg | 66 lb | | | Max. load in RH nose baggage compartment | | 30 kg | 66 lb | | | Max. total load in rear baggage compartment | | 120 kg | 265 lb | | | Max. load in | n section A of rear baggage compartment | 6 kg | 13 lb | | | Max. load ii | n section B of rear baggage compartment | 6 kg | 13 lb | | | Max. load in | n section C of rear baggage compartment | 68 kg | 150 lb | | | Max. load ii | n section D of rear baggage compartment | 40 kg | 88 lb | | | If OÄM | Max. load total load in rear baggage compartment | 46 kg | 101 lb | | | 62-019
is carried | Max. load in section E of rear baggage compartment | 6 kg | 13 lb | | | out | Max. load in section F of rear baggage compartment | 40 kg | 88 lb | | ## **WARNING** Exceeding the mass limits will lead to overstressing of the airplane as well as to degradation of flight characteristics and flight performance. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | DOT
approved | Page 2 - 19 | |---------------------|--------|-------------|-----------------|-------------| |---------------------|--------|-------------|-----------------|-------------| ### 2.8 CENTER OF GRAVITY #### **Datum Plane** The datum plane (DP) is a plane which is normal to the airplane's longitudinal axis and in front of the airplane as seen from the direction of flight. The airplane's longitudinal axis is parallel with the floor of the nose baggage compartment. When the floor of the nose baggage compartment is aligned horizontally, the datum plane is vertical. The datum plane is located 2.196 meters (86.46 in) forward of the most forward point of the root rib on the stub wing (refer to figure in Section 6.2). #### Center of Gravity Limitations The center of gravity (CG position) for flight conditions must be between the following limits: #### Most forward flight CG: - 2.340 m (92.13 in) aft of datum plane at 1600 kg (3527 lb) to 1800 kg (3968 lb) - 2.460 m (96.85 in) aft of datum plane at max. take-off mass (see Section 2.7) linear variation in between #### Most rearward flight CG: - 2.460 m (96.85 in) aft of datum plane at 1600 kg (3527 lb) - 2.510 m (98.82 in) aft of datum plane at 1900 kg (4189 lb) to 1999 kg (4407 lb) - 2.530 m (99.61 in) aft of datum plane at MTOM linear variation in between Refer to Section 6.4.4 for a graphical illustration of the CG limitations. #### **WARNING** Exceeding the center of gravity limitations reduces the controllability and stability of the airplane. | Page 2 - 20 | Rev. 0 | 11-Jan-2019 | DOT
approved | Doc. No. 11.01.05-E | |-------------|--------|-------------|-----------------|---------------------| |-------------|--------|-------------|-----------------|---------------------| ## 2.9 APPROVED MANEUVERS The airplane is certified in the Normal Category in accordance with AWM 523. #### **Approved Maneuvers** - 1) All normal flight maneuvers; - 2) Stalling (with the exception of dynamic stalling); and - 3) Lazy Eights, Chandelles, as well as steep turns and similar maneuvers, in which an angle of bank of not more than 60° is attained. #### **CAUTION** Aerobatics, spinning and flight maneuvers with more than 60° of bank are not permitted in the Normal Category. Stalling with asymmetric power or one engine inoperative is not permitted. #### **CAUTION** Intentional negative-g maneuvers are not permitted. # **2.10 MANEUVERING LOAD FACTORS** #### **NOTE** The tables below show structural limitations. The load factor limits for the engine must also be observed. Refer to the corresponding operation manual for the engine. | | at v _o | at v _{NE} | with flaps in APP or LDG position | |----------|-------------------|--------------------|-----------------------------------| | Positive | 3.8 | 3.8 | 2.0 | | Negative | -1.52 | 0.0 | 0.0 | #### **WARNING** Exceeding the maximum structural load factors will lead to overstressing of the airplane. #### **CAUTION** Intentional negative-g maneuvers are not permitted. | Page 2 - 22 Rev. 0 11-Jan-2019 | DOT
approved | Doc. No. 11.01.05-E | |--------------------------------|-----------------|---------------------| |--------------------------------|-----------------|---------------------| ## **2.11 OPERATING ALTITUDE** The maximum operating altitude is 20,000 ft (6,096 m) pressure altitude. #### 2.12 FLIGHT CREW Minimum crew : 1 (one person) Maximum number of occupants : 5 (five persons) 7 (seven persons, if OÄM 62-019 is installed) #### 2.13 KINDS OF OPERATION Provided that national operational requirements are met, the following kinds of operation are approved: - daytime flights according to Visual Flight Rules (VFR) - with the appropriate equipment: night flights according to Visual Flight Rules (NVFR) - with the appropriate equipment: flights according to Instrument Flight Rules (IFR) - take-off and landing on paved surfaces - take-off and landing on grass surfaces Flights into known or forecast thunderstorms are prohibited. Flights into known or forecast icing conditions are prohibited. #### Minimum Operational Equipment (Serviceable) The following table lists the minimum serviceable equipment required for operation. Additional minimum equipment for the intended operation may be required by national operating rules and also depends on the route to be flown. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | DOT
approved | Page 2 - 23 | |---------------------|--------|-------------|-----------------|-------------| |---------------------|--------|-------------|-----------------|-------------| # **NOTE** Many of the items of minimum equipment listed in the following table are integrated in the G1000. | | For Daytime | In Addition for | In Addition for | |---------------------------------|--|--
---| | | VFR Flights | Night VFR Flights | IFR Flights | | Flight & navigation instruments | * airspeed indicator
(on G1000 PFD or
backup) * altimeter (on G1000
PFD or backup) * magnetic compass * 1 headset, used by
pilot in command | * vertical speed indicator (VSI) * attitude gyro (artificial horizon; on G1000 PFD or backup) * turn & bank indicator (on G1000 PFD) * directional gyro * VHF radio (COM) * VOR receiver * transponder (XPDR), mode A and mode C * GPS receiver (part of G1000) * second headset | * second airspeed indicator (both, on G1000 PFD and backup) * second altimeter (both, on G1000 PFD and backup) * second attitude gyro (both, on G1000 PFD and backup) * second VHF radio (COM) * VOR-LOC-GP receiver * second GPS receiver (part of G1000) | | Page 2 - 24 | Rev. 0 | 11-Jan-2019 | DOT
approved | Doc. No. 11.01.05-E | |-------------|--------|-------------|-----------------|---------------------| |-------------|--------|-------------|-----------------|---------------------| | | For Daytime VFR
Flights | In Addition for
Night VFR Flights | In Addition for
IFR Flights | |-------------|--------------------------------|---|--------------------------------| | Engine | * fuel qty. (2x) | * ammeter | | | Instruments | * oil press. (2x) | * voltmeter | | | | * oil temp. (2x) | | | | | * coolant temp. (2x) | | | | | * coolant level indicator (2x) | | | | | * gearbox temp. (2x) | | | | | * load (2x) | | | | | * prop. RPM (2x) | | | | | * fuel temp. left & right tank | | | | | * fuel flow (2x) | | | | | * fuel px warning | | | | Lighting | | * position lights | | | | | * strobe lights (anti collision lights) | | | | | * landing light | | | | | * instrument lighting | | | | | * flood light | | | | | * flashlight | | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | DOT
approved | Page 2 - 25 | |---------------------|--------|-------------|-----------------|-------------| |---------------------|--------|-------------|-----------------|-------------| | | For Daytime VFR
Flights | In Addition for
Night VFR Flights | In Addition for
IFR Flights | | |-------------------------------------|--|--|---|--| | Other operational minimum equipment | * stall warning
system
* alternate means for
fuel quantity
indication (see
Section 7.9) | * Pitot heating
system
* alternate static
valve | * sufficient charge
for the internal
battery of the
Standby Attitude
Module | | | | * safety belts for each occupied seat | | | | | | * Airplane Flight Manual * Egress Hammer | | | | #### **NOTE** A list of approved equipment can be found in Chapter 6. # **Engine Systems and Equipment** All engine systems and equipment must be functional prior to airplane take-off. Any engine system or equipment failure must be corrected before next flight. ## **2.14 FUEL** Approved fuel grades: JET A, JET A-1 (ASTM D 1655) TS-1 (Russia, GOST 10227-86) TS-1 (Ukraine, GSTU 320.00149943.011-99) RT (Russia, GOST 10227-86) RT (Ukraine GSTU 320.00149943.007-97) No. 3 Jet Fuel (China, GB 6537-2006) JP-8 (F34) (USA, MIL-DTL-83133G-2010) and blends of the above listed fuel grades. #### **NOTE** A minimum cetane number of 36 determined acc. to EN ISO 5165/ASTM D613 is recommended. #### NOTE Use only uncontaminated fuel from reliable sources. NOTE For aircraft registered in the USA, only JET A and JET A-1 (ASTM D1655) are approved. Any mixture of the different types of fuel additives is not permitted. #### OPERATION WITH ANTI-MICROBIAL LIFE FUEL ADDITIVES The application of the following additives is permitted: - KATHON FP 1.5 : max. 100 ppm - BIOBOR JF : max. 270 ppm for initial treatment max. 135 ppm for permanent use after initial treatment | Doc. No. 11.01.05-E | Rev. 1 | 24-Oct-2019 | DOT
approved | Page 2 - 27 | |---------------------|--------|-------------|-----------------|-------------| |---------------------|--------|-------------|-----------------|-------------| #### **CAUTION** In case of an unknown or an over dosage of the fuel additives the fuel system must be purged until the dosage is within the permitted limits. #### **NOTE** The specified additives are qualified for the operation with the certified fuel grades. #### **NOTE** The instructions of the fuel additive supplier must be followed. #### OPERATION WITH ANTI-ICING FUEL ADDITIVES The application of the following additive is permitted: - PRIST Hi-Flash : max. 1500 ppm #### **CAUTION** The use of PRIST Hi-Flash fuel additive is only permitted with JET A, JET A-1 (ASTM D 1655) and JP-8 (F34). #### NOTE The instructions of the fuel additive supplier must be followed. | | Main Tanks | | Auxiliary Tanks
(if installed) | | Total | | |-----------------------------------|------------|----------|-----------------------------------|----------|----------|-----------| | | US gal | Liter | US gal | Liter | US gal | Liter | | Total fuel quantity | 2 x 26.0 | 2 x 98.4 | 2 x 18.5 | 2 x 70.0 | 2 x 44.5 | 2 x 168.4 | | Usable fuel | 2 x 25.0 | 2 x 94.6 | 2 x 18.2 | 2 x 68.9 | 2 x 43.2 | 2 x 163.5 | | Max. permissible difference LH/RH | 5.0 | 18.9 | | | | | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | DOT
approved | Page 2 - 29 | |---------------------|--------|-------------|-----------------|-------------| |---------------------|--------|-------------|-----------------|-------------| #### 2.15 LIMITATION PLACARDS All *limitation* placards are shown below. A list of *all* placards is included in the Airplane Maintenance Manual (Doc. No. 7.02.25), Chapter 11. The following limitation placards are in the forward view of the pilot: Left of the Instrument Panel: | Page 2 - 30 | Rev. 0 | 11-Jan-2019 | DOT | Doc. No. 11.01.05-E | |-------------|--------|-------------|----------|---------------------| | | | | approved | | #### On the Instrument Panel: #### **LANDING GEAR** $v_{LE} / v_{LOE} = 205 \text{ KIAS}$ $v_{LOR} = 162 \text{ KIAS}$ On the Emergency Landing Gear Extension Lever: **EMERGENCY** **Gear Extension** Max. 162 KIAS #### On the Instrument Panel: Standard Tank: max. usable fuel: 2 x 25 US gal max. difference LH/RH tank: 5 US gal Auxiliary Tank (if installed): max. usable fuel main tank: 2 x 25 US gal auxiliary tank: 2 x 18.2 US gal max. difference LH/RH main tank: 5 US gal - (a) Next to Each of the Two Fuel Filler Necks; - (b) In Addition Next to Each of the Two Auxiliary Fuel Filler Necks (if installed): # **WARNING** **APPROVED FUEL** # JET-A1, or see Airplane Flight Manual In Each Cowling, on the Door for the Oil Filler Neck: OIL AUSTRO ENGINE Aero 5W-40 or see Airplane Flight Manual OR OIL SHELL HELIX **ULTRA** 5W-30 or see Airplane Flight Manual # Next to the Flap Selector Switch: In the Nose Baggage Compartments: LH Nose Baggage Compartment: RH Nose Baggage Compartment: Max. Baggage: 30 kg (66 lb) Max. Baggage: 30 kg (66 lb) # In the Rear Baggage Compartment: If OÄM 62-019 is NOT carried out: If OÄM 62-019 is carried out: | Page 2 - 34 | Rev. 0 | 11-Jan-2019 | DOT
approved | Doc. No. 11.01.05-E | |-------------|--------|-------------|-----------------|---------------------| |-------------|--------|-------------|-----------------|---------------------| **Operating Limitations** Beside the Door Locking Device Installed in the Passengers' Door: # **EMERGENCY EXIT:** The keylock must be unlocked during flight! On the Bottom Center of the Instrument Panel: **NO SMOKING** On the Armrest with Integrated Keypad (if OÄM 62-031 is carried out): STOW FOR TAKE-OFF AND LANDING, IN ALL EMERGENCIES AND ABNORMAL OPERATING PROCEDURES # **2.16 OTHER LIMITATIONS** # 2.16.1 FUEL TEMPERATURE From -30 °C to 60 °C (from -22 °F to 140 °F). # 2.16.2 BATTERY CHARGE Take-off for a Night VFR or IFR flight with a discharged battery is not permitted. # **NOTE** The most common indication of a discharged battery is that the engine cannot be started with battery power. The use of an external power supply for engine starting with a discharged airplane battery is not permitted if the subsequent flight is intended to be a Night VFR or IFR flight. In this case, the airplane main battery must be charged first. # 2.16.3 DOOR LOCKING DEVICE The LH & RH CREW DOORS and the passenger door must not be blocked by the key lock during operation of the airplane. | Page 2 - 36 | Rev. 0 | 11-Jan-2019 | DOT | Doc. No. 11.01.05-E | |-------------|--------|-------------|----------|---------------------| | | | | approved | | #### 2.16.4 ELECTRONIC EQUIPMENT The use and switching on of electronic equipment other than that which is part of the equipment of the airplane is not permitted, as it could lead to interference with the airplane's avionics. Examples of undesirable items of equipment are: - Mobile phones - Remote radio controls - Video screens employing CRTs - Minidisc recorders in record mode This list is not exhaustive. The use of laptop and handheld computers, including those with CD-ROM drives, CD and mini-disc players in the replay mode, cassette players and video cameras is permitted. All this equipment however should be switched off for take-off and landing. #### NOTE Refer to the applicable flight authority for the use of electronic equipment associated with electronic flight bag operation. # 2.16.5 GARMIN G1000 AVIONICS SYSTEM - 1. The Garmin G1000 Cockpit Reference Guide, P/N 190-01896-() or Garmin G1000 NXi Cockpit Reference Guide, P/N 190-01905-(), appropriate revision must be immediately available to the flight crew. - 2. The G1000
must utilize the software Garmin 010-01895-00, the Garmin G1000 NXi must utilize the software Garmin 010-01895-04, approved software in accordance with the mandatory service bulletin DAI MSB 62-003, latest version. | Software Part Number | Approved
Version | Function | |----------------------|------------------------|----------------------| | System | | | | 010-01895-() | | | | Manifest | | | | 006-B0093-() | | GPS1, GPS2 | | 006-B0172-() | | GTX1-GIA1, GTX1-GIA2 | | 006-B0190-() | | GIA1, GIA2 | | 006-B0193-() | | GEA1-GIA1; GEA1-GIA2 | | 006-B0203-() | | GMA1-GIA1, GMA1-GAI2 | | 006-B0223-() | for approved | GRS1-GIA1, GRS1-GIA2 | | 006-B0224-() | version see
DAI MSB | GMU1 | | 006-B0319-() | 62-003 | PFD1, MFD1 | | 006-B0328-() | latest version | | | 006-B0329-() | | | | 006-C0048-() | | GMU1 FPGA | | 006-C0049-() | | GRS1 FPGA | | 006-C0055-() | | GDC1 FPGA | | 006-D0159-() | | GRS1 MV DB | | 006-D0202-() | | | | 006-B0261-() | | GDC1-GIA1 | | 006-B0081-() | | COM1, COM2 | | Page 2 - 38 | Rev. 0 | 11-Jan-2019 | DOT
approved | Doc. No. 11.01.05-E | |-------------|--------|-------------|-----------------|---------------------| |-------------|--------|-------------|-----------------|---------------------| | Software Part Number | Approved Version | Function | |----------------------|------------------|------------| | 006-B0083-() | | GS1, GS2 | | 006-B0082-() | | NAV1, NAV2 | #### NOTE The database version is displayed on the MFD power-up page immediately after system power-up and must be acknowledged. The remaining system software versions can be verified on the AUX group sub-page 5, "AUX-SYSTEM STATUS". - 3. IFR enroute, oceanic and terminal navigation predicated upon the G1000 GPS receiver is prohibited unless the pilot verifies the currency of the database or verifies each selected way point for accuracy by reference to current approved data. - 4. Instrument approach navigation predicated upon the G1000 GPS receiver must be accomplished in accordance with approved instrument approach procedures that are retrieved from the GPS equipment database. The GPS equipment database must incorporate the current update cycle. #### NOTE Not all published approaches are in the FMS database. The pilot must ensure that the planned approach is in the database. - (a) Instrument approaches utilizing the GPS receiver must be conducted in the approach mode, and Receiver Autonomous Integrity Monitoring (RAIM) must be available at the Final Approach Fix. - (b) Accomplishment of ILS, LOC, LOC-BC, LDA, SDF, MLS or any other type of approach not approved for GPS overlay with the G1000 GPS receiver is not authorized. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | DOT
approved | Page 2 - 39 | |---------------------|--------|-------------|-----------------|-------------| |---------------------|--------|-------------|-----------------|-------------| - (c) Use of the G1000 VOR/ILS receiver to fly approaches not approved for GPS require VOR/ILS navigation data to be present on the display. - (d) When an alternate airport is required by the applicable operating rules, it must be served by an approach based on other than GPS or Loran-C navigation, the airplane must have the operational equipment capable of using that navigation aid, and the required navigation aid must be operational. - (e) VNAV information may be utilized for advisory information only. Use of VNAV information for Instrument Approach Procedures does not guarantee step-down fix altitude protection, or arrival at approach minimums in normal position to land. - (f) RNAV (GPS) approaches must be conducted utilizing the GPS sensor. - (g) RNP RNAV operations are not authorized, except as noted in Chapter 1 of this AFM. - 5. If not previously defined, the following default settings must be made in the "SYSTEM SETUP" menu of the G1000 prior to operation (refer to Pilot's Guide for procedure if necessary): (a) DIS, SPD: nm, kt (sets navigation units to "nautical miles" and "knots") (b) ALT, VS : ft, fpm (sets altitude units to "feet" and "feet per minute") (c) POSITION : deg-min (sets navigation grid units to decimal minutes) #### NOTE Navigation Information is referenced to WGS-84 reference system, and should only be used where the Aeronautical Information Publication (including electronic data and aeronautical charts) conforms to WGS-84 or equivalent. | Page 2 - 40 | Page 2 - 40 | Rev. 0 11-Jan-201 | | Doc. No. 11.01.05-E | |-------------|-------------|-------------------|--|---------------------| |-------------|-------------|-------------------|--|---------------------| # **Operating Limitations** - 6. When AHRS is required to meet the items listed in the minimum operational equipment (serviceable) table in Section 2.13 of this AFM, operation is prohibited in the following areas: - (a) North of 72° N latitude at all longitudes. - (b) South of 70° S latitude at all longitudes. - (c) North of 65° N latitude between longitude 75° W and 120° W (Northern Canada). - (d) North of 70° N latitude between longitude 70° W and 128° W (Northern Canada). - (e) North of 70° N latitude between longitude 85° E and 114° E (Northern Russia). - (f) South of 55° S latitude between longitude 120° E and 165° E (Region south of Australia and New Zealand). When day VFR operations are conducted in the above areas, the MFD must be in a non-heading up orientation. - 7. The fuel quantity, fuel required, and fuel remaining functions of the FMS are supplemental information only and must be verified by the flight crew. - 8. The GPS is approved for SBAS operations. Refer to Supplement A33 for SBAS and P-RNAV Operation. - 9. The availability of SafeTaxi®, ChartView, or FliteCharts® in electronic form on the G1000 is for information purposes only, it is still mandatory to carry another source of charts on-board the airplane. #### 2.16.6 AUTOPILOT LIMITATIONS - It is the responsibility of the pilot in command to monitor the autopilot when it is engaged. The pilot should be prepared to immediately disconnect the autopilot and to take prompt corrective action in the event of unexpected or unusual autopilot behavior. - 2. The autopilot and yaw damper must be disconnected (using the DISC button) during take-off, landing and single engine operation. - 3. Following an autopilot or electric trim malfunction, re-engaging the autopilot or manual electric trim, or resetting the AFCS/ESP/USP circuit breaker is prohibited until the cause of the malfunction has been determined and corrected. - 4. The Garmin G1000 Cockpit Reference Guide for the Diamond DA 62, P/N 010-01896-() or Garmin G1000 NXi Cockpit Reference Guide for the Diamond DA62, P/N 010-01905-() approved revision must be immediately available to the flight crew. - 5. ILS approaches using the GFC700 / flight director are limited to Category I approaches only. 6. Autopilot maximum airspeed: 185 KIAS Autopilot minimum airspeed: 90 KIAS - 7. Altitude select captures below 1200 feet AGL are prohibited. - 8. The autopilot must be disengaged: - below 200 ft AGL during approach, - below 200 ft AGL during departure, - below 800 ft AGL for all other phases of flight, - during single engine operation. - 9. Overriding the autopilot to change pitch or roll attitude is prohibited. (Disengage or press CWS while maneuvering.) - 10. The GFC 700 AFCS pre-flight test must be successfully completed prior to use of the autopilot, flight director, yaw damper or manual electric trim. - A pilot with the seat belt fastened must occupy the left pilot's seat during all operations. - 12. The yaw damper is an integral part of the autopilot system and must not be used separately. # **2.16.7 SMOKING** Smoking in the airplane is not permitted. ## 2.16.8 GROUND OPERATION Take-off and landing has been demonstrated on hard paved surfaces (asphalt, concrete, etc.) and grass runways. #### 2.16.9 GARMIN GWX 70 WEATHER RADAR OPERATION #### WARNING The Garmin GWX 70 Weather Radar System (if installed) must not be operated on ground except in standby mode during taxiing. If the system is transmitting, it may result in bodily injury if persons are within the minimum safe distance of 2.3 m (7.4 ft). Never operate the radar in a hangar or other enclosure as radiation can be reflected throughout the area. # 2.16.10 USE OF THE SUN VISORS The sun visors (if installed) may only be used during cruise. During all other phases of flight, the sun visors must be locked in the fully upward position. # 2.16.11 PDF/MFD CONTROL UNIT (KEYPAD) The PFD/MFD control unit must be stowed during take-off and landing all emergencies and abnormal operating procedures. | Page 2 - 44 | Rev. 0 | 11-Jan-2019 | DOT
approved | Doc. No. 11.01.05-E | |-------------|--------|-------------|-----------------|---------------------| |-------------|--------|-------------|-----------------|---------------------| # CHAPTER 3 EMERGENCY PROCEDURES | | | | | Page | |----------|------------|--------------|---------------------|------------| | 3.1 | INTRODU | ICTION | | 3-4 | | | 3.1.1 GEI | NERAL | | 3-4 | | | 3.1.2 CEI | RTAIN AIRSP | EEDS IN EMERGENCIES | 3-5 | | | 3.1.3 SEI | LECTING EME | ERGENCY FREQUENCY | 3-5 | | 3.2 | AIRPLAN | E-RELATED (| G1000 WARNINGS | 3-6 | | | 3.2.1 WA | RNINGS/GEN | IERAL | 3-6 | | | 3.2.2 L/R | ENG TEMP . | | 3-6 | | | 3.2.3 L/R | OIL TEMP | | 3-8 | | | 3.2.4 L/R | OIL PRES | | 3-10 | | | 3.2.5 L/R | GBOX TEMP | , | 3-11 | | | 3.2.6 L/R | FUEL TEMP | | 3-12 | | | 3.2.7 L/R | FUEL PRESS | 8 | 3-13 | | | 3.2.8 L/R | ALTN AMPS | | 3-13 | | | 3.2.9 L/R | ENG FIRE | | 3-14 | | | 3.2.10 L/R | STARTER . | | 3-14 | | | 3.2.11 DC | OR OPEN | | 3-15 | | 3.3 | AIRPLAN | E-RELATED (| G1000 CAUTIONS | 3-16 | | | 3.3.1 L/R | ALTN FAIL . | | 3-16 | | 3.4 | G1000 SY | STEM WARN | IINGS | 3-17 | | | 3.4.1 REI | O X/YELLOW | X | 3-17 | | | 3.4.2 ATT | TITUDE FAIL. | | 3-17 | | | 3.4.3 AIR | SPEED FAIL | | 3-17 | | | 3.4.4 ALT | ITUDE FAIL. | | 3-17 | | | 3.4.5 VEF | RT SPEED FA | ۸L | 3-18 | | |
3.4.6 HD | G | | 3-18 | | | <u> </u> | | | <u> </u> | | Doc. No. | 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 3 - 1 | | 3.5 | G100 | 0 FAILURE | ES | | 3-19 | |------------|----------|-----------|-------------------------|------------------|------| | | 3.5.1 | NAVIGAT | ION INFORMATION FAILURI | E | 3-19 | | | 3.5.2 | PFD OR N | MFD DISPLAY FAILURE | | 3-19 | | | 3.5.3 | AHRS FA | ILURE | | 3-20 | | | 3.5.4 | AIR DATA | A COMPUTER (ADC) FAILUR | E | 3-21 | | | 3.5.5 | ERRONE | OUS OR LOSS OF ENGINE A | AND | | | | | FUEL DIS | SPLAYS | | 3-21 | | | 3.5.6 | ERRONE | OUS OR LOSS OF WARNING | G/CAUTION | | | | | ANNUNC | IATORS | | 3-22 | | 3.6 | ABNO | ORMAL EN | IGINE BEHAVIOUR | | 3-23 | | 3.7 | ONE | ENGINE IN | NOPERATIVE PROCEDURES | 8 | 3-24 | | | 3.7.1 | DETECTI | NG THE INOPERATIVE ENG | INE | 3-25 | | | 3.7.2 | ENGINE 7 | TROUBLESHOOTING | | 3-26 | | | 3.7.3 | ENGINE S | SECURING (FEATHERING) F | PROCEDURE | 3-29 | | | 3.7.4 | UNFEATH | HERING & RESTARTING THE | = | | | | | ENGINE I | N FLIGHT | | 3-30 | | | 3.7.5 | ENGINE F | FAILURE DURING TAKE-OFF | = | 3-34 | | | 3.7.6 | ENGINE F | FAILURES IN FLIGHT | | 3-37 | | | 3.7.7 | LANDING | WITH ONE ENGINE INOPE | RATIVE | 3-39 | | | 3.7.8 | GO-AROL | JND/BALKED LANDING WIT | H ONE | | | | | ENGINE I | NOPERATIVE | | 3-42 | | | 3.7.9 | FLIGHT V | VITH ONE ENGINE INOPERA | ATIVE | 3-45 | | 3.8 | ENGI | NES OUT | LANDING | | 3-47 | | 3.9 | DITC | HING | | | 3-49 | | 3.10 | LAND | ING GEAF | R SYSTEM FAILURES | | 3-50 | | | 3.10.1 | 1 LANDIN | G GEAR UNSAFE WARNING | ;
; | 3-50 | | | 3.10.2 | 2 MANUAI | L EXTENSION OF THE LAND | ING GEAR | 3-52 | | | 3.10.3 | 3 LANDIN | G WITH GEAR UP | | 3-54 | | | 3.10.4 | 4 LANDIN | G WITH A DEFECTIVE TIRE | ON THE | | | | | MAIN LA | ANDING GEAR | | 3-55 | | | 3.10.5 | 5 LANDIN | G WITH DEFECTIVE BRAKE | S | 3-56 | | | | | | | | | | | | | | | | Page 3 - 2 | <u>'</u> | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.0 |)5-E | | 3.11 | FAILU | RES IN THE ELECTRICAL SYSTEM | 3-57 | |------|--------|---|------| | | 3.11.1 | COMPLETE FAILURE OF THE ELECTRICAL SYSTEM | 3-57 | | | 3.11.2 | HIGH CURRENT | 3-58 | | | 3.11.3 | STARTER MALFUNCTION | 3-59 | | 3.12 | SMOKI | E AND FIRE | 3-60 | | | 3.12.1 | ENGINE FIRE ON GROUND | 3-60 | | | 3.12.2 | ENGINE FIRE DURING TAKE-OFF | 3-60 | | | 3.12.3 | ENGINE FIRE IN FLIGHT | 3-61 | | | 3.12.4 | ELECTRICAL FIRE ON GROUND | 3-61 | | | 3.12.5 | ELECTRICAL FIRE IN FLIGHT | 3-62 | | 3.13 | OTHER | R EMERGENCIES | 3-63 | | | 3.13.1 | SUSPICION OF CONTAMINATION IN THE | | | | | CABIN (CARBON MONOXIDE, COOLANT | | | | | LIQUID ODOUR OR VAPOR) | 3-63 | | | 3.13.2 | UNLOCKED DOORS | 3-64 | | | 3.13.3 | DEFECTIVE PROPELLER RPM REGULATING | | | | | SYSTEM | 3-66 | | | 3.13.4 | UNINTENTIONAL FLIGHT INTO ICING | 3-69 | | | 3.13.5 | FUEL SUPPLY FAILURE | 3-70 | | | 3.13.6 | RECOVERY FROM AN UNINTENTIONAL SPIN | 3-71 | | | 3.13.7 | EMERGENCY DESCENT | 3-72 | | | 3.13.8 | EMERGENCY EXIT | 3-72 | | | 3.13.9 | AUTOPILOT OR ELECTRIC TRIM | | | | | MALFUNCTION/FAILURE | 3-73 | # **NOTE** Procedures for uncritical system faults are given in Chapter 4B - ABNORMAL OPERATING PROCEDURES. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 3 - 3 | |---------------------|--------|-------------|------------| | | I | | | # 3.1 INTRODUCTION #### **3.1.1 GENERAL** This chapter contains checklists as well as the description of recommended procedures to be followed in the event of an emergency. Engine failure or other airplane-related emergencies are most unlikely to occur if the prescribed procedures for pre-flight checks and airplane maintenance are followed. If, nonetheless, an emergency does arise, the guidelines given in this chapter should be followed and applied in order to clear the problem. As it is impossible to foresee all kinds of emergencies and cover them in this Airplane Flight Manual, a thorough understanding of the airplane by the pilot is, in addition to his knowledge and experience, an essential factor for the solution of any problems which may arise. #### WARNING In each emergency, control over the flight attitude and the preparation of a possible emergency landing have priority over attempts to solve the current problem ("first fly the airplane"). Prior to the flight, the pilot must consider the suitability of the terrain for an emergency landing for each phase of the flight. For a safe flight, the pilot must constantly keep a safe minimum flight altitude. Solutions for various adverse scenarios should be thought over in advance. This should prevent a situation where the pilot is faced with an emergency he cannot handle calmly and with determination. # 3.1.2 CERTAIN AIRSPEEDS IN EMERGENCIES | Event | | | |--------------------------------------|------------------|------------------| | One engine inoperative minimum | Flaps UP | 76 KIAS | | control speed (air) v _{MCA} | Flaps T/O | 70 KIAS | | One engine inoperative speed for | 87 KIAS up to 19 | 999 kg (4407 lb) | | best rate of climb v _{YSE} | 89 KIAS above 1 | 999 kg (4407 lb) | # 3.1.3 SELECTING EMERGENCY FREQUENCY In an in-flight emergency, depressing and holding the Com transfer button ← on the G1000 for 2 seconds will tune the emergency frequency of 121.500 MHz. If the display is available, it will also show it in the "Active" frequency window. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 3 - 5 | |---------------------|--------|-------------|------------| |---------------------|--------|-------------|------------| # 3.2 AIRPLANE-RELATED G1000 WARNINGS # 3.2.1 WARNINGS/GENERAL "Warning" means that the non-observation of the corresponding procedure leads to an immediate or important degradation in flight safety. The warning text is displayed in red color. A warning chime tone of 1.5 seconds duration will sound and repeat without delay until the alarm is acknowledged by the crew. # 3.2.2 L/R ENG TEMP | Left/Right engine coolant temperature is in the upper red range (too high/above 100 °C) | |---| | red range (too high/above 100 °C) | Coolant temperatures above the limit value of 100 °C can lead to a total loss of power due to engine failure. Check G1000 for L/R COOL LVL caution message (low coolant level) L/R COOL LVL caution message not displayed: # During climb: - Reduce power on affected engine by 10% or more as required. - Increase airspeed by 10 KIAS or more as required. - If the coolant temperature does not reach the green range within 60 seconds, reduce power on affected engine as far as possible and increase airspeed. #### CONTINUED | Page 3 - 6 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |------------|--------|-------------|---------------------| |------------|--------|-------------|---------------------| # During cruise: - Reduce power on affected engine. - Increase airspeed. - Check coolant temperature in green range. ## **CAUTION** If high coolant temperature is indicated and the L/R COOL LVL caution message is not displayed, it can be assumed that there is no technical defect in the cooling system and that the above mentioned procedure can decrease the temperature(s). This might not be the case if the coolant temperature does not return to the green range. In this case, perform a precautionary landing on the nearest suitable airfield. Prepare for an engine failure in accordance with 3.7.6 - ENGINE FAILURES IN FLIGHT. #### **END OF CHECKLIST** L/R COOL LVL caution message displayed: - Reduce power on affected engine. - Expect loss of coolant. #### WARNING A further increase in coolant temperature must be expected. Prepare for an engine failure in accordance with 3.7.6 - ENGINE FAILURES IN FLIGHT. | Doc. No. 11.01.05-E | ev. 0 11-Jan-2019 | Page 3 - 7 | |---------------------|-------------------|------------| |---------------------|-------------------|------------| # 3.2.3 L/R OIL TEMP | L/R OIL TEMP | Left/Right engine oil temperature is in the upper red range (too high/above 139 °C). | |--------------|--| | | Tarige (100 High/above 133 C). | Oil temperatures above the limit value of 139 °C can lead to a total loss of power due to engine failure. - Check oil pressure. If the oil pressure is outside of the green range (lower limit): - Reduce power on affected engine. - Expect loss of engine oil. # **WARNING** A further increase in oil temperature must be expected. Prepare for an engine failure in accordance with 3.7.6 - ENGINE FAILURES IN FLIGHT. If the oil pressure is within the green range: - Reduce power on affected engine. - Increase airspeed. ## **CONTINUED** | Page 3 - 8 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |------------|--------|-------------|---------------------| |------------|--------|-------------|---------------------| # **CAUTION** If high oil temperature is announced and the oil pressure indication is within the green range, it can be assumed that there is no technical defect in the engine oil system and that the above mentioned procedure can decrease the temperature(s). This might not be the case if the oil temperature does not return to the green range. In this case, perform a precautionary landing on the nearest suitable airfield. Prepare for an engine failure in accordance with 3.7.6 - ENGINE FAILURES IN FLIGHT. # 3.2.4 L/R OIL PRES | Left/Right engine oil pressure is in the lower red range (too low/below 0.9 bar). | |---| | (100 1011/201011 010 201). | Oil pressures below the limit value of 0.9 bar can lead to a total loss of power due to engine failure. - Reduce power on affected engine. - Expect loss of oil. # **WARNING** Land at the nearest suitable airfield. Prepare for an engine failure in accordance with 3.7.6 - ENGINE FAILURES IN FLIGHT. **Emergency Procedures** #### 3.2.5 L/R GBOX TEMP | | Left/Right
engine gearbox temperature is in the upper red range (too high/above 120 °C). | |--|--| |--|--| Gearbox temperatures above the limit value of 120 °C can lead to a total loss of power due to engine failure. - Reduce power on affected engine. - Increase airspeed. ## **CAUTION** At high ambient temperature conditions, and/or at low airspeeds with high power settings, it can be assumed that there is no technical defect in the gearbox and that the above mentioned procedure will decrease the temperature(s). This might not be the case if the gearbox temperature does not return to the green range. In this case, perform a precautionary landing on the nearest suitable airfield. Prepare for an engine failure in accordance with 3.7.6 - ENGINE FAILURES IN FLIGHT. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 3 - 11 | |---------------------|--------|-------------|-------------| | | | | | # 3.2.6 L/R FUEL TEMP | L/R FUEL TEMP | Left/Right fuel temperature is in the upper red range (too high/above 60 °C). | |---------------|---| |---------------|---| Fuel temperatures above the limit value of 60 °C can lead to a noticeable reduction of the high pressure pump efficiency. - Reduce power on affected engine. - Increase airspeed. ## **CAUTION** At high ambient temperature conditions, and/or at low airspeeds with high power settings and low fuel quantities, it can be assumed that the above mentioned procedure will decrease the temperature(s). If the fuel temperature does not return to the green range, perform a precautionary landing on the nearest suitable airfield. #### NOTE Increased fuel temperature may occur when the fuel quantity in the main tank is low. If the auxiliary tank is installed, the fuel temperature can be decreased by transferring fuel from the auxiliary to the main tank. | Page 3 - 12 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| **Emergency Procedures** # 3.2.7 L/R FUEL PRESS | L/R FUEL PRESS | Left/Right engine fuel pressure is low. | |----------------|---| |----------------|---| - 1. Fuel quantity check - 2. FUEL SELECTOR of affected engine check ON - 3. Fuel pump of affected engine ON if L/R FUEL PRESS warning remains: 4. FUEL SELECTOR of affected engine CROSSFEED if L/R FUEL PRESS warning still remains: # **WARNING** Imminent engine failure must be expected. Prepare for an engine failure in accordance with 3.7.6 - ENGINE FAILURE IN FLIGHT. #### **END OF CHECKLIST** # 3.2.8 L/R ALTN AMPS | L/R ALTN AMPS | Left/Right engine alternator output is in the upper red range (too high/above 70 A). | |---------------|--| |---------------|--| Proceed according to: 3.10.2 - HIGH CURRENT | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 3 - 13 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| # 3.2.9 L/R ENG FIRE | L/R ENG FIRE | Left/Right engine fire detected. | |--------------|----------------------------------| |--------------|----------------------------------| Engine fire can lead to a total loss of power due to engine failure as well as severe structural damage. Proceed according to the following procedures as applicable: 3.11.1 - ENGINE FIRE ON GROUND 3.11.2 - ENGINE FIRE DURING TAKE-OFF 3.11.3 - ENGINE FIRE IN FLIGHT # **END OF CHECKLIST** # **3.2.10 L/R STARTER** | L/R STARTER | |-------------| |-------------| Proceed according to: 3.10.3 - STARTER MALFUNCTION | Page 3 - 14 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| **Emergency Procedures** # **3.2.11 DOOR OPEN** | L/R DOOR OPEN | Left/Right door is not closed and locked. | | |----------------|--|--| | REAR DOOR OPEN | Rear door is not closed and locked. | | | FWD DOOR OPEN | Left or right baggage door is/are not closed and locked. | | Proceed according to: 3.12.2 - UNLOCKED DOORS # 3.3 AIRPLANE-RELATED G1000 CAUTIONS # 3.3.1 L/R ALTN FAIL | L/R ALTN FAIL | Left/Right engine alternator has failed. | |---------------|--| |---------------|--| # (a) One Alternator Failed Proceed according to: 4B.4.6 - L/R ALTN FAIL # (b) Both Alternators Failed # **WARNING** If both alternators fail at the same time, reduce all electrical equipment to a minimum. Expect battery power to last 30 minutes and land the airplane as soon as possible. Expect engine stoppage after this period of time. | 1. | AVIONICS MASTER | OFF | |----|-------------------------|---------------------------------| | 2. | LH/RH Alternator | OFF | | 3. | XPDR | STBY | | 4. | LANDING GEAR | down, when down and locked pull | | | | Emergency Release | | 5. | Stall/Pitot/Static Heat | OFF | | 6. | All lights | OFF | | Page 3 - 16 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| # 3.4 G1000 SYSTEM WARNINGS # 3.4.1 RED X/YELLOW X A red or yellow X through any display field, such as COM frequencies, NAV frequencies, or engine data, indicates that display field is not receiving valid data. # 3.4.2 ATTITUDE FAIL | The display system is not receiving attitude reference information from the AHRS; accompanied by the removal of sky/ground presentation and a red X over the attitude area. | |---| | the attitude area. | Revert to the standby attitude indicator, part of the Standby Attitude Module. # 3.4.3 AIRSPEED FAIL | AIRSPEED FAIL | The display system is not receiving airspeed input from the air data computer; accompanied by a red X | | |---------------|---|--| | | through the airspeed display. | | Revert to the standby airspeed indicator, part of the Standby Attitude Module. # 3.4.4 ALTITUDE FAIL | ALTITUDE FAIL | The display system is not receiving altitude input from the air data computer; accompanied by a red X | | |---------------|---|--| | | through the altimeter display. | | Revert to the standby altimeter, part of the Standby Attitude Module. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 3 - 17 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| # 3.4.5 VERT SPEED FAIL | The display system is not receiving vertical speed input from the air data computer; accompanied by a | | |---|--| | red or yellow X through the vertical speed display. | | Determine vertical speed based on the change of altitude information. # 3.4.6 HDG | HDG | The display system is not receiving valid heading input from the AHRS; accompanied by a red X | | |-----|---|--| | | through the digital heading display. | | Revert to the emergency compass. # **3.5 G1000 FAILURES** # 3.5.1 NAVIGATION INFORMATION FAILURE If Garmin G1000 GPS navigation information is not available or invalid, utilize remaining operational navigation equipment as required. # 3.5.2 PFD OR MFD DISPLAY FAILURE 1. DISPLAY BACKUP button on audio panel . . PUSH # Automatic Entry of Display Reversionary Mode If the PFD and MFD have automatically entered reversionary mode, use the following procedure. (a) DISPLAY BACKUP button on audio panel PUSH (button will be OUT) #### NOTE After automatic entry of reversionary mode, the pilot must press the DISPLAY BACKUP button on the audio panel. After the DISPLAY BACKUP button has been pushed, the system will remain in reversionary mode even if the problem causing the automatic entry of reversionary mode is resolved. A maximum of one attempt to return to normal mode is approved using the following procedure. ## **CONTINUED** | Doc. No. 11.01.05-E | Rev. 0 11-Jan-2019 | Page 3 - 19 | |---------------------|--------------------|-------------| |---------------------|--------------------|-------------| # (b) DISPLAY BACKUP button on audio panel PUSH (button will be IN) - If the system returns to normal mode, leave the DISPLAY BACKUP button IN and continue. - If the system remains in reversionary mode, or abnormal display behavior such as display flashing occurs, then return the DISPLAY BACKUP button to the OUT position. #### **END OF CHECKLIST** # 3.5.3 AHRS FAILURE #### NOTE A failure of the Attitude and Heading Reference System (AHRS) is indicated by a removal of the sky/ground presentation and a red X and a yellow "AHRS FAILURE" shown on the PFD. The digital heading presentation will be replaced with a yellow "HDG" and the compass rose digits will be removed. The course pointer will indicate straight up and course may be set using the digital window. | 1. | Use standby attitude indicator, emergency compass and navigation map | |----
--| | 2. | Course set using digital window | | Page 3 - 20 Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |--------------------|-------------|---------------------| |--------------------|-------------|---------------------| # 3.5.4 AIR DATA COMPUTER (ADC) FAILURE #### NOTE Complete loss of the Air Data Computer is indicated by a red X and yellow text over the airspeed, altimeter, vertical speed, TAS and OAT displays. Some FMS functions, such as true airspeed and wind calculations, will also be lost. Use standby airspeed indicator and altimeter, part of the Standby Attitude Module. #### **END OF CHECKLIST** #### 3.5.5 ERRONEOUS OR LOSS OF ENGINE AND FUEL DISPLAYS #### **NOTE** Loss of an engine parameter is indicated by a red or yellow X through the data field. Erroneous information may be identified by indications which do not agree with other system information. Erroneous indications may be determined by comparing a display with other displays and other system information. - 1. Set power based on power lever position, engine noise and speed. - 2. Monitor other indications to determine the health of the engine. - 3. Use known power settings and Section 5.3.2 of the AFM for approximate fuel flow values. - 4. Use other system information, such as annunciator messages, GPS fuel quantity and flow to safely complete the flight. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 3 - 21 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| # 3.5.6 ERRONEOUS OR LOSS OF WARNING/CAUTION ANNUNCIATORS #### **NOTE** Loss of an annunciator may be indicated when engine or fuel displays show an abnormal or emergency situation and the annunciator is not present. An erroneous annunciator may be identified when an annunciator appears which does not agree with other displays or system information. - If an annunciator appears, treat it as if the condition exists. Refer to Chapter 3 EMERGENCY PROCEDURES or Chapter 4B ABNORMAL OPERATING PROCEDURES. - If a display indicates an abnormal condition but no annunciator is present, use other system information, such as engine displays, GPS, fuel quantity and flow to determine if the condition exists. If it cannot be determined that the condition does not exist, treat the situation as if the condition exists. Refer to Chapter 3 - EMERGENCY PROCEDURES or Chapter 4B - ABNORMAL - Refer to Chapter 3 EMERGENCY PROCEDURES or Chapter 4B ABNORMAL OPERATING PROCEDURES. | Page 3 - 22 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| | | | | | **Emergency Procedures** # 3.6 ABNORMAL ENGINE BEHAVIOUR 1. Full power apply If the abnormal engine behavior sustains, refer to 3.7 - ONE ENGINE INOPERATIVE PROCEDURES. # 3.7 ONE ENGINE INOPERATIVE PROCEDURES # **WARNING** In certain combinations of airplane weight, configuration, ambient conditions, speed and pilot skill, negative climb performance may result. Refer to Chapter 5-PERFORMANCE for one engine inoperative performance data. In any event, the sudden application of power during oneengine inoperative operation makes the control of the airplane more difficult. # 3.7.1 DETECTING THE INOPERATIVE ENGINE #### NOTE One engine inoperative means an asymmetric loss of thrust, resulting in uncommanded yaw and roll in direction of the so-called "dead" engine (with coordinated controls). To handle this situation, it is vital to maintain directional control by mainly rudder and additional aileron input. The following mnemonic can help to identify the failed engine: "Dead foot - dead engine" This means that, once directional control is re-established, the pilot can feel the control force on the foot pushing the rudder-pedal on the side of the operative engine, while the foot on the side of the failed engine feels no force. Further, the engine instruments can help to analyze the situation. ### 3.7.2 ENGINE TROUBLESHOOTING #### **WARNING** Control over the flight attitude has priority over attempts to solve the current problem ("first fly the airplane"). #### **NOTE** With respect to handling and performance, the left-hand engine (pilots view) is considered the "critical" engine. # If both ECU A and ECU B Cautions Appear Simultaneous - if the indicated LOAD remains unchanged, and - if the perceived thrust is reduced, and - if the engine noise level changes or the engine is running rough - 1. POWER lever..... IDLE for 1 second - 2. POWER lever..... slowly increase to 1975 **RPM** If the engine shows a power loss during the POWER lever increases: 3. POWER lever..... IDLE for 1 second 4. POWER lever..... slowly increase, stop prior to the former observed engine power loss RPM | Page 3 - 26 Rev. (| 11-Jan-2019 | Doc. No. 11.01.05-E | |--------------------|-------------|---------------------| |--------------------|-------------|---------------------| ### **WARNING** Do not increase the POWER lever past the propeller speed of 1975 RPM or the setting determined in step 4. An increase of engine power beyond this setting leads into another power loss. #### **NOTE** With this power setting the engine can provide up to 65% at the maximum propeller speed of 1975 RPM. 5. Land at the next suitable airfield # Otherwise: ### **NOTE** If the loss of power was due to unintentional setting of the POWER lever, you may adjust the friction lock and continue flight. Depending on the situation, the following attempts can be made to restore normal engine operation: | 1. | Circuit breakers | |-------|---| | If no | ormal engine operation is restored, continue flight and land as soon as possible. | | Oth | erwise: | | 2. | VOTER switch swap between ECU A and B | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 3 - 27 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| If either ECU A or B setting restores normal engine operation, then maintain that ECU setting and land as soon as possible. #### Otherwise: 3. VOTER switch switch back to AUTO to retain ECU redundancy If normal engine operation is restored continue flight and land as soon as possible. #### Otherwise: FUEL SELECTOR of affected engine CROSSFEED (above 10000 ft turn LH/RH FUEL PUMP to ON before crossfeed operation If normal engine operation is restored, continue flight. Remain within maximum allowable lateral imbalance. #### Otherwise: 5. FUEL SELECTOR of affected engine ON/CROSSFEED as required (above 10000 ft turn LH/RH FUEL PUMP to ON before crossfeed operation) 6. ALTERNATE AIR OPEN 7. POWER lever of affected engine apply power as required If normal engine operation is restored, continue flight and land as soon as practicable. If normal engine operation could not be restored by following the procedures in this section prepare for 3.7.3 - ENGINE SECURING (FEATHERING) PROCEDURE and land as soon as possible. | Page 3 - 28 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| ## 3.7.3 ENGINE SECURING (FEATHERING) PROCEDURE Shut down and feathering of the affected engine: | 1. | Affected engine | identify & verify | |----|-----------------|-------------------| |----|-----------------|-------------------| 2. ENGINE MASTER affected engine OFF # **CAUTION** Do not shut down an engine with the FUEL SELECTOR valve. Otherwise the high pressure fuel pump can be damaged. ## Securing the feathered engine: | 3. | Alternator affected engine | OFF | |----|-------------------------------|-----------| | 4. | Fuel pump | check OFF | | 5. | FUEL SELECTOR affected engine | OFF | ## **NOTE** The remaining fuel in the tank of the secured engine can be used for the remaining engine to extend range and maintain lateral balance by setting the FUEL SELECTOR of the remaining engine in the CROSSFEED position. If one of the POWER levers is set to low settings, the landing gear warning horn is activated. Set the POWER lever of the secured engine forward as required to mute the warning horn. | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 3 - 29 | |--| |--| ### 3.7.4 UNFEATHERING & RESTARTING THE ENGINE IN FLIGHT If the reason for the shutdown has been ascertained, and there is no indication of malfunction or engine fire, a restart may be attempted. # Restarting the Engine with the Starter Maximum restart altitude: 10,000 ft pressure altitude for restarts within two minutes. If MÄM 62-168 (engine software VC33_2P_05_19 or later approved software) is installed: 15,000 ft pressure altitude for immediate restarts Up to 10,000 ft pressure altitude: | OAT | | Max. engine
OFF time | |-----------|----------|-------------------------| | [° C] | [° F] | [minutes] | | below -15 | below 5 | 2 | | -15 to -5 | 5 to 23 | 5 | | above -5 | above 23 | 10 | Maximum restart airspeed: max. 80 KIAS or airspeed for a stationary propeller, whichever is lower #### **WARNING** V_{MCA} is 76 KIAS and should be considered when attempting to engine restart with the starter and obtaining a stationary propeller. This limitation should be observed. | Page 3 - 30 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| ### **CAUTION** Do not engage the starter when the propeller is windmilling. ### **NOTE** At airspeeds below 80 KIAS it is possible that the propeller may turn intermittently. If the propeller is turning intermittently, make sure that the starter engagement is timed with the momentarily stationary propeller. |
1. | POWER lever of affected engine | IDLE | |----|----------------------------------|-------------------------------------| | 2. | FUEL SELECTOR of affected engine | check ON | | 3. | Alternate air | as required | | 4. | ALTERNATOR of affected engine | ON | | 5. | ENGINE MASTER of affected engine | ON, propeller un-feathers | | 6. | STARTER of affected engine | engage when propeller is stationary | ### **CAUTION** After the engine has started, the POWER lever should be set to a moderate power setting until engine temperatures have reached the green range. 7. Circuit breakers check/reset if necessary | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 3 - 3 | 1 | |---|---| |---|---| # Restarting the Engine by Windmilling If the reason for the shutdown has been ascertained, and there is no indication of malfunction or engine fire, a restart may be attempted. Maximum restart altitude: 20,000 ft pressure altitude for immediate restart. 10,000 ft pressure altitude for restarts within two minutes. If MÄM 62-168 (engine software VC33_2P_05_19 or later approved software) is installed: 15,000 ft pressure altitude for immediate restarts Up to 10,000 ft pressure altitude: | OAT | | Max. engine
OFF time | |-----------|----------|-------------------------| | [° C] | [° F] | [minutes] | | below -15 | below 5 | 2 | | -15 to -5 | 5 to 23 | 5 | | above -5 | above 23 | 10 | Minimum restart airspeed: 110 KIAS below 10,000 ft pressure altitude 100 KIAS above 10,000 ft pressure altitude Maximum restart airspeed: 115 KIAS | Page 3 - 32 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| ### **CAUTION** - 1. Do not engage the starter when the propeller is windmilling. - 2. Do not attempt restart below 100 KIAS (above 10,000 ft pressure altitude) or 110 KIAS (below 10,000 ft pressure altitude). - 3. Do not attempt restart above 115 KIAS. #### **NOTE** Below 110 KIAS (below 10,000 ft pressure altitude) or 100 KIAS (above 10,000 ft pressure altitude) it is possible that the propeller may not windmill continuously. Continuous windmilling is required for a successful restart. Above 115 KIAS, a restart can overspeed the propeller. | 1. | POWER lever of affected engine | IDLE | |----|----------------------------------|--| | 2. | FUEL SELECTOR of affected engine | check ON | | 3. | Alternate air | as required | | 4. | ALTERNATOR of affected engine | ON | | 5. | ENGINE MASTER of affected engine | ON, propeller un-feathers and restarts | | | | by windmilling | #### **CAUTION** After the engine has started, the POWER lever should be set to a moderate power setting until engine temperatures have reached the green range. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 3 - 33 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| # 3.7.5 ENGINE FAILURE DURING TAKE-OFF - a) Engine Failure During Ground Roll - Abort take-off. | 1. | POWER lever | IDLE/BOTH | |----|-------------|------------------------------| | 2. | Rudder | maintain directional control | | 3. | Brakes | as required | # **CAUTION** If sufficient time is remaining, the risk of fire in the event of a collision with obstacles can be reduced as follows: | 4. | ENGINE MASTER | both OFF | |----|---------------|----------| | 5. | FUEL SELECTOR | both OFF | | 6. | ELECT. MASTER | OFF | | Page 3 - 34 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| ## b) Engine Failure After Lift Off If the landing gear is still extended and the remaining runway/surface is adequate: - Abort the take-off & land straight ahead. If the remaining runway/surface is inadequate: - Decide whether to abort or to continue the take-off. Continued take-off: #### **WARNING** A continued take-off is not recommended if the steady rate of climb according to Section 5.3.8 - ONE ENGINE INOPERATIVE CLIMB PERFORMANCE is less than 3.3 %. Under certain combinations of ambient conditions, such as turbulence, crosswinds and wind shear as well as pilot skill, the resulting climb performance may nevertheless be insufficient to continue the take-off successfully. Therefore a continued take-off with a failed engine has to be avoided if at all possible. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 3 - 35 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| | 1. | POWER lever | MAX | |----|--------------------|------------------------------------| | 2. | Rudder | maintain directional control | | 3. | Airspeed | V_{YSE} = 87 KIAS up to 1999 kg | | | | (4407 lb) | | | | 89 KIAS above 1999 kg (4407 lb) | | 4. | Landing gear | UP to achieve a positive ROC | | 5. | FLAPS | check UP | | 6. | Inoperative engine | secure according to 3.7.3 - ENGINE | | | | SECURING (FEATHERING) | | | | PROCEDURE | Land as soon as possible according to 3.7.7 - LANDING WITH ONE ENGINE INOPERATIVE. If a diversion is required before landing, continue according to Section 3.7.9 - FLIGHT WITH ONE ENGINE INOPERATIVE. ## 3.7.6 ENGINE FAILURES IN FLIGHT # (a) Engine Failure During Initial Climb #### **WARNING** As climb is a flight condition which is associated with high power settings, airspeeds lower than $v_{\text{MCA}} = 76 \text{ KIAS}$ (flaps UP) or 70 KIAS (flaps T/O) should be avoided as a sudden engine failure can lead to loss of control. In this case, it is very important to reduce the asymmetry in thrust to regain directional control. | 1. Rudder | maintain directional control | |---|---| | 2. Airspeed | v_{YSE} = 87 KIAS up to 1999 kg | | | (4407 lb) | | | 89 KIAS above 1999 kg (4407 lb) | | 3. Operative engine | increase power as required if directional | | | control has been established | | | | | Establish minimum/zero sideslip condition. (appre | ox. half ball towards good engine; | | 3° to 5° bank). | | | 4. Inoperative engine | Secure according to 3.7.3 - ENGINE | | ggg | SECURING (FEATHERING) | | | PROCEDURE | | | | Land as soon as possible according to 3.7.7 - LANDING WITH ONE ENGINE INOPERATIVE. If a diversion is required before landing, continue according to Section 3.7.9 - FLIGHT WITH ONE ENGINE INOPERATIVE. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 3 - 37 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| # (b) Engine Failure During Flight | 1. Rudder | maintain directional control | |--|--| | 2. Airspeed | $v_{YSE} = 87 \text{ KIAS up to } 1999 \text{ kg}$ | | | (4407 lb) | | | 89 KIAS above 1999 kg (4407 lb) | | 3. Operative engine | increase power up to 95% load | | | | | Establish minimum/zero sideslip condition. (appr | ox. half ball towards good engine; | | 3° to 5° bank). | | | 4 Inaparativa angina | Secure according to 2.7.2 ENCINE | | 4. Inoperative engine | • | | | SECURING (FEATHERING) | | | PROCEDURE. | Land as soon as possible according to 3.7.7 - LANDING WITH ONE ENGINE INOPERATIVE. If a diversion is required before landing, continue according to Section 3.7.9 - FLIGHT WITH ONE ENGINE INOPERATIVE. | Page 3 - 38 Rev. 0 11-Jan-2019 Doc. No. 11.01.0 |)5-E | |---|------| |---|------| **Emergency Procedures** # 3.7.7 LANDING WITH ONE ENGINE INOPERATIVE # Preparation: # **CAUTION** For emergency landing the adjustable backrests (if installed) must be fixed in the upright position. | the upright position | |---------------------------| | by a placard on the roll- | | nd verify proper fixation | | ened and tightened | | d | | ction | | | | | | | | | | | | red (feathered) according | | ENGINE SECURING & | | RING PROCEDURE | | | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 3 - 39 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| Not before being certain of "making the field": | 8. Airspeed | as required to operate landing gear | |---------------------------|---------------------------------------| | 9. Landing gear | DOWN, check 3 green | | 10. Trim | as required | | 11. Airspeed | reduce as required | | 12. FLAPS | as required | | 13. Final approach speed: | | | up to 1999 kg (4407 lb) | 91 KIAS (v _{REF} /FLAPS UP) | | | 88 KIAS (v _{REF} /FLAPS T/O) | | | 84 KIAS (v _{REF} /FLAPS LDG) | | above 1999 kg (4407 lb) | 95 KIAS (v _{REF} /FLAPS UP) | | | 91 KIAS (v _{REF} /FLAPS T/O) | | | 89 KIAS (v _{REF} /FLAPS LDG) | ### **WARNING** One-engine inoperative approaches for landing with flap settings of more than flaps UP are not recommended unless a safe landing is assured ("Making the field"). Higher flap settings increase the loss of altitude during the transition to a one engine inoperative go-around/balked landing. | 14. POWER lever | as required (both POWER levers | |-----------------|---| | | simultaneously) | | 15. Trim | as required/directional trim to neutral | | Page 3 - 40 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| **Emergency Procedures** # **NOTE** Higher approach speeds result in a significantly longer landing distance during flare. ## **CAUTION** In conditions such as (e.g.) strong wind, danger of wind shear or turbulence a higher approach speed should be selected. - Perform normal
touchdown and deceleration on ground. If the approach to land is not successful you may consider: ## 3.7.8 GO-AROUND/BALKED LANDING WITH ONE ENGINE INOPERATIVE ### **CAUTION** The go-around/balked landing is not recommended to be initiated below a minimum of 800 ft above ground. For performance data with one engine inoperative and flaps and gear UP refer to 5.3.8 - ONE ENGINE INOPERATIVE CLIMB PERFORMANCE. Under certain combinations of ambient conditions, such as turbulence, cross wind and windshear, as well as pilot skill, the resulting climb performance may nevertheless be insufficient for a successful go-around/balked landing. | 1. | POWER lever | MAX | |----|------------------------|--| | 2. | Initial pitch attitude | 6° UP | | 3. | Rudder | maintain directional control maintain | | 4. | Airspeed | $v_{YSE} = 87 \text{ KIAS up to } 1999 \text{ kg } (4407)$ | | | | lb) | | | | 89 KIAS above 1999 kg (4407 lb) | | 5. | Landing gear | UP | | 6. | FLAPS | UP | - Establish minimum sideslip and manoeuver for a new attempt to land. Repeat from step 1 of section 3.7.9 - FLIGHT WITH ONE ENGINE INOPERATIVE. | Page 3 - 42 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| If a positive rate of climb cannot be established: - Land so as to keep clear of obstacles. If time allows the following steps can reduce the risk of fire in an event of collision with obstacles after touchdown: | 6. | ENGINE MASTER | both OFF | |----|---------------|-------------------------| | 7. | FUEL SELECTOR | both OFF | | 8. | FLAPS | T/O or LDG, as required | #### **NOTE** Extending the gear and extending the flaps to LDG will increase drag and incur a high sink rate. Only when the landing area can be reached safely, landing with flaps LDG is advisable. ### **NOTE** If landing is performed off airfield, depending on the surface condition it may be beneficial to land with the gear UP. Note that the energy absorbing function of the landing gear is lost in such cases. 9. Approach speed: | up to 1999 kg (4407 lb): | min. 88 KIAS flaps T/O | |--------------------------|------------------------| | | min. 84 KIAS flaps LDG | | above 1999 kg (4407 lb): | min. 91 KIAS flaps T/O | | | min. 89 KIAS flaps LDG | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page | e 3 - 43 | |---------------------|--------|-------------|------|----------| |---------------------|--------|-------------|------|----------| | If landing is assured: | | |---|------------------------| | 10. FLAPS | LDG | | If landing with landing gear extended: | | | 11. LANDING GEAR | OFF | | If landing with landing gear retracted: | | | 11. LANDING GEAR | UP | | 12. Touch down | lowest practical speed | | Immediately after touch down: | | | 14. ELECT. MASTER | OFF | # NOTE If the ELECT. MASTER is switched OFF before touchdown the landing gear will extend slowly. | Page 3 - 44 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| | | | | | # 3.7.9 FLIGHT WITH ONE ENGINE INOPERATIVE ## **CAUTION** Even if a positive flight performance can be established with one engine inoperative, land as soon as possible at the next suitable airfield/airport. ### **CAUTION** Prolonged operation with excessive side slip/bank angle may cause fuel starvation, which is normally advised by LOW FUEL indication on the G1000. In this case return to coordinated flight or use CROSSFEED on the affected engine. | 1. | Airspeed | as required | l/above v _{YSE} = | |----|------------------|------------------------|----------------------------| | | | 87 KIAS (u | p to 1999 kg/4407 lb) | | | | 89 KIAS (a | bove 1999 kg/4407 lb) | | 2. | Remaining engine | monitor | engine instruments | | | | continuous | ly | | 3. | Fuel quantity | . monitor continuously | | | 4. | FUEL SELECTOR | remaining 6 | engine/set | | | | CROSSFE | ED (above 10000 ft | | | | turn LH/RH | FUEL PUMP to ON | | | | before cros | ssfeed operation) or | | | | ON so as to | o keep fuel quantity | | | | laterally ba | lanced | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 3 - 45 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| ### **NOTE** If the FUEL SELECTOR is set on CROSSFEED, the engine will be supplied with fuel from the main tank on the opposite side. This will extend range and helps to keep the wings laterally balanced (see 2.14 - FUEL). Land as soon as possible according to Section 3.7.7 - LANDING WITH ONE ENGINE INOPERATIVE. # 3.8 ENGINES OUT LANDING | 1. | ENGINE MASTER | both OFF | |----|---------------------------------|------------------------------| | 2. | Alternator switches | both OFF | | 3. | Fuel pumps | both OFF | | 4. | FUEL SELECTOR | both OFF | | 5. | AVIONIC MASTER | OFF | | 6. | Safety harnesses | check fastened and tightened | | | | | | Wh | en sure of making landing area: | | | 7. | FLAPS | T/O or LDG, as required | ### **NOTE** Extending the gear and extending the flaps to LDG will increase drag and incur a high sink rate. Only when the landing area can be reached safely, landing with flaps LDG is advisable. ### NOTE If landing is performed off airfield, depending on the surface condition it may be beneficial to land with the gear UP. Note that the energy absorbing function of the landing gear is lost in such cases. | 8. | Approach speed up to 1999 kg (4407 lb): | min. 88 KIAS flaps T/O
min. 84 KIAS flaps LDG | |----|---|--| | | above 1999 kg (4407 lb): | min. 91 KIAS flaps T/O
min. 89 KIAS flaps LDG | | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 3 - 47 | |--| |--| **Emergency Procedures** **END OF CHECKLIST** DA 62 AFM | Before landing: | | |---|------------------| | 9. FLAPS | LDG | | If landing with landing gear extended: | | | 10. LANDING GEAR | both IDLE
OFF | | If landing with landing gear retracted: | | | 10. LANDING GEAR 11. POWER lever | | | Immediately after touch down: | | | 14. ELECT. MASTER | OFF | # 3.9 DITCHING ### **CAUTION** The airplane has NOT been flight tested in actual ditching. The given recovery method is based on the best judgement of Diamond Aircraft. | 1. | Heavy objects | secure | |-------|---|---| | 2. | LANDING GEAR | UP | | | | | | In he | eavy swell with light wind, ditch parallel to the swe | ell. In heavy wind, ditch into the wind | | | savy even marngrit mina, anon paramente une eve | mina, and mina | | | | | | 3. | FLAPS | LDG | | 4. | Final approach speed | V _{REF} =84 KIAS (up to1999 kg) | | | | V _{REF} =89 KIAS (above 1999 kg) | | 5. | POWER | 300 ft/min rate-of-descent | | 6. | Touchdown | level attitude | | | | | | | | | ### **NOTE** Avoid a landing flare because of difficulty in judging height over a water surface. It is expected that the airplane may skip clear of the water once or twice using the technique outlined. On final contact with the water surface, the airplane will experience several seconds of moderate abrupt deceleration, and then will float for only a short time. | 7. | Airplane | EVACUATE through doors | |----|------------------------------------|------------------------| | 8. | Life vests and raft (if available) | INFLATE when outside | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 3 - 49 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| # 3.10 LANDING GEAR SYSTEM FAILURES ### 3.10.1 LANDING GEAR UNSAFE WARNING #### **NOTE** The landing gear unsafe warning light illuminates if the landing gear is neither in the final up or down and locked position. Illumination of this light is therefore normal during transit. If the light remains on for longer than 20 seconds during landing gear retraction/extension: | 1. | Airspeed | check below $v_{LOR} = 162 \text{ KIAS}$ | |----|---------------|--| | 2. | Gear selector | re-cycle if continued illumination | | | | occurs | If the landing gear cannot be extended to the down & locked position or red light does not extinguish: - Continue with 3.9.2 - MANUAL EXTENSION OF THE LANDING GEAR. | Page 3 - 50 | |-------------| |-------------| #### **NOTE** If the landing gear cannot be retracted to the final up position you may continue the flight with the landing gear extended in the down & locked position. Consider for higher aerodynamic drag, resulting in degraded flight performance, increased fuel consumption and decreased range. With the landing gear extended and at aft CG-locations, with flaps up and full power applied, the airplane will easily recover from sideslip if the trim is set to neutral (normal procedure). Otherwise, it may require corrective action with a moderate amount of rudder input. In cold ambient temperatures, it may help to reduce the airspeed below 110 KIAS for landing gear operation. ### 3.10.2 MANUAL EXTENSION OF THE LANDING GEAR #### NOTE In case of a failure of the electrical pump, which is driving the landing gear actuators, the landing gear can be extended manually at speeds up to 162 KIAS. The manual extension of the landing gear may take up to 20 seconds. The following checks shall be completed before extending the landing gear manually: Manual landing gear extension procedure: 5. Gear selector select DOWN 6. Manual gear extension handle pull out #### **NOTE** The landing gear should now extend by gravity and relief of hydraulic pressure from the system. If one or more landing gear indicator lights do not
indicate the gear down and locked after completion of the manual extension procedure steps 1 - 6 reduce airspeed below 110 KIAS and apply moderate yawing and pitching to bring the landing gear into the locked position. | Page 3 - 52 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| **Emergency Procedures** 7. Gear indicator lights check 3 green lights ### **NOTE** If the landing gear is correctly extended and locked, as indicated by the 3 green lights, the red light is illuminated additionally if the GEAR circuit breaker is pulled. If the landing gear cannot be extended to the down and locked position continue according to 3.9.3 - LANDING WITH GEAR UP. # 3.10.3 LANDING WITH GEAR UP # **NOTE** This procedure applies if the landing gear is completely retracted. | 1. | Approach | | |-------|--|--| | 2. | POWER lever | airspeeds and flap settings IDLE just before touchdown | | If th | e time/situation allows, the following steps can | help to reduce the risk of fire: | | 3. | ENGINE MASTER | both OFF | | 4. | Fuel pumps | check OFF | | 5. | FUEL SELECTOR | both OFF | | Tou | chdown: | | | 6. | Touchdown | contact surface with minimum airspeed | | 7. | On ground | • | | | 5 | rudder as long as possible so as to | | | | avoid collision with obstacles | | Imn | nediately after touchdown: | | | 8. | ELECT. MASTER | OFF | # **NOTE** If the ELECT. MASTER is switched OFF before touchdown the landing gear will extend slowly. | Page 3 - 54 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| **Emergency Procedures** # 3.10.4 LANDING WITH A DEFECTIVE TIRE ON THE MAIN LANDING GEAR #### **CAUTION** A defective (e.g. burst) tire is not usually easy to detect. The damage normally occurs during take-off or landing, and is hardly noticeable during fast taxiing. It is only during the roll-out after landing or at lower taxiing speeds that a tendency to swerve occurs. Rapid and determined action is then required. - 1. Land the airplane at the edge of the runway that is located on the side of the intact tire, so that changes in direction which must be expected during roll-out due to the braking action of the defective tire can be corrected on the runway. - 2. Land with one wing low. The wing on the side of the intact tire should be held low. - 3. Direction should be maintained using the rudder. This should be supported by use of the brake. It is possible that the brake must be applied strongly if necessary to the point where the wheel locks. The wide track of the landing gear will prevent the airplane from tipping over a wide speed range. There is no pronounced tendency to tip even when skidding. # 3.10.5 LANDING WITH DEFECTIVE BRAKES 1. Safety harness..... check fastened and tightened # **CAUTION** If sufficient time is remaining, the risk of fire in the event of a collision can be reduced as follows after a safe touch-down: - ENGINE MASTER both OFF - FUEL SELECTOR both OFF - ELECT. MASTER..... OFF # 3.11 FAILURES IN THE ELECTRICAL SYSTEM #### 3.11.1 COMPLETE FAILURE OF THE ELECTRICAL SYSTEM 5. Land on the nearest suitable airfield. #### **WARNING** Engine stoppage may occur, depending on the failure mode. Backup batteries are installed for the ECUs to provide electrical power solely to the ECU and their systems for at least 30 minutes. #### **NOTE** The landing gear uplock is no longer ensured. The landing gear may slowly extend. The landing gear can be extended manually according to 3.9.2 - MANUAL EXTENSION OF THE LANDING GEAR. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 3 - 57 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| ### **NOTE** The Standby Attitude Module will have electrical power for at least 1.0 hours. Make use of the Standby Attitude Module. Engine power can be set via visual reference of the POWER lever position. ### **END OF CHECKLIST** # 3.11.2 HIGH CURRENT If high current is indicated on the G1000: - 1. Circuit breakers check - 2. Reduce electric load to minimum required for continued safe flight. - 3. Land on the nearest suitable airfield. | Page 3 - 58 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| | | | | | **Emergency Procedures** # 3.11.3 STARTER MALFUNCTION If the starter does not disengage from the engine after starting (starter engaged warning (STARTER L/R) on the G1000 annunciator field illuminates after the engine has started): ### On Ground: | 1. | POWER lever affected engine | IDLE | | | |-------------------------------|-------------------------------|------|--|--| | 2. | ENGINE MASTER affected engine | OFF | | | | 3. | ELECT. MASTER | OFF | | | | Terminate flight preparation. | | | | | In flight: Refer to 3.7.4 - UNFEATHERING & RESTARTING THE ENGINE IN FLIGHT. If restart is not successful: Refer to 3.7.9 - FLIGHT WITH ONE ENGINE INOPERATIVE. # 3.12 SMOKE AND FIRE ### **NOTE** The cabin hand fire extinguisher is located inside the airplane passenger compartment on the RH side of the cabin floor behind the co-pilot seat. To release the fire extinguisher bottle out of the bracket, it is necessary to catch the bottle at the agent-outlet nozzle near the Y-spring. # 3.12.1 ENGINE FIRE ON GROUND | 2. | ENGINE MASTER | both OFF | |----------|----------------|----------| | Afte | er standstill: | | | 4.
5. | Doors | • | | ENI | O OF CHECKLIST | | ### 3.12.2 ENGINE FIRE DURING TAKE-OFF 1. Cabin heat & Defrost OFF Proceed according to 3.7.5 - ENGINE FAILURES DURING TAKE-OFF. | Page 3 - 60 Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |--------------------|-------------|---------------------| |--------------------|-------------|---------------------| **Emergency Procedures** ## 3.12.3 ENGINE FIRE IN FLIGHT Proceed according to 3.7.6 - ENGINE FAILURES IN FLIGHT and shut down the engine according to 3.7.3 - ENGINE SECURING (FEATHERING) PROCEDURE. #### **END OF CHECKLIST** # 3.12.4 ELECTRICAL FIRE ON GROUND 1. ELECT. MASTER OFF If the engine is running: POWER lever both IDLE ENGINE MASTER both OFF FUEL SELECTOR both OFF When the engine has stopped/after standstill: 5. Doors..... open 6. Airplane evacuate immediately | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 3 - 61 | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 3 - 61 | |--|--|---------------------|--------|-------------|-------------| |--|--|---------------------|--------|-------------|-------------| # 3.12.5 ELECTRICAL FIRE IN FLIGHT | 1. | AVIONIC MASTER | OFF | |----|------------------------------------|------------------| | 2. | ELECT. MASTER | OFF | | 3. | Cabin heat & Defrost | OFF | | 4. | Emergency windows | open if required | | 5. | Land on the next suitable airfield | | ## **CAUTION** Switching OFF the ELECT. MASTER will lead to total failure of all electronic and electric equipment. The attitude and heading reference system (AHRS) will also be affected. However, the internal battery will supply power to the standby attitude module. # 3.13 OTHER EMERGENCIES # 3.13.1 SUSPICION OF CONTAMINATION IN THE CABIN (CARBON MONOXIDE, COOLANT LIQUID ODOUR OR VAPOR) # Carbon Monoxide Carbon monoxide (CO) is a gas which is developed during the combustion process. It is poisonous and without smell. Increased concentrations of carbon monoxide gas can be fatal. The occurrence of CO in the cabin is possible only due to a defect. If a smell similar to exhaust gases is noticed in the cabin, the following measures should be taken: | 1. | Cabin heat & Defrost | OFF | |----|----------------------|------| | 2. | Ventilation | open | | 3. | Emergency windows | open | #### **END OF CHECKLIST** ## Coolant Liquid Odour or Vapor Coolant liquid odour or vapor can enter the airplane cabin through the heating system in case a coolant radiator is leaking due to damage. Coolant liquid odour or vapor is harmful to health and has a product specific smell. If an odour similar to glycol is noticed in the cabin, the following measures should be taken: | 1. | Cabin heat & Defrost | OFF | |----|----------------------|------| | 2. | Ventilation | open | | 3. | Emergency windows | open | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 3 - 63 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| ## 3.13.2 UNLOCKED DOORS | 1. | Airspeed | reduce immediately | |----|---------------------|--------------------------| | 2. | LH & RH Pilot Doors | check visually if closed | | 3. | Passenger door | check visually if closed | | 4. | Front baggage doors | check visually if closed | ## **END OF CHECKLIST** ## Passenger Door Unlocked - 1. Airspeed..... below 140 KIAS - 2. Land on the next suitable airfield. ## **WARNING** Do not try to lock the passenger door in flight. The safety latch may disengage and the door opens. Usually this results in a separation of the door from the airplane. ## **NOTE** If a door has been lost the airplane can be safely flown to the next suitable airfield. | Page 3 - 64 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| | . age e e . | | | | **Emergency Procedures** | Front Baggage Door Open | |-------------------------| |-------------------------| | 1. | Airspeed |
reduce, so that door is in a stable | |----|----------|---| | | | position | 2. Land on the next suitable airfield. ##
WARNING Separation of the baggage door may damage the propeller and may lead to an engine failure. ## 3.13.3 DEFECTIVE PROPELLER RPM REGULATING SYSTEM ## **CAUTION** The POWER lever should be moved slowly, in order to avoid over-speeding and excessively rapid RPM changes. The light wooden propeller blades produce more rapid RPM changes than metal blades. ## **WARNING** In case of a malfunction of the engine control unit, it is possible that the propeller blades will remain in the position of highest pitch. In this case the reduced engine performance should be taken into consideration. | <u>(a)</u> | Oscillating RPM | |------------|----------------------------| | 1. | POWER setting change | | If th | ne problem does not clear: | | 2. | Garmin G1000 | | If L | /R ECU A FAIL indicated: | | 3. | VOTER switch ECU B | | If L | /R ECU B FAIL indicated: | | 3. | VOTER switch ECU A | | Page 3 - 66 | |-------------| |-------------| ## **NOTE** If the problem does not clear itself, switch back to AUTO and land on the nearest suitable airfield. # (b) Propeller Overspeed ## NOTE This procedure applies for continued propeller overspeed due to a malfunction in the propeller constant speed unit or a engine control unit malfunction. | 1. | POWER setting | reduce as required | |-------|---------------------------|--------------------------------| | If th | e problem does not clear: | | | 2. | Garmin G1000 | check L/R ECU A/B FAIL caution | | If L/ | 'R ECU A FAIL indicated: | | | 3. | VOTER switch | ECU B | | If L/ | R ECU B FAIL indicated: | | | 3. | VOTER switch | ECU A | | | | | ## **CAUTION** If the problem does not clear itself, switch back to AUTO and land on the nearest suitable airfield. Prepare for engine malfunction according to 3.7.6 - ENGINE FAILURES IN FLIGHT. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | F | Page 3 - 67 | |---------------------|--------|-------------|---|-------------| |---------------------|--------|-------------|---|-------------| ## (c) Fixed RPM 1. POWER setting change If the problem does not clear: If L/R ECU A FAIL indicated: 3. VOTER switch ECU B If L/R ECU B FAIL indicated: 3. VOTER switch ECU A ## **NOTE** If the problem does not clear itself, switch back to AUTO and land on the nearest suitable airfield. **Emergency Procedures** # 3.13.4 UNINTENTIONAL FLIGHT INTO ICING | 1. | Leave the icing area (by changing altitude or t | turning back) | | | | |----|---|---------------------------------------|--|--|--| | 2. | PITOT HEAT | ON | | | | | 3. | Cabin heat & Defrost | ON | | | | | 4. | POWER lever | increase power, in order to prevent | | | | | | | ice build up on the propeller blades, | | | | | | | apply power changes periodically | | | | | 5. | ALTERNATE AIR | OPEN | | | | | 6. | Emergency windows | open if required | | | | | | | | | | | | | CAUTION | | | | | | | Ice build-up increases the stalling speed. | | | | | | 7. | ATC | advise if an emergency is expected | | | | # 3.13.5 FUEL SUPPLY FAILURE ## **WARNING** In case of a fuel supply failure, a fuel pump inspection is required prior to the next flight. | | Fuel quantity Fuel pump of affected engine | | |-------|---|---------| | If fu | el supply failure remains: | | | 4. | FUEL SELECTOR | ON | | 5. | Fuel pump of affected engine | ON | | 6. | Fuel quantity | monitor | | Page 3 - 70 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| | Page 3 - 70 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | ## 3.13.6 RECOVERY FROM AN UNINTENTIONAL SPIN ## **CAUTION** Spin recovery has NOT been shown during certification as it is NOT required for this airplane category. The given recovery method is based on general experience! ## **CAUTION** Intentional spins are prohibited in this airplane. In the event a spin is encountered unintentionally, immediate recovery actions must be taken. ## **CAUTION** Steps 1 to 4 must be carried out **immediately** and **simultaneously**. | 1. | POWER lever | IDLE | |----|--|---| | 2. | Rudder | full deflection against direction of spin | | 3. | Elevator (control stick) | fully forward | | 4. | Ailerons | neutral | | 5. | FLAPS | UP | | | en rotation has stopped: | | | 6. | Rudder | neutral | | 7. | Elevator (control stick) | pull carefully | | 8. | Return the airplane from a descending into a number the 'never exceed speed', $v_{NE} = 205$ KIAS. | normal flight attitude. Do not exceed | | | | | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 3 - 71 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| ## 3.13.7 EMERGENCY DESCENT | 1. | FLAPS | UP | |----|-------------|-------------| | 2. | Gear | DOWN | | 3. | POWER lever | IDLE | | 4. | Airspeed | as required | ## **WARNING** Max. structural cruising speed v_{NO} = 162 KIAS. Never exceed speed in smooth air. $v_{NE} = 205$ KIAS. ## **END OF CHECKLIST** ## 3.13.8 EMERGENCY EXIT In case of a roll over of the airplane on ground, any door can be used as exit. In case the doors are blocked, the egress hammer may be used to break through the door windows. If OÄM 62-019 is installed, a maximum of seven seats may be installed. In case of an emergency, the passengers on passenger row I must exit the airplane first. The LH seat backrest of passenger row I can be released by pulling the red emergency handle on the backside of the seat pan. The released backrest can be put away and the passengers of passenger row II can exit the airplane. | Page 3 - 72 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| | | | | | ## 3.13.9 AUTOPILOT OR ELECTRIC TRIM MALFUNCTION/FAILURE ### NOTE An autopilot or electric trim malfunction may be recognized by an unexpected deviation from the desired flight path, abnormal flight control or trim wheel movement, or flight director commands which cause unexpected or contradictory information on the other cockpit displays. It may be accompanied by the aural autopilot disconnect tone, a red AFCS, red PTCH, red ROL, red YAW, red AP or yellow AP indication on the PFD, or a yellow CHECK ATTITUDE on the PFD. The autopilot and AHRS monitors normally detect failures and automatically disconnect the autopilot. Failure of the electric pitch trim, indicated by a red boxed PTRM flashing on the PFD, may not cause the autopilot to disconnect. Be alert to possible autopilot out of trim conditions (see AUTOPILOT OUT OF TRIM procedure below), and expect residual control forces upon disconnect. The autopilot will not re-engage after disconnect with failed pitch trim. If AUTOPILOT OUT OF TRIM ELE indication is present, expect substantial elevator forces on autopilot disconnect. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 3 - 73 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| # **NOTE** # Accomplish items 1 and 2 simultaneously! | 1. Airplane control stick | grasp firmly and regain airplane | |---------------------------------|----------------------------------| | | control | | 2. AP DISC switch | DEPRESS AND HOLD | | 3. Trim | retrim airplane manually as | | | required | | 4. AFCS/ESP/USP circuit breaker | pull | | 5. AP DISC switch | RELEASE | ## **NOTE** When the AFCS/ESP/USP circuit breaker is pulled, the manual electric trim and autopilot autotrim systems will be disabled. ## **WARNING** Do not attempt to re-engage the autopilot following an autopilot, autotrim, or manual electric trim malfunction until the cause for the malfunction has been corrected. | Page 3 - 74 Re | v. 0 11-Jan-2019 | Doc. No. 11.01.05-E | |----------------|------------------|---------------------| |----------------|------------------|---------------------| # CHAPTER 4A NORMAL OPERATING PROCEDURES | | | | | ļ | Page | |------|-----------|--------------|--------------------------|-----|-------| | 4A.1 | INTRODI | JCTION | | | 4A-3 | | 4A.2 | AIRSPEE | DS FOR NOR | RMAL OPERATING PROCEDURI | ES | 4A-4 | | 4A.3 | ADVISOF | RY ALERTS O | N THE G1000 | | 4A-5 | | | 4A.3.1 A | .DVISORY/GE | NERAL | | 4A-5 | | | 4A.3.2 L/ | /R GLOW ON | | | 4A-5 | | | 4A.3.3 P | FD/MFD/GIA F | FAN FAIL | | 4A-5 | | | 4A.3.4 L/ | /R AUXPUMP | ON | | 4A-5 | | 4A.4 | FLIGHT (| CHARACTERI | STICS | | 4A-6 | | 4A.5 | DAILY C | HECK | | | 4A-6 | | 4A.6 | CHECKL | ISTS FOR NO | RMAL OPERATING PROCEDUR | RES | 4A-7 | | | 4A.6.1 P | RE-FLIGHT IN | NSPECTION | | 4A-7 | | | 4A.6.2 B | EFORE STAR | RTING ENGINE | 4 | ∤A-19 | | | 4A.6.3 S | TARTING EN | GINE | 4 | IA-22 | | | 4A.6.4 B | EFORE TAXII | NG | 4 | IA-24 | | | 4A.6.5 T | AXIING | | 4 | IA-26 | | | 4A.6.6 B | EFORE TAKE | -OFF | 4 | 1A-27 | | | 4A.6.7 T | AKE-OFF | | 4 | 1A-35 | | | 4A.6.8 C | LIMB | | 4 | IA-38 | | | 4A.6.9 C | RUISE | | 4 | IA-44 | | | 4A.6.10 | DESCENT | | 4 | ₽A-50 | | | 4A.6.11 / | APPROACH & | LANDING | 4 | IA-54 | | | 4A.6.12 (| GO AROUND | | 4 | ŧA-60 | | | 4A.6.13 / | AFTER LAND! | ING | 4 | ŧA-61 | | | | | | | | | | , | | , | | | # DA 62 AFM | 4A.6.14 | SHUT-DOWN | 4A-62 | |---------|-------------------------|-------| | 4A.6.15 | EXIT AIRPLANE | 4A-64 | | 4A.6.16 | POST FLIGHT INSPECTION | 4A-64 | | 4A.6.17 | PARKING | 4A-64 | | 4A.6.18 | FLIGHT IN RAIN | 4A-65 | | 4A.6.19 | REFUELING | 4A-65 | | 4A.6.20 | FLIGHT AT HIGH ALTITUDE | 4A-69 | | 4A.6.21 | DEMONSTRATION OF ENGINE | | | | SHUTDOWN/RESTART | 4A-69 | # **4A.1 INTRODUCTION** Chapter 4A contains checklists and describes procedures for the normal operation of the airplane. ## **NOTE** Readability of the G1000 PFD and MFD displays may be degraded when wearing polarized sunglasses. ## **NOTE** Normal operating
procedures for GFC 700 are described in the Garmin G1000 Cockpit Reference Guide, P/N 190-01896-00 or later and the Garmin G1000 Pilot's Guide for the Diamond DA 62, P/N 190-01895-00 or later. If MÄM 62-254 is installed, normal operating procedures for GFC 700 are described in the Garmin G1000 NXi Cockpit Reference Guide, P/N 190-01905-00 or later and the Garmin G1000 NXi Pilot's Guide for the Diamond DA 62, P/N 190-01904-00 or later. # 4A.2 AIRSPEEDS FOR NORMAL OPERATING PROCEDURES | | | Speed [KIAS] | | | |--|-------|----------------------------|----------------------------|--| | | FLAPS | up to 1999 kg
(4407 lb) | above 1999 kg
(4407 lb) | | | | UP | min. 80 | min. 80 | | | Airspeed for rotation (take-off run, v _R) | T/O | min. 76 | min. 78 | | | Airspeed for take-off climb (best angle-of-climb speed v _x) | T/O | min. 83 | min. 86 | | | | UP | 87 | 89 | | | Airspeed for best rate-of-climb (v _Y) | T/O | 83 | 86 | | | Airspeed for cruise climb | UP | min. 93 | min. 96 | | | | UP | 91 | 95 | | | Reference landing approach speed | T/O | min. 88 | min. 91 | | | Final approach speed | LDG | min. 84 | min. 89 | | | Minimum speed during go around | UP | min. 91 | min. 95 | | | Max. structural cruising speed Do not exceed this speed except in smooth air, and then only with caution. | UP | 162 | 162 | | | Safe, intentional, one-engine-inoperative speed (V _{SSE}) - a minimum speed to intentionally render the critical engine inoperative. | UP | 86 | 86 | | | Page 4A - 4 R | ev. 0 11-Jan-2019 | Doc. No. 11.01.05-E | |---------------|-------------------|---------------------| |---------------|-------------------|---------------------| # 4A.3 ADVISORY ALERTS ON THE G1000 The G1000 provides the following advisory-alerts on the PFD in the alert area: # 4A.3.1 ADVISORY/GENERAL | CHARACTERISTICS | White color coded text. | |-----------------|-------------------------| |-----------------|-------------------------| ## **4A.3.2 L/R GLOW ON** | L/R GLOW ON | Left/Right engine glow plug active. | |-------------|-------------------------------------| |-------------|-------------------------------------| # 4A.3.3 PFD/MFD/GIA FAN FAIL | PFD FAN FAIL | Cooling fan for the PFD is inoperative. | |--------------|---| | MFD FAN FAIL | Cooling fan for the MFD is inoperative. | | GIA FAN FAIL | Cooling fan for the GIA is inoperative. | The flight may be continued, but maintenance action is required after landing. ## 4A.3.4 L/R AUXPUMP ON | L/R AUXPUMP ON | Fuel transfer from auxiliary to main tank is in progress (if installed). | |----------------|--| |----------------|--| | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4A - 5 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| # **4A.4 FLIGHT CHARACTERISTICS** The DA 62 is to be flown with "the feet on the pedals", meaning that coordinated flight in all phases and configurations shall be supported by dedicated use of the rudder and ailerons together. With the landing gear extended and at aft CG-locations, with flaps up and full power applied, the airplane will easily recover from sideslip if the trim is set to neutral (normal procedure), otherwise it may require corrective action with a moderate amount of rudder input. # 4A.5 DAILY CHECK Before the first flight of a day it must be ensured that the following checks are performed. - * On-condition check of the LH and RH pilot door, the passenger door and the baggage compartment doors for cracks and major scratches. - * On-condition check of the hinges for the LH and RH pilot door, the passenger door and the baggage compartment doors. - * Visual inspection of the locking bolts for proper movement with no backlash. - * Tire inflation pressure check (main wheels: 3.8 bar/55 PSI, nose wheel: 3.2 bar/46 PSI). - * Visual inspection of both spinners and their attachment. # 4A.6 CHECKLISTS FOR NORMAL OPERATING PROCEDURES ## **4A.6.1 PRE-FLIGHT INSPECTION** ## I. Cabin check ## Preparation: | Prep | paration: | | |------|---|--------------------------------------| | a) | Parking brake | set ON | | b) | MET, NAV, mass and balance | flight planning completed | | c) | Airplane documents | complete and up to date | | d) | LH & RH Pilot doors and Passenger door | clean, undamaged, check locking | | | | mechanism function | | e) | Baggage | stowed and secured | | f) | Foreign objects | check | | g) | Emergency equipment (egress | | | | hammer, first aid kit, fire extinguisher, | | | | belt cutter (if OÄM 62-019 is installed)) | | | | and equipment necessary by national | | | | operation rules | stowed and secured | | | | | | Cen | ter console: | | | a) | FUEL SELECTORS | check ON | | b) | POWER levers | | | , | | and full travel/adjust friction, set | | | | | ## Below instrument panel in front of left seat: | a) | ALTERNATE STATIC SOURCE | check CLOSED | |----|------------------------------|-----------------| | b) | Manual gear extension handle | check pushed in | ## **CONTINUED** | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4A - 7 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| **IDLE** **DA 62 AFM** Below instrument panel in front of right seat: a) ALTERNATE AIR..... check CLOSED On the instrument panel: a) ALTERNATOR..... check both ON b) VOTER switch check both AUTO c) PITOT HEAT check OFF d) ENGINE MASTER check both OFF e) AVIONIC MASTER check OFF f) GEAR SELECTOR check DOWN g) FLAP SELECTOR check UP h) Circuit breakers set in (if one has been pulled, check reason) i) All electrical equipment OFF j) ELT armed Check procedure: a) ELECT. MASTER ON ## **CAUTION** When switching the ELECT. MASTER ON, the electrically driven hydraulic gear pump may activate itself for 5 to 20 seconds in order to restore the system pressure. Should the pump continue to operate continuously or periodically, terminate flight. There is a malfunction in the landing gear system. | Page 4A - 8 Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |--------------------|-------------|---------------------| |--------------------|-------------|---------------------| | b) | Fuel quantity | |----|---| | | CAUTION | | | Do not look directly into the anti collision lights. | | d) | Landing/taxi light | | e) | Stall warning/stall heat/Pitot heat/ | | ŕ | static port heat check | | | | | | NOTE | | | Because the stall warning switch gets slightly warmer on | | | ground, STAL HT FAIL may be indicated on the PFD. | | f) | Gear warning/ | | | fire detector TEST BUTTON PUSH check aural alert/fire | | | detection warning and aural alert and CHECK GEAR caution | | | | | | CAUTION | | | If the aural alert or the warning on the PFD does not appear, | | | terminate flight. Unscheduled maintenance is necessary. | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4A - 9 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| DA 62 AFM | g) | ELECT. MASTER | OFF | |----|-----------------|---------------------------------| | h) | Flight controls | check free and correct movement | | | | up to full deflection | | i) | Trims | check free and correct movement | | | | up to full deflection | # II. Walk-around check, visual inspection # **CAUTION** A visual inspection means: examination for damage, cracks, delamination, excessive play, load transmission, correct attachment and general condition. In addition, control surfaces should be checked for freedom of movement. ## **CAUTION** In low ambient temperatures, the airplane must be completely cleared of ice, snow and similar accumulations. For approved de-icing fluids, refer to Section 8.7 - GROUND DE-ICING. ## **CAUTION** Prior to flight, remove such items as control surfaces gust lock, Pitot cover, tow bar, etc. ## 1. Left main landing gear: | a) | Landing gear strut and lock | visual inspection, sufficient height (typical visible length of bare piston: | |----|-------------------------------------|--| | | | at least 5 cm/2.0 in) | | b) | Down and uplock switches (2 pieces) | visual inspection | | c) | Wear, tread depth of tire | visual inspection | | d) | Tire, wheel, brake | visual inspection | | e) | Brake line connection | check for leaks | | f) | Slip marks | visual inspection | | g) | Chocks | remove | | h) | Landing gear door | visual inspection | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4A - 11 | | |---------------------|--------|-------------|--------------|--| | | | | | | **DA 62 AFM** | 2. | Left | engine | nacelle: | |----|------|--------|----------| | | | | | | a) | 3 air inlets/2 air outlets | clear | |----|----------------------------|------------------------------------| | b) | Engine oil level | check dipstick (inspection hole in | | | | the side cowling) | | c) | Gearbox oil level | check visually (inspection hole in | | | | the side cowling) | | d) | Cowling | visual inspection | | e) | Gascolator/air inlet | drain off to check for water and | | | | sediment (drain until no water | | | | comes out)/clear | | f) | Venting pipe | check for blockage | | g) | Exhaust | visual inspection | ## **WARNING** The exhaust can cause burns when hot. h) Propeller..... visual inspection ## **WARNING** Never move the propeller by hand while the ENGINE MASTER switch is ON! Also do not move
the propeller by hand while the ENGINE MASTER is OFF immediately after operation (remaining pressure in the injection system rail). Serious personal injury may result. | Page 4A - 12 Rev. 0 11-Jan-2019 Doc. No. 11.01.05-E | |---| |---| # Normal Operating Procedures | i) | Nacelle underside | check for excessive contamination particularly by oil, fuel, and other fluids | |------|--------------------------------------|---| | j) | Auxiliary tank drain (if installed) | drain off to check for water and sediment (drain until no water comes out)/visual inspection | | k) | Auxiliary tank filler (if installed) | visual inspection, tank filler closed | | 3. L | eft wing: | | | a) | Entire wing surface | visual inspection | | b) | Tank air outlet on lower surface | visual inspection | | c) | Tank drain/tank air inlet | drain off to check for water and | | d) | Openings on lower surface | sediment (drain until no water
comes out)/visual inspection
check for foreign objects and for
traces of fuel (if tank is full, fuel may
spill over through the tank vent) | | e) | Stall warn device | visual inspection | | f) | Tank filler | visual inspection, check closed | | g) | Pitot probe | clean, orifices clear, cover removed, no deformation | | h) | Vortex generators | undamaged, 10 pieces, clean | | i) | Wing tip | visual inspection | | j) | Static dischargers | visual inspection | | k) | Position light, strobe light (ACL) | visual inspection | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4A - 13 | |---------------------|--------|-------------|--------------| |---------------------|--------|-------------|--------------| DA 62 AFM | l) | Tie-down | check, clear | |------|-----------------------------------|---| | m) | Aileron and linkage cover | visual inspection | | n) | Aileron hinges and safety pin | visual inspection | | 0) | Foreign objects in aileron paddle | visual inspection | | p) | Flap and linkage covers | visual inspection | | q) | Flap hinges and safety pin | visual inspection | | r) | Nacelle underside | visual inspection | | s) | Step | visual inspection | | 4. F | uselage, left side, underside: | | | a) | LH Pilot door | visual inspection | | b) | Passenger door & window | visual inspection | | c) | Fuselage skin | visual inspection | | d) | Antennas | visual inspection | | e) | Fuselage | check for contamination (hydraulic fluid) | | f) | Static source | , | | 5. E | mpennage: | | | a) | Stabilizers and control surfaces, | | | , | elevator tips | visual inspection | | b) | Hinges | · | | c) | Elevator trim tab | visual inspection, check safetying | | d) | Rudder trim tab | visual inspection, check safetying | | e) | Tie-down | check, clear | | f) | Tail skid and lower fin | visual inspection | | g) | Static dischargers | visual inspection | | 001 | ITINUED | | | Page 4A - 14 Rev. 0 11-Jan-2019 | Doc. No. 11.01.05-E | |---------------------------------|---------------------| |---------------------------------|---------------------| 6. Fuselage, right side: # Normal Operating Procedures | a) Fuselage skin | visual inspection | |--|--| | 7. Right Main Landing Gear: | | | a) Landing gear strut and lock | visual inspection, sufficient height
(typical visible length of bare piston:
at least 5 cm/2.0 in) | | b) Down and uplock switches (2 pieces) | visual inspection | 8. Right wing: a) Entire wing surface visual inspectionb) Tank air outlet on lower surface visual inspection c) Tank drain/tank air inlet drain off to check for water and sediment (drain until no water comes out)/visual inspection | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4A - 15 | |---------------------|--------|-------------|--------------| |---------------------|--------|-------------|--------------| DA 62 AFM | d) | Openings on lower surface | check for foreign objects and for traces of fuel (if tank is full, fuel may | |------|------------------------------------|---| | | | spill over through the tank vent) | | e) | Tank filler | visual inspection, check closed | | f) | Vortex generators | | | g) | Wing tip | • | | h) | Static dischargers | visual inspection | | i) | Position light, strobe light (ACL) | visual inspection | | j) | Tie-down | check, clear | | k) | Aileron and linkage cover | visual inspection | | I) | Aileron hinges and safety pin | visual inspection | | m) | Foreign objects in aileron paddle | visual inspection | | n) | Flap and linkage covers | visual inspection | | o) | Flap hinges and safety pin | visual inspection | | p) | Nacelle underside | visual inspection | | q) | Step | visual inspection | | r) | Cabin vent air inlet | check clear | | 9. R | ight engine nacelle: | | | ٠, | O air inlate/O air autlata | alaan | | a) | 3 air inlets/2 air outlets | | | b) | Engine oil level | the side cowling) | | c) | Gearbox oil level | check visually (inspection hole in | | | | the side cowling) | | d) | Cowling | visual inspection | | e) | Gascolator/air inlet | drain off to check for water and | | | | sediment (drain until no water | | | | comes out)/clear | | | | | | Page 4A - 16 Rev. 0 11-Jan-2019 | Doc. No. 11.01.05-E | |---------------------------------|---------------------| |---------------------------------|---------------------| # **Normal Operating Procedures** | f)
g) | Venting pipe | | |----------|---|----------------| | | WARNING | | | | The exhaust can cause burns when hot. | | | h) | Propeller visual inspection | | | | WARNING | | | | Never move the propeller by hand while the ENGIN | E | | | MASTER switch is ON! Also do not move the propeller be | у | | | hand while the ENGINE MASTER is OFF immediately after | | | | operation (remaining pressure in the injection system rail | l). | | | Serious personal injury may result. | | | i) | Nacelle underside | | | j) | Auxiliary tank drain (if installed) drain off to check sediment (drain comes out)/visual in | until no water | | k) | Auxiliary tank filler (if installed) visual inspection closed | • | | CON | NTINUED | | | | | | | Do | c. No. 11.01.05-E Rev. 0 11-Jan-2019 | Page 4A - 17 | DA 62 AFM | 10. Front fuselage and nose landing gea | ar: | |---|-----| |---|-----| | ۵) | Loft and right front baggage door | vicual ineraction, closed and locked | |----|---------------------------------------|---| | - | Left and right front baggage door | • | | b) | Nose landing gear strut | - | | | | (typical visible length of bare piston: | | | | at least 10 cm/3.9 in) | | c) | Down & uplock switches | visual inspection | | d) | Wear, tread depth of tire | check | | e) | Slip marks | visual inspection | | f) | Gear door and linkage | visual inspection | | g) | If OÄM 62-009 is installed: | | | | Nose cone surface | visual inspection | | h) | If OÄM 62-009 is installed: | | | | Nose cone attachment screws | visual inspection | | i) | If OÄM 62-009 is installed: | | | | Nose cone lightning protection strips | visual inspection | | j) | Chocks | remove | | k) | OAT sensor | check | | l) | EPU connector | check | | m) | Tow bar | remove | ## **4A.6.2 BEFORE STARTING ENGINE** | 1. | Preflight inspection | complete | |----|----------------------|------------| | 2. | Passengers | instructed | ## **NOTE** Ensure all the passengers have been fully briefed on the location, operation and use - of the seat belts, doors and backrest folding mechanism, - of the emergency exits, backrest release, emergency equipment and their placarding, - and the ban on smoking. - 3. Passenger door closed and locked ## **CAUTION** When operating the doors, pilots/operators must ensure that there are no obstructions between the doors and the mating frame, for example seat belts, clothing, etc. When operating the locking handle do NOT apply undue force. A slight downward/inward pressure on the doors may be required to ease the handle operation. ## **CAUTION** For take-off the adjustable backrests must be fixed in the upright position. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4A - | 19 | |---------------------|--------|-------------|-----------|----| |---------------------|--------|-------------|-----------|----| ## **NOTE** The pilot must ensure that a passenger sitting on a front seat is instructed in the operation of the adjustable backrest and the doors. | 4. | Adjustable backrests | adjust | to | the | upright position | |----|----------------------|----------|-------|--------|--------------------| | | | describe | ed b | y a pl | acard on the roll- | | | | over ba | r an | d veri | fy proper fixation | | 5. | Rudder pedals | adjuste | d | | | | 6. | Safety harnesses | all on a | nd fa | asten | ed | | 7. | POWER lever | check II | DLE | | | | 8. | Parking brake | set | | | | ## **CAUTION** If the provisions for tablet mounts are installed on the LH and RH A-column (OÄM 62-033 is installed) and a tablet computer is used, the pilot must ensure that the mount is adjusted to not interfere with the cockpit controls, to provide sufficient view outside and sufficient view for the instruments, and to not interfere with the control sticks in any position. | 9. | AVIONIC MASTER | check OFF | |-----|-----------------|-----------------| | 10. | GEAR selector | check DOWN | | 11. |
VOTER switch | check both AUTO | | 12. | ALTERNATORS | check both ON | | 13. | Fuel pump LH/RH | check OFF | | Page 4A - 20 Rev | . 0 11-Jan-2019 | Doc. No. 11.01.05-E | |------------------|-----------------|---------------------| |------------------|-----------------|---------------------| | 14. ELECT. I | MASIER | | ON | | | | | |--|---|----------------------------------|-------------|---------|-------------|----------------|------------| | | | CAUTION | N | | | | | | When switching the ELECT. MASTER ON, the electrically driven hydraulic gear pump may activate itself for 5 to 20 seconds in order to restore the system pressure. Should the pump continue to operate continuously or periodically, terminate flight preparation. There is a malfunction in the landing gear system. | | | | | | | | | 15. G1000 . | • | | Press | - | er-up
on | complet
MFD | ted.
to | | | | NOTE | | | | | | | | The engine insti
item 16 has bee | ruments are only aven completed. | /ailable on | the MFD | after | | | | 16. Fuel tem | perature | | check | | | | | | END OF CHE | CKLIST | | | | | | | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4A - 21 | |---------------------|--------|-------------|--------------| |---------------------|--------|-------------|--------------| ## **4A.6.3 STARTING ENGINE** ## **NOTE** At ambient temperatures below -22°C, the engine may not start at the first attempt. In this case, wait 60 seconds between the start attempts. | 1. | Strobe lights (ACL) | ON | |----|---------------------|--------------------------| | 2. | ENGINE MASTER | ON (L) | | 3. | Annunciations | check "L ENGINE GLOW" ON | ## **NOTE** "L ENGINE GLOW" is indicated only when the engine is cold. 4. Annunciations/Engine/System Page check OK/normal range ## **WARNING** Before starting the engine the pilot must ensure that the propeller area is free, and no persons can be endangered. After the L ENGINE GLOW indication is extinguished: | 5. | START LEFT button | PRESS as required/release when | |----|-------------------|--------------------------------| | | | engine has started | | Page 4A - 22 | Page 4A - 22 | Rev. 0 | 11-Jan-2019 | | Doc. No. 11.01.05-E | |--------------|--------------|--------|-------------|--|---------------------| |--------------|--------------|--------|-------------|--|---------------------| ## **CAUTION** Do not overheat the starter motor. Do not operate the starter motor for more than 10 seconds. At ambient temperatures below -22°C, it is possible that the engine will not start at the first attempt. In this case, wait 60 seconds between the start attempts. If the "L STARTER" annunciation comes on after the engine has started and the START push button has been released, set the ENGINE MASTER to OFF and investigate the problem. | 6. | Annunciations/Engine/System Page | check OK/normal range | |----|----------------------------------|-----------------------| | 7. | Annunciations/Starter | check OFF | | 8. | Annunciations/Oil pressure | check OK | ## WARNING If the oil pressure has not moved from the red range within 3 seconds after starting, set the ENGINE MASTER switch to OFF and investigate problem. | 9. | Circuit breakers | check all in/as required | |----|------------------|--------------------------| | 10 | . Idle RPM | check, 710 ± 30 RPM | Repeat with opposite engine. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4A - 23 | |---------------------|--------|-------------|--------------| |---------------------|--------|-------------|--------------| # **4A.6.4 BEFORE TAXIING** | 1. | AVIONIC MASTER | ON | |----|---------------------------------|---------------------------------| | 2. | Power lever | as required, max. 50% if engine | | | | temperature below green range | | 3. | Electrical equipment | ON as required | | 4. | Flight instruments and avionics | set as required | | 5. | Flood light | ON, test function, as required | | 6. | Pitot and stall warn heating | ON, check annunciation | ## **NOTE** The stall warning switch gets slightly warmer on ground only and STAL HT FAIL is indicated on the PFD. | 7. | Pitot and stall warn heating | OFF | |----|--|-------------| | 8. | Strobe lights (ACLs) | check ON | | 9. | Position lights, landing and taxi lights | as required | ## **CAUTION** When taxiing at close range to other airplanes, or during night flight in clouds, fog or haze, the strobe lights should be switched OFF. The position lights must always be switched ON during night flight. | 10. | Primary flight display (PFD) | NO AUTOPILOT ANNUNCIATIONS | |-----|------------------------------|----------------------------| | 11. | Autopilot disconnect tone | NOTE | | Page 4A - 24 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |--------------|--------|-------------|---------------------| |--------------|--------|-------------|---------------------| ### **NOTE** The AFCS system automatically conducts a preflight self-test upon initial power application. The preflight test is indicated by a white boxed PFT on the PFD. Upon successful completion of the preflight test, the PFT is removed, the red AFCS annunciation is removed, and the autopilot disconnect tone sounds. If AFCS annunciation remains on or a failure of the preflight test is indicated terminate flight preparation and investigate the problem. | 12. | MANUAL ELECTRIC TRIM - TEST as follows: | | | | |-----|--|-----------|-----------|--------------------| | | Press the AP DISC button down and hold whi | ile comm | anding | trim. | | | Manual electric trim should not operate either | nose up | or nose | e down. | | 13. | AUTOPILOT | engage | by pres | sing AP button | | 14. | AP DISC switch | press. | Verify | that the autopilot | | | | disconr | ects. | | | 15. | TRIM | set to ta | ake-off p | osition manually | ## **4A.6.5 TAXIING** | 1. | Parking brake | release | |----|-------------------------------------|-------------------------------| | 2. | Brakes | test on moving off | | 3. | Nose wheel steering | check for proper function | | 4. | Flight instrumentation and avionics | check for correct indications | | 5. | Fuel pumps LH/RH | check OFF | | 6. | FUEL SELECTOR | CROSSFEED (LH/RH) | ## **CAUTION** The fuel crossfeed function can be tested simultaneously with both engines. Proper function can be tested by running the engines for approx. 30 seconds with CROSSFEED selected. The operation of both engines with both FUEL SELECTORS in CROSSFEED position, other than for this test, is prohibited. 7. FUEL SELECTOR ON (LH/RH) ### **CAUTION** When taxiing on a poor surface, select the lowest possible RPM to avoid damage to the propeller from stones or similar items. | Page 4A - 26 R | Rev. 0 11-Jan | -2019 | Doc. No. 11.01.05-E | |----------------|---------------|-------|---------------------| |----------------|---------------|-------|---------------------| # **4A.6.6 BEFORE TAKE-OFF** | 1. | Position airplane into wind if possible. | | |----|--|-----| | 2. | Parking brake | set | ### **CAUTION** For take-off the adjustable backrests must be fixed in the upright position. | 3. | Adjustable backrests | verify upright position and proper | |----|----------------------|------------------------------------| | | | fixation | | 4. | Safety harnesses | on and fastened | | 5. | Passenger door | check closed and locked | ## **CAUTION** When operating the doors, pilots/operators must ensure that there are no obstructions between the doors and the mating frame, for example seat belts, clothing, etc. When operating the locking handle do NOT apply undue force. A slight downward/inward pressure on the doors may be required to ease the handle operation. | 6. | LH & RH Pilot doors | closed and locked | |----|--------------------------|-----------------------| | 7. | Front baggage doors | closed (visual check) | | 8. | Door warning (DOOR OPEN) | check no indication | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4A - 27 | |---------------------|--------|-------------|--------------| |---------------------|--------|-------------|--------------| DA 62 AFM | 9. | Annunciations/Engine/System Page | check OK/normal range (except oil | |-----|----------------------------------|-----------------------------------| | | | oil pressure may be in the yellow | | | | range with a warm engine and | | | | power lever set to IDLE) | | 10. | Circuit breakers | check pressed in | | 11. | Longitudinal trim | set T/O | # **WARNING** Take-off with CROSSFEED selected is prohibited. | 12. FUEL SELECTOR | check ON (LH/RH) | |----------------------|------------------------------------| | 13. Directional trim | centered | | 14. FLAPS | check function & indicator/set T/O | | 15. Flight controls | unrestricted free movement, | | | correct sense | | 16. PITOT HEAT | ON, if required | | 17. Landing light | ON, if required | | | | | Page 4A - 28 Rev. 0 11-Jan-2019 Doc. No. 11.01.0 | |--| |--| ## ECU/fuel pumps test sequence #### NOTE The following test sequence can be executed for both engines simultaneously, or in sequence. The engine/gearbox oil temperatures have to be in the green range before starting the test sequence. Efficient engine warm up may require higher power settings (max. 50% engine power). During the test sequence the engines will produce thrust therefore the parking brake must be set. ### A. Under 7500 ft #### **CAUTION** If the L/R ECU A/B FAIL indicators do not
illuminate during the test sequence there is a malfunction in the engine control system. Terminate flight preparation. The whole test procedure must be completed without any error (L/R ECU A/B FAIL extinguished after test completion). In case the test procedure aborts with an error indication (one or both ECU A/B FAIL indicators remain ON) terminate flight preparation, even if the engine seems to run smoothly after the test procedure. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4A - 29 | |---------------------|--------|-------------|--------------| |---------------------|--------|-------------|--------------| # **NOTE** Releasing the ECU TEST BUTTON or manipulating the power lever before the test sequence is completed will abort the test sequence. During the following ECU and fuel pump test, a shake of the engine might occur. | 1. | Power lever | IDLE | |----|---------------|----------------------| | 2. | Propeller RPM | check below 1000 rpm | | 3. | Fuel pumps | check OFF | ### **NOTE** By switching between ECU A and B the two independent electrical fuel pumps are switched over as well. | 4. | VOTER switch | ECU A | |-----|--------------|--------------------------------| | 5. | Engine | check running without a change | | | | (shake may occur) | | 6. | VOTER switch | AUTO | | 7. | Engine | check running without a change | | | | (shake may occur) | | 8. | VOTER switch | ECU B | | 9. | Engine | check running without a change | | | | (shake may occur) | | 10. | VOTER switch | AUTO | | Page 4A - 30 Rev | 0 11-Jan-2019 | Doc. No. 11.01.05-E | |------------------|---------------|---------------------| |------------------|---------------|---------------------| # **CAUTION** Running the engine with the VOTER switch on ECU A or ECU B, other than for this test or in an emergency is prohibited. The engine control system redundancy is only given with the VOTER switch set to AUTO. | 11. Engine/gearbox oil temperature | check in the green range | |--|--| | 12. Parking brake | check set | | 13. ECU TEST button | press and hold | | | | | Annunciations in the following sequence: | | | ECU A/B FAIL lights | ON | | Propeller RPM | increase above 1800 rpm | | Propeller RPM | decrease | | Propeller RPM | increase above 1800 rpm | | Propeller RPM | decrease to idle | | At this point, the test transfers from one ECU chan | nel to the other. | | Propeller RPM | increase above 1800 rpm | | Propeller RPM | decrease | | Propeller RPM | increase above 1800 rpm | | Propeller RPM | decrease to idle | | At this point, control of the engine is returned to the shake of the engine might occur. | initially active ECU channel. A slight | | ECU A/B FAIL lights | both OFF | | Doc. No. 11.01.05-E | 05-E Rev. 0 | 11-Jan-2019 | Page 4A - 31 | |---------------------|-------------|-------------|--------------| |---------------------|-------------|-------------|--------------| **DA 62 AFM** Test sequence completed. | 14. ECU TEST button | release | |---------------------|---------| | 15. Parking brake | release | # Available power check: | 1. | POWER lever | MAX for 10 seconds | |----|-----------------|--------------------------------| | 2. | Annunciations | check OK/normal range | | 3. | Instruments | check within normal range | | 4. | RPM | stabilizes at 2250 to 2300 RPM | | 5. | LOAD indication | stabilizes at 89% to 100% | # **CAUTION** The load indications in the table below are minimum values to be indicated with the airplane stationary in no wind conditions. If the engine does not stabilize at the target RPM and the required load indication, terminate flight preparation. | Page 4A - 32 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |--------------|--------|-------------|---------------------| |--------------|--------|-------------|---------------------| | | | OAT | | | | | | | | |---------------|----------------|--------------------|---------------|-------------|--------------|--------------|--------------|---------------|---------------| | Altitude [ft] | -35°C
-31°F | -20°C
-4°F | -10°C
14°F | 0°C
32°F | 10°C
50°F | 20°C
68°F | 30°C
86°F | 40°C
104°F | 50°C
122°F | | 0 | | 99%
98% 98% 98% | | | | 97% | 96% | 93% | 91% | | 2000 | | | | | | 97% | 96% | 93% | | | 4000 | | | | | | 97% | 96% | 93% | | | 6000 | | | | | | 97% | 96% | 93% | | | 8000 | | | | | | 96% | 95% | 92% | | | 10000 | 98% | 97% | 97% | 95% | 94% | 92% | 89% | | | | 6. | POWER lever | | IDLE | |----|-------------|--|------| |----|-------------|--|------| 7. Engine instruments check in green range ### **NOTE** With the power lever in IDLE the oil pressure may be in the low yellow range. This is acceptable to continue flight preparation. 8. Fuel pumps LH/RH ON #### **END OF CHECKLIST** ## B. Over 7500 ft: In case of aircraft operation at high elevated airfields (above 7500 ft & below 22.65 in Hg), it is possible that the ECU-Test will not start due to increased engine idle power. In this case, proceed instead of the ECU-Test as follows for LH and RH engine: | Doc. No. 11.01.05-E Rev. 0 | 11-Jan-2019 | Page 4A - 33 | |----------------------------|-------------|--------------| |----------------------------|-------------|--------------| **DA 62 AFM** ## Governor Test: ### **NOTE** During the governor test, the engines will produce maximum thrust, therefore firmly apply brakes. Also verify that the surrounding area is free of debris, dirt, loose stones or pebbles, or any other object that could become a hazard. | 1. | VOTER switch | ECU A | |-----|-----------------|--------------------------------------| | 2. | Engine | check running without a change | | | | (shake may occur) | | 3. | Power lever | MAX | | 4. | Propeller RPM | stabilizes at 2250 to 2300 RPM | | 5. | Load indication | stabilizes at 89% to 100% (see | | | | table power check) | | 6. | Power lever | IDLE | | 7. | VOTER switch | ECU B | | 8. | Engine | check running without a change | | | | (shake may occur) | | 9. | Power lever | MAX | | 10. | Propeller RPM | stabilizes at 2250 to 2300 RPM | | 11. | Load indication | stabilizes at 89% to 100% (see | | | | table power check) | | 12. | Power lever | IDLE | | 13. | VOTER switch | AUTO | | Page 4A - 34 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |--------------|--------|-------------|---------------------| |--------------|--------|-------------|---------------------| # 4A.6.7 TAKE-OFF | a) Standard Procedure | a) Standard Procedure (Take-off with Flaps T/O) | | | | |---|---|--|--------------|--| | | · | | | | | | NOT | ΓE | | | | MAX shou | | rformance of the engines
uring the take-off run, so t
necessary. | | | | 3. Elevator | | neutral | | | | | | maintain direction | | | | In strong crosswinds steering can be augmented by use of the toe brakes. It should be noted, however, that this method increases the take-off roll, and should not generally be used. 5. Nose wheel lift-off: up to 1999 kg (4407 lb): | | | | | | | | v _R min. 76 KIAS
above 1999 kg (4
v _R min. 78 KIAS | · | | | 6. Airspeed for initial | climb: | up to 1999 kg (44
min. 83 KIAS
above 1999 kg (4
min. 86 KIAS | , | | | Doc. No. 11.01.05-E | Rev. 0 11-J | an-2019 | Page 4A - 35 | | DA 62 AFM | Whe | en safe clim | b is establishe | ed: | | | |-------------|---|-----------------|----------------------|-------------------|---------------------------| | 7. | LANDING | GEAR | | apply brake | s; UP, check unsafe light | | | | | NOTE | | | | | | _ | le and excessive wea | | _ | | 8. | ALTERNA | TE AIR | | OPEN; in moisture | rain, snow or visible | | ENI | OF CHEC | KLIST | | | | | <u>b) T</u> | ake-off with | Flaps UP | | | | | 1.
2. | • | | | • | İ | | | | | NOTE | | | | | The proper and symmetric performance of the engines at MAX should be checked early during the take-off run, so that the take-off can be aborted if necessary. | | | | | | 3.
4. | | | | | rection | | COI | CONTINUED | | | | | | Pa | ge 4A - 36 | Rev. 0 | 11-Jan-2019 | | Doc. No. 11.01.05-E | ## **NOTE** In strong crosswinds, steering can be augmented by use of the toe brakes. It should be noted, however, that this method increases the take-off roll, and should not generally be used. | 5.6. | Nose wheel lift-off: | | | |---------------------------------|---|--|--| | Wh | en safe climb is established: | | | | 7. | LANDING GEAR | apply brakes; UP, check unsafe light off | | | | NOTE | | | | | To avoid damage and excessive wear of the main landing gear wheels, firmly apply brakes before selecting gear up. | | | 8. ALTERNATE AIR OPEN; in rain, snow or visible moisture # 4A.6.8 CLIMB # Initial Climb Check | 1. | Landing light | OFF/as required | |----------|-------------------------------------|--------------------------| | 2. | Landing gear | check UP | | 3. | FLAPS | check UP | | 4. | Fuel pumps LH/RH | OFF | | 5. | Airspeeds, best rate-of-climb | up to 1999 kg (4407 lb): | | | | 87 KIAS | | | | above 1999 kg (4407 lb): | | | | 89 KIAS | | | Airspeeds, as required for en route | | | | (cruise) climb | up to 1999 kg (4407 lb): | | | | 93 KIAS | | | | above 1999 kg (4407 lb): | | | | 00.1/14.0 | | | | 96 KIAS | | 6. | POWER
lever | | | 6.
7. | POWER lever | up to 95% | # **CAUTION** If the oil temperature and/or coolant temperature reaches the yellow range during climb, flight should be continued with the airspeed increased by 10 kts and power reduced by 10% (reduced climb rate) for better engine cooling. | Page 4A - 38 Rev | v. 0 11-Jan-2019 | Doc. No. 11.01.05-E | |------------------|------------------|---------------------| |------------------|------------------|---------------------| ### **NOTE** Operating in the gearbox temperature cautionary range is permitted. However, prolonged operation is not recommended. #### **END OF CHECKLIST** ## GFC 700 Operation During Climb #### **NOTE** The NOSE UP and NOSE DN buttons on the mode controller on the MFD are referenced to airplane movement. The NOSE UP button will increase the reference pitch attitude, increase the reference vertical speed and decrease the reference airspeed. Likewise, the NOSE DN button will decrease the reference pitch attitude, decrease the reference vertical speed, and increase the reference airspeed. ### a) Vertical Speed (VS) | 1. | Altitude preselect | set to desired altitude | |----|--------------------------------------|------------------------------| | 2. | Mode controller | select VS on mode controller | | 3. | Vertical speed reference | adjust using NOSE UP | | | | and NOSE DN buttons | | 4. | White ALT (altitude preselect armed) | note on PFD | | 5. | Green ALT | verify upon altitude capture | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4A - 39 | |---------------------|--------|-------------|--------------| |---------------------|--------|-------------|--------------| #### **NOTE** If the altitude preselect is not changed before selecting VS, the autopilot may re-capture the current altitude immediately after entering VS mode. Always ensure that the altitude preselect is adjusted prior to selecting VS. The vertical speed mode is limited to 1500 ft/min climb and 3000 ft/minute descent. Use engine power to maintain appropriate airplane speed. If the CWS switch is used while in VS mode, the VS reference will change to the vertical speed when the CWS switch is released. ### **END OF CHECKLIST** b) Flight Level Change (FLC) | 1. | Altitude preselect | set to desired altitude | |----|--------------------------------------|-------------------------------| | 2. | Mode controller | select FLC on mode controller | | 3. | Airspeed speed reference | adjust using NOSE UP and NOSE | | | | DN buttons | | 4. | White ALT (altitude preselect armed) | note on PFD | | 5. | Green ALT | verify upon altitude capture | #### **NOTE** If the altitude preselect is not changed before selecting FLC, the autopilot may re-capture the current altitude immediately after entering FLC mode. Always ensure that the altitude preselect is adjusted prior to selecting FLC. If the airspeed reference cannot be maintained without deviating away from the selected altitude, the system will maintain level flight until the power or reference is changed to allow climbing or descending towards the selected altitude. The FLC mode is limited to airspeeds between 90 KIAS and 185 KIAS. Use engine power to maintain appropriate vertical speed. If the CWS switch is used while in FLC mode, the airspeed reference will change to the airspeed when the CWS switch is released. **DA 62 AFM** # c) To Capture a Selected Altitude | 1. | Altimeter setting | adjust to appropriate value | |----|--------------------------------------|------------------------------| | 2. | Altitude preselect | set to desired altitude | | 3. | Vertical mode and reference | select on mode controller | | 4. | White ALT (altitude preselect armed) | note on PFD | | 5. | Green ALT | verify upon altitude capture | #### **NOTE** In ALT mode, the autopilot will maintain the reference altitude shown in the autopilot window of the PFD regardless of the altitude in the altitude preselect window or the altimeter's barometric pressure setting. If the altimeter setting is changed, the autopilot will climb or descend to maintain the reference altitude. # d) Navigation Capture and Track | 1. | Navigation source | select VOR or GPS using CDI | |----|--|----------------------------------| | | | button on PFD | | 2. | Course bearing pointer | set using course knob (VOR only) | | 3. | Intercept heading | establish in HDG or ROL mode | | | | (if required) | | 4. | Mode controller | select NAV on mode controller | | 5. | Green or white VOR or GPS annunciation | note on PFD | | 6. | Vertical mode and reference | select on mode controller | #### NOTE If the Course Deviation Indicator (CDI) is greater than one dot from center, the autopilot will arm the NAV mode and indicate VOR or GPS in white on the PFD. The pilot must ensure that the current heading will result in a capture of the selected course. If the CDI is one dot or less from center, the autopilot will enter the capture mode when the NAV button is pressed and annunciate VOR or GPS in green on the PFD. #### 4A.6.9 CRUISE 1. POWER lever..... up to 95% #### **NOTE** The recommended cruise power setting is 75%. - 2. Trim as required - 3. Annunciations/Engine/System Page monitor Use of the Auxiliary Fuel Tanks (if installed) #### **CAUTION** When operating the AUX PUMP LH/RH switch, make sure not to exceed the fuel imbalance limitations given in Section 2.14 - FUEL. To avoid additional imbalance in the auxiliary tanks both AUX PUMP switches must be operated simultaneously. 1. Transfer the first half of the auxiliary fuel: As soon as the fuel quantity in each main fuel tank is 15 US gal or less, set both AUX PUMP switches to ON until the main tanks are full again. Monitor the fuel quantity indicator to verify that fuel is properly transferred to both main fuel tanks (approx. 1 US gal per minute). If the fuel quantity in a main tank does not increase during fuel transfer, proceed according to Section 4B.10 - L/R FUEL TRANSFER FAIL. | Page 4A - 44 R | Rev. 0 11-Jan-2019 | Doc. No. 11.01.05-E | |----------------|--------------------|---------------------| |----------------|--------------------|---------------------| 2. Transfer the second half of the auxiliary fuel: Repeat the procedure described above. #### NOTE Transfer the fuel from the auxiliary tanks to the main tanks as soon as possible. The fuel in the auxiliary tanks must be transferred to the main tanks to become available for the current flight mission. #### **END OF CHECKLIST** ## GFC 700 Operation During Cruise #### **NOTE** The NOSE UP and NOSE DN buttons on the mode controller on the MFD are referenced to airplane movement. The NOSE UP button will increase the reference pitch attitude, increase the reference vertical speed and decrease the reference airspeed. Likewise, the NOSE DN button will decrease the reference pitch attitude, decrease the reference vertical speed, and increase the reference airspeed. ### a) Vertical Speed (VS) | 1. | Altitude preselect | set to desired altitude | |-----|--------------------------------------|-------------------------------| | 2. | Mode controller | select VS on mode controller | | 3. | Vertical speed reference | adjust using NOSE UP and NOSE | | | | DN buttons | | 4. | White ALT (altitude preselect armed) | note on PFD | | 5. | Green ALT | verify upon altitude capture | | 100 | NTINUED | | | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 4A - | |--| |--| #### **NOTE** If the altitude preselect is not changed before selecting VS, the autopilot may re-capture the current altitude immediately after entering VS mode. Always ensure that the altitude preselect is adjusted prior to selecting VS. The vertical speed mode is limited to 1500 ft/min climb and 3000 ft/minute descent. Use engine power to maintain appropriate airplane speed. If the CWS switch is used while in VS mode, the VS reference will change to the vertical speed when the CWS switch is released. #### **END OF CHECKLIST** # b) Flight Level Change (FLC) | 1. | Altitude preselect | set to desired altitude | |----|--------------------------------------|-------------------------------| | 2. | Mode controller | select FLC on mode controller | | 3. | Airspeed speed reference | adjust using NOSE UP and NOSE | | | | DN buttons | | 4. | White ALT (altitude preselect armed) | note on PFD | | 5. | Green ALT | verify upon altitude capture | | Page 4A - 46 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |--------------|--------|-------------|---------------------| |--------------|--------|-------------|---------------------| #### **NOTE** If the altitude preselect is not changed before selecting FLC, the autopilot may re-capture the current altitude immediately after entering FLC mode. Always ensure that the altitude preselect is adjusted prior to selecting FLC. If the airspeed reference cannot be maintained without deviating away from the selected altitude, the system will maintain level flight until the power or reference is changed to allow climbing or descending towards the selected altitude. The FLC mode is limited to airspeeds between 90 KIAS and 185 KIAS. Use engine power to maintain appropriate vertical speed. If the CWS switch is used while in FLC mode, the airspeed reference will change to the airspeed when the CWS switch is released. #### **END OF CHECKLIST** ### c) To Capture a Selected Altitude | 1. | Altimeter setting | adjust to appropriate value | |----|--------------------------------------|------------------------------| | 2. | Altitude preselect | set to desired altitude | | 3. | Vertical mode and reference | select on mode controller | | 4. | White ALT (altitude preselect armed) | note on PFD | | 5. | Green ALT | verify upon altitude capture | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4A - 47 | |---------------------|--------|-------------|--------------| |---------------------
--------|-------------|--------------| ### **NOTE** In ALT mode, the autopilot will maintain the reference altitude shown in the autopilot window of the PFD regardless of the altitude in the altitude preselect window or the altimeter's barometric pressure setting. If the altimeter setting is changed, the autopilot will climb or descend to maintain the reference altitude. #### **END OF CHECKLIST** d) Altitude Hold To maintain a selected altitude: | 1. | Altimeter setting | adjust to appropriate value | |----|---------------------------|-------------------------------| | 2. | Reaching desired altitude | select ALT on mode controller | | 3. | Green ALT | verify on PFD | # e) Navigation Capture and Track | 1. | Navigation source | select VOR or GPS using CDI | |----|--|----------------------------------| | | | button on PFD | | 2. | Course bearing pointer | set using course knob (VOR only) | | 3. | Intercept heading | establish in HDG or ROL mode (if | | | | required) | | 4. | Mode controller | select NAV on mode controller | | 5. | Green or white VOR or GPS annunciation | note on PFD | | 6. | Vertical mode and reference | select on mode controller | #### NOTE If the Course Deviation Indicator (CDI) is greater than one dot from center, the autopilot will arm the NAV mode and indicate VOR or GPS in white on the PFD. The pilot must ensure that the current heading will result in a capture of the selected course. If the CDI is one dot or less from center, the autopilot will enter the capture mode when the NAV button is pressed and annunciate VOR or GPS in green on the PFD. ## **4A.6.10 DESCENT** | 1. | POWER lever | as required | |----|----------------------------------|-------------| | 2. | Airspeed | as required | | 3. | Trim | as required | | 4. | Annunciations/Engine/System Page | monitor | #### **END OF CHECKLIST** ## GFC 700 Operation During Descent ## **NOTE** The NOSE UP and NOSE DN buttons on the mode controller on the MFD are referenced to airplane movement. The NOSE UP button will increase the reference pitch attitude, increase the reference vertical speed and decrease the reference airspeed. Likewise, the NOSE DN button will decrease the reference pitch attitude, decrease the reference vertical speed, and increase the reference airspeed. # a) Vertical Speed (VS) | 1. | Altitude preselect | set to desired altitude | |----|--------------------------------------|-------------------------------| | 2. | Mode controller | select VS on mode controller | | 3. | Vertical speed reference | adjust using NOSE UP and NOSE | | | | DN buttons | | 4. | White ALT (altitude preselect armed) | note on PFD | | 5. | Green ALT | verify upon altitude capture | | Page 4A - 50 F | Rev. 0 11-Jan-2019 | Doc. No. 11.01.05-E | |----------------|--------------------|---------------------| |----------------|--------------------|---------------------| ### **NOTE** If the altitude preselect is not changed before selecting VS, the autopilot may re-capture the current altitude immediately after entering VS mode. Always ensure that the altitude preselect is adjusted prior to selecting VS. The vertical speed mode is limited to 1500 ft/min climb and 3000 ft/minute descent. Use engine power to maintain appropriate airplane speed. If the CWS switch is used while in VS mode, the VS reference will change to the vertical speed when the CWS switch is released. #### **END OF CHECKLIST** ### b) Flight Level Change (FLC) | 1. | Altitude preselect | set to desired altitude | |----|--------------------------------------|-------------------------------| | 2. | Mode controller | select FLC on mode controller | | 3. | Airspeed speed reference | adjust using NOSE UP and NOSE | | | | DN buttons | | 4. | White ALT (altitude preselect armed) | note on PFD | | 5. | Green ALT | verify upon altitude capture | | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 4A - 5 | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4A - 51 | |--|---------------------|--------|-------------|--------------| |--|---------------------|--------|-------------|--------------| #### **NOTE** If the altitude preselect is not changed before selecting FLC, the autopilot may re-capture the current altitude immediately after entering FLC mode. Always ensure that the altitude preselect is adjusted prior to selecting FLC. If the airspeed reference cannot be maintained without deviating away from the selected altitude, the system will maintain level flight until the power or reference is changed to allow climbing or descending towards the selected altitude. The FLC mode is limited to airspeeds between 90 KIAS and 185 KIAS. Use engine power to maintain appropriate vertical speed. If the CWS switch is used while in FLC mode, the airspeed reference will change to the airspeed when the CWS switch is released. #### **END OF CHECKLIST** c) To Capture a Selected Altitude | 1. | Altimeter setting | adjust to appropriate value | |----|--------------------------------------|------------------------------| | 2. | Altitude preselect | set to desired altitude | | 3. | Vertical mode and reference | select on mode controller | | 4. | White ALT (altitude preselect armed) | note on PFD | | 5. | Green ALT | verify upon altitude capture | | Page 4A - 52 Rev. 0 11- | Doc. No. 11.01.05-E | |-------------------------|---------------------| |-------------------------|---------------------| #### **NOTE** In ALT mode, the autopilot will maintain the reference altitude shown in the autopilot window of the PFD regardless of the altitude in the altitude preselect window or the altimeter's barometric pressure setting. If the altimeter setting is changed, the autopilot will climb or descend to maintain the reference altitude. #### **END OF CHECKLIST** ### d) Navigation Capture and Track | 1. | Navigation source | select VOR or GPS using CDI | |----|--|----------------------------------| | | | button on PFD | | 2. | Course bearing pointer | set using course knob (VOR Only) | | 3. | Intercept heading | establish in HDG or ROL mode (if | | | | required) | | 4. | Mode controller | select NAV on mode controller | | 5. | Green or white VOR or GPS annunciation | note on PFD | | 6. | Vertical mode and reference | select on mode controller | #### NOTE If the Course Deviation Indicator (CDI) is greater than one dot from center, the autopilot will arm the NAV mode and indicate VOR or GPS in white on the PFD. The pilot must ensure that the current heading will result in a capture of the selected course. If the CDI is one dot or less from center, the autopilot will enter the capture mode when the NAV button is pressed and annunciate VOR or GPS in green on the PFD. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4A - 53 | |---------------------|--------|-------------|--------------| |---------------------|--------|-------------|--------------| # 4A.6.11 APPROACH & LANDING Approach: ## **CAUTION** For landing the adjustable backrests must be fixed in the upright position. | 1. | Adjustable backrests | adjust to the upright position | |-----|----------------------|---------------------------------------| | | | described by a placard on the roll- | | | | over bar and verify proper fixation | | 2. | Safety harnesses | check fastened and tightened | | 3. | Yaw damper | check OFF | | 4. | Controls | no interference by foreign objects | | 5. | Landing light | as required | | 6. | Gear warning horn | check function | | 7. | FUEL SELECTOR | check both ON | | 8. | Fuel pumps LH/RH | ON | | 9. | LANDING GEAR | DOWN, check 3 green | | 10. | Parking brake | check released | | 11. | Trim | as required, directional trim neutral | | Page 4A - 54 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |--------------|--------|-------------|---------------------| |--------------|--------|-------------|---------------------| # Before landing: | 12. Airspeeds up to 1999 kg (4407 lb): | min. 91 KIAS with FLAPS UP | |--|---------------------------------------| | | min. 88 KIAS with FLAPS T/O | | Airspeeds above 1999 kg (4407 lb): | min. 95 KIAS with FLAPS UP | | | min. 91 KIAS with FLAPS T/O | | 13. FLAPS | as required | | 14. POWER lever | as required | | 15. Trim | as required, directional trim neutral | | 16. Final approach speed | up to 1999 kg (4407 lb): | | | min. 84 KIAS with FLAPS LDG | | | above 1999 kg (4407 lb) | | | min. 89 KIAS with FLAPS LDG | ## **NOTE** Higher approach speeds result in a significantly longer landing distance during flare. ## **CAUTION** In conditions such as (e.g.) strong wind, danger of wind shear or turbulence a higher approach speed should be selected. **DA 62 AFM** # GFC 700 Operation During Approach and Landing # a) VOR | 1. | Navigation source | select VOR using CDI button on | |----|----------------------------------|----------------------------------| | | | PFD | | 2. | Course bearing pointer | set using course knob | | 3. | Intercept heading | establish in HDG or ROL mode (if | | | | required) | | 4. | Mode controller | select APR on mode controller | | 5. | Green or white VAPP annunciation | note on PFD | | 6. | Vertical mode and reference | select on mode controller | ### **NOTE** If the Course Deviation Indicator (CDI) is greater than one dot from center, the autopilot will arm the VAPP mode and indicate VAPP in white on the PFD. The pilot must ensure that the current heading will result in a capture of the selected course. If the CDI is one dot or less from center, the autopilot will enter the capture mode when the VAPP button is pressed and annunciate VAPP in green on the PFD. | Page 4A - 56 R | Rev. 0 11 | -Jan-2019 | Doc. No. 11.01.05-E | |----------------|-----------|-----------|---------------------| |----------------|-----------|-----------|---------------------| # Normal Operating Procedures # b) ILS | 1.
 Navigation source | select LOC using CDI button on | |----|--|----------------------------------| | | | PFD | | 2. | Course bearing pointer | set using course knob | | 3. | Intercept heading | establish in HDG or ROL mode (if | | | | required) | | 4. | Mode controller | select APR on mode controller | | 5. | Green or white LOC and GS annunciation | note on PFD | | 6. | Vertical mode and reference | select on mode controller | ## **NOTE** When the selected navigation source is a valid ILS, glideslope coupling is automatically armed when tracking the localizer. The glideslope cannot be captured until the localizer is captured. The autopilot can capture the glideslope from above or below the glideslope. DA 62 AFM # c) GPS | 1. | Navigation source | select GPS using CDI button on | |----|---------------------------------|----------------------------------| | | | PFD | | 2. | Approach | load in FMS and ACTIVATE | | 3. | Intercept heading | establish in HDG or ROL mode (if | | | | required) | | 4. | Mode controller | select APR on mode controller | | 5. | Green or white GPS annunciation | note on PFD | | 6 | Vertical mode and reference | select on mode controller | # **END OF CHECKLIST** # d) Back Course (BC) | 1. | Navigation source | select LOC using CDI button on | |----|--------------------------------|--------------------------------------| | | | PFD | | 2. | Course bearing pointer | set to ILS front Course using course | | | | knob | | 3. | Intercept heading | establish in HDG or ROL mode (if | | | | required) | | 4. | Mode controller | select NAV on mode controller | | 5. | Green or white BC annunciation | note on PFD | | Page 4A - 58 | |--------------| |--------------| ## **NOTE** The course pointer must be at least 115° from the current magnetic heading before BC will be annunciated in the lateral mode field. Until that point, LOC will be annunciated. Selecting NAV mode for back course approaches inhibits the glideslope from coupling. 6. Vertical mode and reference select on mode controller # **4A.6.12 GO AROUND** 1. POWER lever..... MAX 2. FLAPS position T/O 3. Airspeed..... up to 1999 kg (4407 lb): min. 88 KIAS above 1999 kg (4407 lb): min. 91 KIAS When a positive rate of climb is established: 4. Landing gear UP, check unsafe light off 5. FLAPS retract, position UP When a safe climb is established: 6. Fuel pumps LH/RH OFF #### **END OF CHECKLIST** # GFC 700 Operation During Go Around 1. Control stick GRASP FIRMLY 2. GA button PUSH - verify GA/GA on PFD in lateral and vertical mode fields # **NOTE** After the GA button is pressed, the autopilot disconnects (if ESP is not installed) and the flight director indicates a 6° pitch up attitude. | Page 4A - 60 Rev. 0 11-Jan-2019 Doc. No. 11.01.05-E | Page 4A - 60 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |---|--------------|--------|-------------|---------------------| |---|--------------|--------|-------------|---------------------| # Normal Operating Procedures | 3. | Balked landing | execute | |------|------------------------------|--------------------------------| | 4. | Missed approach procedure | execute (as applicable) | | 5. | Altitude preselelect | set to appropriate altitude | | | | | | At a | n Appropriate Safe Altitude: | | | 6. | Autopilot mode controller | select appropriate lateral and | | | | vertical mode on controller | | 7. | Autopilot | RE-ENGAGE if desired | | | | | # **NOTE** If the missed approach procedure requires tracking the localizer outbound from the airport, use NAV mode to prevent inadvertent coupling to glideslope. # **END OF CHECKLIST** # **4A.6.13 AFTER LANDING** | 1. | POWER lever | IDLE | |----|------------------|-------------| | 2. | Brakes | as required | | 3. | ALTERNATE AIR | CLOSED | | 4. | PITOT HEAT | OFF | | 5. | Avionics | as required | | 6. | Lights | as required | | 7. | FLAPS | UP | | 8. | Fuel pumps LH/RH | OFF | | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 4A - | |--| |--| # 4A.6.14 SHUT-DOWN | 1. | Parking brake | set | |----|-----------------------------|-----------------------------| | 2. | POWER lever | up to 10% load for 1 minute | | 3. | Engine/System Page | check | | 4. | ELT | check not activated | | 5. | AVIONIC MASTER | OFF | | 6. | Electrical consumers | OFF | | 7. | ENGINE MASTER | OFF | | 8. | Anti collision lights (ACL) | OFF | # **CAUTION** After turning the ENGINE MASTER OFF, wait until the G1000 engine indications are red X'd or yellow X'd prior to switching the ELECT. MASTER OFF. This ensures that engine and flight data can be written to non-volatile memory before removing electrical power. # **NOTE** During engine shut down at altitudes greater than 7500 ft, it is possible that the propeller will feather due to the increased engine idle power. As the increase in propeller RPM can prevent the propeller start locks from engaging, proceed with steps 9.1 through 9.3. | 9.1 Engine Master | ON (5 seconds) | |-------------------|----------------------------| | 9.2 Propeller | verify start lock position | | 9.3 Engine Master | OFF | | 10. ELECT. MASTER | OFF | | Page 4A - 62 | Rev. 0 11-Jan-2019 | Doc. No. 11.01.05-E | |--------------|--------------------|---------------------| |--------------|--------------------|---------------------| # **CAUTION** Before shut-down the engine must run for at least 1 minute with the power lever up to 10% to avoid heat damage of the turbo charger. # **CAUTION** Do not shut down an engine with the FUEL SELECTOR valve. The high pressure fuel pump can otherwise be damaged. # **4A.6.15 EXIT AIRPLANE** Exit the airplane to the aft on designated areas on the inner wing section LH or RH. # **4A.6.16 POST FLIGHT INSPECTION** - 1. Record any problem found in flight and during the post-flight check in the log book. - 2. Park the airplane. - 3. If necessary, moor the airplane. # **END OF CHECKLIST** # **4A.6.17 PARKING** | 1. | Parking brake | release, use chocks | |----|---------------|------------------------------------| | 2. | Airplane | moor, if unsupervised for extended | | | | period | | 3. | Pitot probe | cover | # 4A.6.18 FLIGHT IN RAIN 1. ALTERNATE AIR OPEN # **CAUTION** During operation on ground, ALTERNATE AIR must be CLOSED. # **NOTE** Performance deteriorates in rain; this applies particularly to the take-off distance and to the maximum horizontal speed. The effect on the flight characteristics is minimal. Flight through very heavy rain should be avoided because of the associated visibility problems. #### **END OF CHECKLIST** # 4A.6.19 REFUELING #### **CAUTION** Before refueling, the airplane must be connected to electrical ground. Grounding points: exhaust, left and right. Refer to Section 2.14 for approved fuel grades. # Use of Fuel Additives #### **CAUTION** Only approved fuel additives not exceeding the approved concentrations may be used; refer to Section 2.14 FUEL. The instructions of the fuel additive supplier must be followed. Failure to exactly follow the fuel additive mixing procedures during refueling can result in incorrect fuel additive concentrations, fuel system contamination, and possible engine stoppage. Fuel additives may have been already mixed into the fuel when stored. In this case, make sure that the brand is approved and the concentration does not exceed the approved values. Anti-microbial life fuel additives may be manually batch-blended into the fuel tanks. In this case, introduce the additive while filling the tank after approximately the half tank is filled. Anti-icing fuel additives should not be batch-blended into the fuel tank. The fuel additive should be injected into a stream of fuel. Record the brand and amount of fuel additives in the airplane log every time fuel additives are added. Typical Dosing Quantities: # (a) KATHON FP 1.5 | | Fuel Q | | Iditive *
1.5 (100 ppm) | | | |-------|--------|-------|----------------------------|------|------| | Liter | US gal | kg | lb | mL | oz | | 50 | 13.2 | 40.2 | 88.68 | 3.9 | 0.13 | | 100 | 26.4 | 80.4 | 177.37 | 7.7 | 0.26 | | 150 | 39.6 | 120.6 | 266.05 | 11.6 | 0.39 | | 200 | 52.8 | 160.8 | 354.73 | 15.5 | 0.52 | | 300 | 79.3 | 241.2 | 532.10 | 23.2 | 0.78 | ^{*} Densities used for calculation: Fuel: 0.804 kg/L, KATHON FP 1.5: 1.04 kg/L # (b) BIOBOR JF | Fuel Quantity | | | Fuel Additive BIOBOR JF* | | | | | |---------------|--------|-------|--------------------------|------|------|------|------| | | | | | 135 | ppm | 270 | ppm | | Liter | US gal | kg | lb | mL | oz | mL | oz | | 50 | 13.2 | 40.2 | 88.68 | 5.2 | 0.18 | 10.4 | 0.35 | | 100 | 26.4 | 80.4 | 177.37 | 10.4 | 0.35 | 20.9 | 0.71 | | 150 | 39.6 | 120.6 | 266.05 | 15.6 | 0.53 | 31.3 | 1.06 | | 200 | 52.8 | 160.8 | 354.73 | 20.9 | 0.71 | 41.8 | 1.42 | | 300 | 79.3 | 241.2 | 532.10 | 31.3 | 1.06 | 62.7 | 2.13 | ^{*} Calculation according to SB No. 982, 'Instructions for use of BIOBOR JF' | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4A - 67 | |---------------------|--------|-------------|--------------| |---------------------|--------|-------------|--------------| Refueling of the Auxiliary Tanks (if installed) # **CAUTION** If the auxiliary tanks are used then both tanks must be refueled to the maximum level. Only then the pilot has proper information concerning the fuel quantity in the auxiliary tanks. If the auxiliary tanks are not in use, make sure that they are empty (refer to Section 6.4 - FLIGHT MASS & CENTER OF GRAVITY). #### **4A.6.20 FLIGHT AT HIGH ALTITUDE** At high altitudes, the provision of oxygen for the occupants is necessary. Legal requirements for the provision of oxygen should be adhered to. Also see Section 2.11 - OPERATING ALTITUDE. # 4A.6.21 DEMONSTRATION OF
ENGINE SHUTDOWN/RESTART | Maximum altitude | 10,000 ft pressure altitude | |------------------|-----------------------------| | Minimum altitude | 3.000 ft above ground level | #### **CAUTION** Do not attempt an in-flight engine restart if the engine has been shutdown for more than two minutes. # **NOTE** When demonstrating handling qualities with one engine inoperative, the left engine is the critical engine. # Shutdown and Restarting the Engine with the Starter | Maximum restart airspeed | max. 80 KIAS or airspeed for a | |--------------------------|------------------------------------| | | stationary propeller, whichever is | | | lower | #### WARNING V_{MCA} is 76 KIAS and should be considered when attempting to engine restart with the starter and obtaining a stationary propeller. This limitation should be observed. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4A - 69 | |---------------------|--------|-------------|--------------| |---------------------|--------|-------------|--------------| # **CAUTION** Do not engage the starter when the propeller is windmilling. #### **NOTE** At airspeeds below 80 KIAS it is possible that the propeller may turn intermittently. If the propeller is turning intermittently, make sure that the starter engagement is timed with the momentarily stationary propeller. | 1. | Altitude | stabilize in level flight at an altitude | |----|----------|--| | | | within the altitude limits defined above | | 2. | Airspeed | trim to 86 KIAS (V _{SSE}) | The following actions must be completed in not more than two minutes. If MÄM 62-168 (engine software VC33_2P_05_19 or later approved software) is installed refer to the times shown in the table below. | C | Max. Engine
OFF Time | | |-----------|-------------------------|-----------| | [° C] | [° F] | [minutes] | | below -15 | below 5 | 2 | | -15 to -5 | 5 to 23 | 5 | | above -5 | above 23 | 10 | | COI | NTINUED | | |-----|----------------------------------|--------------------------------| | 5. | ENGINE MASTER of selected engine | ON, propeller un-feathers | | 4. | Airspeed | stabilize 80 KIAS | | 3. | Attitude | wings level or maximum 5° bank | | 2. | POWER lever of selected engine | IDLE | | 1. | ENGINE MASTER of selected engine | OFF, propeller feathers | | Page 4A - 70 Rev. 0 11-Jan-2019 Doc. No. 11.01.05 | |---| |---| 6. STARTER of selected engine engage when propeller is stationary # **CAUTION** After the engine has started, the POWER lever should be set to a moderate power setting until engine temperature have reached the green range. Page # CHAPTER 4B ABNORMAL OPERATING PROCEDURES | 4B.1 | PRECAU [*] | TIONARY LAN | NDING | | 4B- | |------------|---------------------|---------------|---------------------|----|-------------| | 4B.2 | ENGINE | INSTRUMENT | INDICATIONS OUTSID | E | | | | OF GREE | EN RANGE ON | N THE G1000 | | 4B- | | | 4B.2.1 R | PM | | | 4B- | | | 4B.2.2 C | OOLANT TEM | IPERATURE | | 4B- | | | 4B.2.3 O | IL TEMPERAT | ΓURE | | 4B- | | | 4B.2.4 O | IL PRESSURE | : | | 4B- | | | 4B.2.5 G | EARBOX TEM | MPERATURE | | 4B- | | | 4B.2.6 FU | UEL TEMPER | ATURE | | 4B- | | | 4B.2.7 V | OLTAGE | | | 4B-1 | | 4B.3 | CAUTION | N-ALERTS ON | THE G1000 | | 4B-1 | | | 4B.3.1 C | AUTIONS/GEI | NERAL | | 4B-1 | | | 4B.3.2 L/ | 'R ECU A FAIL | | | 4B-1 | | | 4B.3.3 L/ | R ECU B FAIL | | | 4B-1 | | | 4B.3.4 L/ | R FUEL LOW | | | 4B-1 | | | 4B.3.5 L0 | OW VOLTAGE | E CAUTION (LOW VOLT | S) | 4B-1 | | | 4B.3.6 L/ | R ALTN FAIL | | | 4B-2 | | | 4B.3.7 L/ | R COOL LVL | | | 4B-2 | | | 4B.3.8 Pl | ITOT FAIL/HT | OFF | | 4B-2 | | | 4B.3.9 S | TALL HT FAIL | /OFF | | 4B-2 | | | 4B.3.10 L | /R AUXILIARY | FUEL TANK EMPTY | | | | | (1 | F INSTALLED |) | | 4B-2 | | | 4B.3.11 C | CHECK GEAR | | | 4B-2 | | | | | | | | | | 44.04.05.5 | D 0 | 44 Inn 0040 | | D 4D 4 | | JOC. NO. ' | 11.01.05-E | Rev. 0 | 11-Jan-2019 | | Page 4B - 1 | | | | | | | | DA 62 AFM | | 4B.3.12 LOI | 4B-25 | |-------|--|-------| | | 4B.3.13 AHRS ALIGNING - KEEP WINGS LEVEL | 4B-26 | | 4B.4 | FAILURES IN FLAP OPERATING SYSTEM | 4B-27 | | 4B.5 | FAILURES IN ELECTRICAL RUDDER PEDAL ADJUSTMENT . | 4B-29 | | 4B.6 | FAILURES IN HYDRAULIC SYSTEM | 4B-30 | | | 4B.6.1 CONTINUOUS HYDRAULIC PUMP OPERATION | 4B-30 | | | 4B.6.2 HYDRAULIC PUMP FAILURE | 4B-30 | | 4B.7 | STARTING ENGINE WITH EXTERNAL POWER | 4B-31 | | | 4B.7.1 BEFORE STARTING ENGINE | 4B-31 | | | 4B.7.2 STARTING ENGINE | 4B-33 | | 4B.8 | LIGHTNING STRIKE | 4B-35 | | 4B.9 | FAILURES IN THE AUTOPILOT SYSTEM | 4B-36 | | | 4B.9.1 AUTOPILOT DISCONNECT (Yellow AP | | | | Flashing on PFD) | 4B-36 | | | 4B.9.2 AUTOPILOT OVERSPEED RECOVERY | | | | (Yellow MAXSPD on PFD) | 4B-36 | | | 4B.9.3 LOSS OF NAVIGATION INFORMATION | | | | (Yellow VOR, VAPP, GPS or LOC Flashing on PFD) | 4B-37 | | | 4B.9.4 AUTOPILOT OUT OF TRIM (Yellow ←AIL, →AIL, | | | | ↑ELE, ↓ELE, ←RUD or →RUD on PFD) | 4B-38 | | | 4B.9.5 FLASHING YELLOW MODE ANNUNCIATION | 4B-41 | | | 4B.9.6 EFFECTS OF G1000 LOSSES UPON | | | | AUTOPILOT OPERATION | 4B-42 | | 4B.10 | L/R AUX FUEL TRANSFER FAIL (IF AUX. | | | | TANKS ARE INSTALLED) | 4B-43 | # 4B.1 PRECAUTIONARY LANDING Select appropriate landing area #### **NOTE** A landing of this type is only necessary when there is a reasonable suspicion that due to operational factors such as fuel shortage, weather conditions, etc. the possibility of endangering the airplane and its occupants by continuing the flight cannot be excluded. The pilot is required to decide whether or not a controlled landing in a field represents a lower risk than the attempt to reach the nearest airfield under all circumstances. # **NOTE** If no level landing area is available, a landing on an upward slope should be sought. | • • | Coloct appropriate lariding area. | |-----|---| | 2. | Consider wind. | | 3. | Approach: | | | If possible, the landing area should be overflown at a suitable height in order to | | | recognize obstacles. The degree of offset at each part of the circuit will allow the wind speed and direction to be assessed. | | 4. | ATC advise | | | | Perform procedures according to Normal Procedures 4A.6.11 - APPROACH & LANDING. 5. Touchdown with the lowest possible airspeed | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4B - 3 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| # **CAUTION** If sufficient time is remaining, the risk of fire in the event of a collision with obstacles can be reduced as follows after a safe touch-down: | 6. | ENGINE MASTER | both OFF | |----|---------------|----------| | 7. | FUEL SELECTOR | both OFF | | 8. | ELECT. MASTER | OFF | # 4B.2 ENGINE INSTRUMENT INDICATIONS OUTSIDE OF GREEN RANGE ON THE G1000 # 4B.2.1 RPM # High RPM - 1. Reduce power of affected engine. - 2. Keep RPM within the green range using the power lever. If the above mentioned measures do not solve the problem, refer to 3.13.3 - DEFECTIVE PROPELLER RPM REGULATING SYSTEM. 3. Land at the nearest suitable airfield. # **4B.2.2 COOLANT TEMPERATURE** # (a) High Coolant Temperature Proceed according to: 3.2.2 - L/R ENG TEMP # (b) Low Coolant Temperature - Check G1000 for L/R COOL LVL caution message (low coolant level). #### **NOTE** During an extended descent from high altitudes with a low power setting, coolant temperature may decrease. In this case, an increase in power and a decrease in airspeed can help. L/R COOL LVL Caution Message displayed: - Reduce power on affected engine. - Expect loss of coolant. #### **WARNING** A further decrease in coolant temperature must be expected. Prepare for an engine failure in accordance with 3.7.6 - ENGINE FAILURES IN FLIGHT. | Page 4B - 6 Rev. 0 11-Jan-2019 | Doc. No. 11.01.05-E | |--------------------------------|---------------------| |--------------------------------|---------------------| # **4B.2.3 OIL TEMPERATURE** # (a) High Oil Temperature Proceed according to: 3.2.3 - L/R OIL TEMP # (b) Low Oil Temperature # **NOTE** During an extended descent from high altitudes with a low power setting oil temperature may decrease. In this case an increase in power can help. - Increase power. - Reduce airspeed. # **4B.2.4 OIL PRESSURE** # (a) High Oil Pressure - Check oil temperature. - Check coolant temperature. If the temperatures are within the green range: - Expect false oil pressure indication. Keep monitoring temperatures. If the temperatures are outside of the green range: - Reduce power on affected engine. # **WARNING** Land at the nearest suitable airfield. Prepare for an engine failure in accordance with 3.7.6 - ENGINE FAILURES IN FLIGHT. # **END OF CHECKLIST** # (b) Low Oil Pressure Proceed according to: 3.2.4 - L/R OIL PRES | Page 4B - 8 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| | | | | | #### **4B.2.5 GEARBOX TEMPERATURE** High Gearbox Temperature Proceed according to: 3.2.5 - L/R GBOX TEMP #### **4B.2.6 FUEL TEMPERATURE** # (a) High Fuel Temperature Proceed according to: 3.2.6 - L/R FUEL TEMP # (b) Low Fuel Temperature - Increase power on affected engine. - Reduce airspeed. # **CAUTION** At low ambient temperature conditions and/or at high airspeeds with low power settings, it can be assumed that the above mentioned procedure will increase the temperature(s). If the fuel temperature does not return to the green range, perform a precautionary landing on the nearest suitable airfield. Prepare for an engine failure in accordance with 3.7.6 - ENGINE FAILURES IN FLIGHT. | Doc. No. 11.01.05-E Rev. 0 11-Jan-20 | D19 Page 4B - 9 | |--------------------------------------|-----------------|
--------------------------------------|-----------------| # 4B.2.7 VOLTAGE | (a) Low Voltage Indication on the Ground with Engines Running | |---| |---| 1. ALTERNATORS check ON 2. Circuit breakers check If LOW VOLTAGE CAUTION (LOW VOLTS/4B.4.5) is still indicated on the G1000: - Terminate flight preparation. # (b) Low Voltage During Flight 1. ALTERNATORS check ON 2. Circuit breakers check 3. Electrical equipment..... OFF if not needed If LOW VOLTAGE CAUTION (LOW VOLTS/4B.4.5) is still indicated on the G1000: - Follow procedure in 4B.4.6 - L/R ALTN FAIL. # 4B.3 CAUTION-ALERTS ON THE G1000 The G1000 provides the following CAUTION-alerts on the PFD in the ALERT area. # 4B.3.1 CAUTIONS/GENERAL | CHARACTERISTICS | * | Amber color coded text. | |-----------------|---|--| | | * | Single warning chime tone of 1.5 seconds duration. | #### 4B.3.2 L/R ECU A FAIL | L/R ECU A FAIL | * Left/Right engine ECU A has detected a failure | |----------------|--| | | or | | | is being tested during ECU test procedure before
take-off check. | Depending on the type of failure, the ECU failure cautions are either 'non latched', i.e. the caution message disappears after the cause of the caution is no longer present or 'latched', i.e. the caution massage remains until cleared through maintenance action. A 'non-latched' caution clears itself only on the active ECU. 'Non latched' caution messages can be cleared on the passive ECU by switching to that ECU with the voter switch. # (a) ECU A Caution on the Ground | 1. VOTER switch | check AUTO | |------------------|------------| | 2. ECU B caution | check OFF | | 3. VOTER switch | ECU A | | 4. Wait | 5 seconds | | 5. VOTER switch | AUTO | If the ECU A caution persists: - terminate flight preparation. # (b) ECU A Caution During Flight #### NOTE In case of a failure in the electronic ECU (Engine Control Unit) A, the system automatically switches to ECU B. | Page 4B - 12 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |--------------|--------|-------------|---------------------| |--------------|--------|-------------|---------------------| # Abnormal Operating Procedures | 1. | ALTERNATE AIR | OPEN | |----|------------------|--------------------------| | 2. | Fuel pumps LH/RH | ON | | 3. | Circuit breakers | check/reset if necessary | | 4. | VOTER switch | AUTO | If the ECU A caution remains, the following ECU caution clearing procedure may be used: # **WARNING** In case of single engine operation, do not carry out this procedure. #### WARNING When carrying out the clearing procedure be prepared for a loss of engine power. In case of a negative single engine climb rate, do not carry out this procedure unless a suitable landing site is available within gliding distance. Depending on the cause of the ECU caution, switching to the passive (failed) ECU may lead to rough engine run, power fluctuation or temporary loss of power. In this case, switch immediately back to AUTO. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4B - 13 | |---------------------|--------|-------------|--------------| |---------------------|--------|-------------|--------------| **DA 62 AFM** | 1. Safe altitude | check | |------------------|--------------------------| | 2. Airspeed | up to 1999 kg (4407 lb): | | | min. 87 KIAS | | | above 1999 kg (4407 lb): | | | min. 89 KIAS | | 3. FLAPS | check UP | | 4. LANDING GEAR | check UP | | 5. ECU B caution | check OFF | | 6. VOTER switch | ECU A | | 7. Wait | 5 seconds | | 8. VOTER switch | AUTO | If the ECU A caution persists: - land at the next suitable airfield. # **NOTE** An ECU FAIL CAUTION is caused by various types of malfunctions. These include internal ECU problems, sensor failures or insufficient performance of air-, fuel-, or electrical supply system (e.g. air filter icing). #### NOTE If additional engine problems are observed refer to 3.7.2 - ENGINE TROUBLESHOOTING. | Page 4B - 14 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |--------------|--------|-------------|---------------------| | | | | | # 4B.3.3 L/R ECU B FAIL | L/R ECU B FAIL | * | Left/Right engine ECU B has detected a failure | |----------------|---------|--| | | or
* | is being tested during ECU test procedure before take-off check. | Depending on the type of failure, the ECU failure cautions are either 'non latched', i.e. the caution message disappears after the cause of the caution is no longer present or 'latched', i.e. the caution massage remains until cleared through maintenance action. A 'non-latched' caution clears itself only on the active ECU. 'Non latched' caution messages can be cleared on the passive ECU by switching to that ECU with the voter switch. # (a) ECU B Caution on the Ground | 1. VOTER switch | check AUTO | |------------------|------------| | 2. ECU A caution | check OFF | | 3. VOTER switch | ECU B | | 4. Wait | 5 seconds | | 5. VOTER switch | AUTO | If the ECU B caution persists: - terminate flight preparation. # (b) ECU B Caution During Flight #### NOTE In case of a failure in the electronic ECU (Engine Control Unit) B, the system automatically switches to ECU A. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | | Page 4B - 15 | |---------------------|--------|-------------|--|--------------| |---------------------|--------|-------------|--|--------------| **DA 62 AFM** | 1. | ALTERNATE AIR | OPEN | |----|------------------|--------------------------| | 2. | Fuel pumps LH/RH | ON | | 3. | Circuit breakers | check/reset if necessary | | 4. | VOTER switch | AUTO | If the ECU B caution remains, the following ECU caution clearing procedure may be used: #### **WARNING** In case of single engine operation, do not carry out this procedure. # **WARNING** When carrying out the clearing procedure be prepared for a loss of engine power In case of a negative single engine climb rate, do not carry out this procedure unless a suitable landing site is available within gliding distance. Depending on the cause of the ECU caution, switching to the passive (failed) ECU may lead to rough engine run, power fluctuation or temporary loss of power. In this case switch immediately back to AUTO. | Page 4B - 16 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |--------------|--------|-------------|---------------------| |--------------|--------|-------------|---------------------| # Abnormal Operating Procedures | 1. Safe altitude | check | |------------------|--------------------------| | 2. Airspeed | up to 1999 kg (4407 lb): | | | min. 87 KIAS | | | above 1999 kg (4407 lb): | | | min. 89 KIAS | | 3. FLAPS | check UP | | 3. LANDING GEAR | check UP | | 4. ECU A caution | check OFF | | 5. VOTER switch | ECU B | | 6. Wait | 5 seconds | | 7. VOTER switch | AUTO | If the ECU B caution persists: - land at the next suitable airfield. # **NOTE** An ECU FAIL CAUTION is caused by various types of malfunctions. These include internal ECU problems, sensor failures or insufficient performance of air-, fuel-, or electrical supply system (e.g. air filter icing). # **NOTE** If additional engine problems are observed refer to 3.7.2 - ENGINE TROUBLESHOOTING. | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 4B - 17 | |---| |---| #### 4B.3.4 L/R FUEL LOW | L/R FUEL LOW | Left/Right engine main tank fuel quantity is low. | |--------------|---| |--------------|---| 1. Fuel quantity check # **CAUTION** As soon as the amount of usable fuel in the main tank is low, a caution message is displayed. The indication is calibrated for straight and level flight. The caution message may be triggered during turns which are flown with slip, or while taxiing in curves. If L/R FUEL LOW caution is caused by un-coordinated flight: #### **CAUTION** Prolonged un-coordinated flight can lead to a L/R FUEL LOW caution and subsequent LOW PX warning and L/R ECU FAIL caution and can cause fuel starvation to the engine resulting in a loss of power. Return to coordinated flight (not more than approx. half a ball sideslip, 3°-5° bank) If LH & RH main tanks show remarkable different fuel quantities in flight: - Expect loss of fuel on side with lower indication. - Use crossfeed function to ensure fuel supply. | Page 4B - 18 Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |---------------------|-------------|---------------------| |---------------------|-------------|---------------------| # Abnormal Operating Procedures before crossfeed operation **END OF CHECKLIST** # **4B.3.5 LOW VOLTAGE CAUTION (LOW VOLTS)** | L/R VOLTS LOW Left/Right engine bus voltage is too low (less than 25 Volts). | | |---|--| |---|--| #### Possible reasons are: - A fault in the power supply. - ALTERNATORS off. Continue with 4B.3.7 - VOLTAGE. # **CAUTION** If both low voltage indications are ON, expect failure of both alternators and follow 4B.4.6 - L/R ALTN FAIL. | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 4B - 1 | |--| |--| **DA 62 AFM** # 4B.3.6 L/R ALTN FAIL | L/R ALTN FAIL | Left/Right engine alternator has failed. | |---------------|--| |---------------|--| # (a) One Alternator Failed 1.
ALTERNATOR..... OFF/affected side 2. Bus voltage monitor 3. Electrical consumers reduce as practicable # **END OF CHECKLIST** # (b) Both Alternators Failed Proceed according to: 3.3.1 - L/R ALTN FAIL # 4B.3.7 L/R COOL LVL | L/R COOL LVL | Left/Right engine coolant level is low. | |--------------|---| |--------------|---| A low coolant caution alert may indicate a loss of coolant. This will subsequently lead to decreased engine cooling capability/loss of engine power due to engine failure. 1. Annunciations/Engine instruments monitor See 4B.3.2 - COOLANT TEMPERATURE. # **NOTE** The indication is calibrated for straight and level flight. The caution message may be triggered during turns which are flown with slip, or while taxiing in curves. #### 4B.3.8 PITOT FAIL/HT OFF | PITOT FAIL | Pitot heating system has failed. | |--------------|----------------------------------| | PITOT HT OFF | Pitot heating system is OFF. | 1. PITOT HEAT check ON/as required # **NOTE** The PITOT HT OFF caution message is displayed when the Pitot heating is switched OFF, or PITOT FAIL when there is a failure of the Pitot heating system. Prolonged operation of the Pitot heating on the ground can also cause the Pitot heating caution message to be displayed. In this case, it indicates the activation of the thermal switch, which prevents overheating of the Pitot heating system on the ground. This is a normal function of the system. After a cooling period, the heating system will be switched on again automatically. # If in icing conditions: - 2. Expect loss of airspeed indicators. - 3. Leave icing zone/refer to 3.13.4 UNINTENTIONAL FLIGHT INTO ICING. | Page 4B - 22 Rev. 0 11-Jan-2019 | Doc. No. 11.01.05-E | |---------------------------------|---------------------| |---------------------------------|---------------------| #### 4B.3.9 STALL HT FAIL/OFF | STAL HT FAIL | Stall warning heat has failed. | |--------------|--------------------------------| | STAL HT OFF | Stall warning heat is OFF. | 1. PITOT HEAT check ON/as required #### **NOTE** The STAL HT OFF caution message is displayed when the Pitot heating is switched OFF, or STAL HT FAIL when there is a failure of the stall warning heating system. Operation of the stall warning heating on the ground also causes the stall warning heating failed caution message to be displayed. In this case it indicates the activation of the thermal protection relay, which prevents overheating of the stall warning heating system on the ground. This is a normal function of the system. # If in icing conditions: - 2. Expect loss of acoustic stall warning. - 3. Leave icing zone/refer to 3.13.4 UNINTENTIONAL FLIGHT INTO ICING. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4B - 23 | |---------------------|--------|-------------|--------------| |---------------------|--------|-------------|--------------| # 4B.3.10 L/R AUXILIARY FUEL TANK EMPTY (IF INSTALLED) | L/R AUX FUEL E | Left/Right auxiliary fuel tank empty (displayed only when AUX PUMP switch is ON). | |----------------|---| |----------------|---| The auxiliary fuel tank empty caution message indicates an empty auxiliary fuel tank while the auxiliary fuel pump is switched ON. 1. L/R auxiliary fuel pump OFF #### **END OF CHECKLIST** # **4B.3.11 CHECK GEAR** | CHECK GEAR | Landing gear is not down and locked. | |-----------------|--------------------------------------| | 1. Landing gear | down/as required | # **NOTE** The CHECK GEAR caution message is displayed when either the flaps are in LDG position, or one power lever is less than approx. 20%, and the landing gear is not down and locked. | Page 4B - 24 Rev. 0 11-Jan-2019 Doc. No. 11.01.05-E | |---| |---| #### 4B.3.12 LOI | LOI | GPS integrity is insufficient for the current phase of flight. | |-----|--| | | 9 | #### (a) Enroute, Oceanic, Terminal, or Initial Approach Phase of Flight If the LOI annunciation is displayed in the enroute, oceanic, terminal, or initial approach phase of flight, continue to navigate using the GPS equipment or revert to an alternate means of navigation other than the G1000 GPS receiver appropriate to the route and phase of flight. When continuing to use GPS navigation, position must be verified every 15 minutes using the G1000 VOR/ILS receiver or another IFR-approved navigation system. #### (b) Final Approach If the LOI annunciation is displayed while on the final approach segment, GPS based navigation will be aborted. **DA 62 AFM** ## **4B.3.13 AHRS ALIGNING - KEEP WINGS LEVEL** AHRS ALIGN: Keep Wings Level The AHRS (Attitude and Heading Reference System) is aligning. Keep wings level using standby attitude indicator. ## 4B.4 FAILURES IN FLAP OPERATING SYSTEM | | <u>Fai</u> | <u>lure</u> | in | Position | Indica | ation | or | Function | <u>nc</u> | |--|------------|-------------|----|----------|--------|-------|----|-----------------|-----------| |--|------------|-------------|----|----------|--------|-------|----|-----------------|-----------| | 1. | FLAPS position | check visually | |----|----------------|--------------------------------------| | 2. | Airspeed | keep in white sector (max. 119 KIAS) | | 3. | FLAPS switch | re-check all positions | Modified Approach Procedure Depending on the Available Flap Setting #### **NOTE** Refer to 5.3.10 - LANDING DISTANCES for landing distances with abnormal flap positions. (a) Only UP available: Airspeed up to 1999 kg (4407 lb): min. 91 KIAS above 1999 kg (4407 lb): min. 95 KIAS Land at a flat approach angle, use power lever to control airplane speed and rate of descent. (b) Only T/O available: Airspeed up to 1999 kg (4407 lb) min. 88 KIAS above 1999 kg (4407 lb) min. 91 KIAS Land at a flat approach angle, use power lever to control airplane speed and rate of descent. #### CONTINUED | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4B - 27 | |---------------------|--------|-------------|--------------| |---------------------|--------|-------------|--------------| **DA 62 AFM** (c) Only LDG available: Perform normal landing. ## 4B.5 FAILURES IN ELECTRICAL RUDDER PEDAL ADJUSTMENT Runaway of Electrical Rudder Pedal Adjustment #### **NOTE** The circuit breaker for the rudder pedal adjustment is located on the RH side of the instrument panel. 1. PEDALS circuit breaker..... pull #### 4B.6 FAILURES IN HYDRAULIC SYSTEM #### 4B.6.1 CONTINUOUS HYDRAULIC PUMP OPERATION - 1. Landing gear indication lights..... check - 2. Prepare for manual landing gear extension. Refer to Section 3.9.2 MANUAL EXTENSION OF THE LANDING GEAR. #### NOTE The landing gear might extend as the hydraulic system pressure decreases. Consider for higher aerodynamic drag, resulting in degraded flight performance, increased fuel consumption and decreased range. Unscheduled maintenance action is required after landing. #### **END OF CHECKLIST** #### **4B.6.2 HYDRAULIC PUMP FAILURE** - 1. Landing gear indication lights..... check - 2. Prepare for manual landing gear extension. Refer to Section 3.10.2 MANUAL EXTENSION OF THE LANDING GEAR. #### **NOTE** The landing gear might extend as the hydraulic system pressure decreases. Consider for higher aerodynamic drag, resulting in degraded flight performance, increased fuel consumption and decreased range. Unscheduled maintenance action is required after landing. | Page 4B - 30 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |--------------|--------|-------------|---------------------| |--------------|--------|-------------|---------------------| ## 4B.7 STARTING ENGINE WITH EXTERNAL POWER #### **4B.7.1 BEFORE STARTING ENGINE** | 1. | Pre-flight inspection | complete | |----|-----------------------|------------| | 2. | Passengers | instructed | #### NOTE Ensure all the passengers have been fully briefed on the use of the seat belts, adjustable back rests, doors and emergency exits and the ban on smoking. | 3. | Rear door | closed and locked | |-----|------------------|---------------------| | 4. | Front doors | closed and locked | | 5. | Rudder pedals | adjusted | | 6. | Safety harnesses | all on and fastened | | 7. | POWER lever | check IDLE | | 8. | Parking brake | set | | 9. | AVIONIC MASTER | check OFF | | 10. | GEAR selector | check DOWN | | 11. | VOTER switch | check AUTO | | 12. | ALTERNATORS | check ON | | 13. | ELECT. MASTER | check OFF | | 14. | ENGINE MASTER | check OFF | | 15. | PROPELLER | check clear | | 16. | External power | connect | #### **CONTINUED** | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4B - 31 | |---------------------|--------|-------------|--------------| |---------------------|--------|-------------|--------------| **DA 62 AFM** #### **CAUTION** When switching the external power unit ON, the electrically driven hydraulic gear pump may activate itself for 5 to 20 seconds in order to restore the system pressure. Should the pump continue to operate continuously or periodically, terminate flight. There is a malfunction in the landing gear system. #### **NOTE** When switching the external power unit ON, all electrical equipment, connected to the LH and RH main buses is powered. ## **NOTE** The engine instruments are only available on the MFD after item 17 has been completed. #### **4B.7.2 STARTING ENGINE** | 1. | Strobe lights (ACL) | ON | |----|---------------------|----| |----|---------------------|----| 2. Fuel pumps LH/RH check OFF 3. ELECT. MASTER ON 4. ENGINE MASTER..... ON, LH side 5. Annunciations
. check "L ENGINE GLOW" ON #### NOTE L ENGINE GLOW is indicated only when the engine is cold. 6. Annunciations/Engine/System Page check OK/normal range #### WARNING Before starting the engine the pilot must ensure that the propeller area is free, and no persons can be endangered. After the L ENGINE GLOW indication is extinguished: #### CONTINUED | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4B - 33 | |---------------------|--------|-------------|--------------| |---------------------|--------|-------------|--------------| #### **CAUTION** Do not overheat the starter motor. Do not operate the starter motor for more than 10 seconds. At ambient temperatures below -20°C it is possible that the engine will not run at the first attempt. In this case, wait 60 seconds between the start attempts. If the L/R STARTER annunciation does not extinguish after the engine has started and the START button has been released, set the ENGINE MASTER to OFF and investigate the problem. | 8. | Annunciations/Engine/System Page | check OK/normal range | |-----|----------------------------------|-----------------------| | 9. | Annunciations/Starter | check OFF | | 10. | Annunciations/Oil pressure | check OK | #### **WARNING** If the oil pressure has not moved from the red range within 3 seconds after starting, set the ENGINE MASTER switch to OFF and investigate problem. | 11. Circuit breakers | check all in/as required | |----------------------|---------------------------------| | 12. Idle RPM | check, $710 \pm 30 \text{ RPM}$ | | 13. External power | disconnect | | 14. RH engine | start with normal procedure | | Page 4B - 34 Rev. 0 11-Jan-2019 Doc. No. 11.01.05-E | |---| |---| ## 4B.8 LIGHTNING STRIKE | 1. Airspeed | as low as practicable, do not | |---------------------------------------|-------------------------------------| | | exceed v_0 (refer to Section 2.2) | | 2. Grasp airplane controls firmly | | | 3. Autopilot | disengage (check) | | 4. PFD/backup instruments | verify periodically | | 5. Continue flight under VMC | | | 6. Land on the next suitable airfield | | #### **CAUTION** Due to possible damage to the airplane obey the following instructions: - Avoid abrupt or full control surface movements. - Avoid high g-loads on the airframe. - Avoid high yaw angles. - Avoid turbulent air as far as possible (e.g. lee effects). - Do not fly into areas of known or forecast icing. - Maintain VMC. | Doc. No. 11.01.05-E Rev. | 0 11-Jan-2019 | Page 4B - 35 | |--------------------------|---------------|--------------| |--------------------------|---------------|--------------| **DA 62 AFM** ## 4B.9 FAILURES IN THE AUTOPILOT SYSTEM #### 4B.9.1 AUTOPILOT DISCONNECT (Yellow AP Flashing on PFD) AP DISC switch DEPRESS AND RELEASE (to cancel disconnect tone) 2. Pitch trim retrim if necessary, using the trim wheel #### NOTE The autopilot disconnect may be accompanied by a red boxed PTCH (pitch) or ROL on the PFD, indicating the axis which has failed. The autopilot cannot be re-engaged with either of these annunciations present. #### **END OF CHECKLIST** #### 4B.9.2 AUTOPILOT OVERSPEED RECOVERY (yellow MAXSPD on PFD) | | | necessar | y) | | | |-----|--------------------------------------|----------|----------|------|----| | 2. | Autopilot | reselect | VERTICAL | MODE | (i | | Who | en overspeed condition is corrected: | | | | | | 1. | POWER lever | reduce p | ower | | | #### **NOTE** Overspeed recovery mode provides a pitch up command to decelerate the airplane at or below the maximum autopilot operating speed (185 KIAS). Overspeed recovery is not active in altitude hold (ALT) or glideslope (GS) modes. | Page 4B - 36 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |--------------|--------|-------------|---------------------| |--------------|--------|-------------|---------------------| # 4B.9.3 LOSS OF NAVIGATION INFORMATION (Yellow VOR, VAPP, GPS or LOC flashing on PFD) #### **NOTE** If a navigation signal is lost while the autopilot is tracking it, the autopilot will roll the airplane wings level and default to roll mode (ROL). **DA 62 AFM** # 4B.9.4 AUTOPILOT OUT OF TRIM (Yellow ←AIL, →AIL, ↑ELE, ↓ELE, ←RUD or →RUD on PFD) For ↑ELE, or ↓ELE Indication: #### **WARNING** Do not attempt to overpower the autopilot in the event of a pitch mistrim. The autopilot servos will oppose pilot input and will cause pitch trim to run opposite the direction of pilot input. This will lead to a significant out-of-trim condition resulting in large control stick force when disengaging the autopilot. #### **CAUTION** Be prepared for significant sustained control forces in the direction of the annunciation arrow. For example, an arrow pointing down indicates nose down control stick force will be required upon autopilot disconnect. #### **NOTE** Momentary illumination (5 sec or less) of the ↑ELE or ↓ELE indication during configuration or large airspeed changes is normal. If the annunciation remains: | 1. AP DISC switch | DEPRESS AND HOLD while grasping | |-------------------|---------------------------------| | | control stick firmly | #### **CONTINUED** | Page 4B - 38 R | Rev. 0 11-Jan-2019 | Doc. No. 11.01.05-E | |----------------|--------------------|---------------------| |----------------|--------------------|---------------------| #### **DA 62 AFM** ## Abnormal Operating Procedures | 2. Airplane attitude | maintain/regain airplane control, | |---------------------------------|-------------------------------------| | | use standby attitude indicator if | | | necessary | | 3. Pitch trim | retrim if necessary, using the trim | | | wheel | | 4. AFCS/ESP/USP circuit breaker | PULL | | 5 AP DISC switch | RELEASE | #### WARNING Following an autopilot, autotrim or manual electric trim system malfunction, do not engage the autopilot or operate the manual electric trim until the cause of the malfunction has been corrected. #### **END OF CHECKLIST** For →AIL, ←AIL or →RUD, ←RUD Indication: 1. Rudder trim VERIFY slip/skid indicator is centered, trim is necessary #### **NOTE** Observe the maximum fuel imbalance limitation. #### **CONTINUED** | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4B - 39 | |---------------------|--------|-------------|--------------| |---------------------|--------|-------------|--------------| **DA 62 AFM** If annunciation remains: 2. Control stick GRASP FIRMLY with both hands #### **CAUTION** Be prepared for sustained control forces in the direction of the annunciation arrow. For example, an →AIL indicates that sustained right wing down control stick force or for →RUD sustained right rudder force will be required upon autopilot disconnect. 3. AP DISC switch DEPRESS 4. Autopilot RE-ENGAGE if lateral trim is re-established #### **4B.9.5 FLASHING YELLOW MODE ANNUNCIATION** ## **NOTE** Abnormal mode transitions (those not initiated by the pilot or by normal sequencing of the autopilot) will be annunciated by flashing the disengaged mode in yellow on the PFD. Upon loss of a selected mode, the system will revert to the default mode for the affected axis, either ROL or PIT. After 10 seconds, the new mode (PIT or ROL) will be annunciated in green. #### Loss of Selected Vertical Mode (FLC, VS, ALT, GS) | 1. Autopilot mode controls | select another vertical mode | |---|---| | If on an instrument approach: | | | 2. Autopilot | DISCONNECT and continue manually or execute missed approach | | Loss of Selected Lateral Mode (HDG, NAV, GPS, | LOC, VAPP, BC): | | 1. Autopilot mode controls | select another lateral mode | | If on an instrument approach: | | | 2. Autopilot | DISCONNECT and continue manually or execute missed approach | | END OF CHECKLIST | | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 4B - 41 | |---------------------|--------|-------------|--------------| | | | | | DA 62 AFM ## 4B.9.6 EFFECTS OF G1000 LOSSES UPON AUTOPILOT OPERATION | G1000 System Loss | Effect upon Autopilot Operation | | |----------------------|--|--| | AHRS | The autopilot disconnects, and autopilot, yaw damper and flight director are inoperative. Manual electric trim is available. | | | HDG function of AHRS | The autopilot will remain engaged with the loss of the HDG Mode. | | | MFD | The autopilot will remain engaged with limited functionality. | | | PFD | The autopilot disconnects and autopilot and flight director are inoperative. Manual electric trim is available. | | | GIA No. 1 | The autopilot disconnects and autopilot, flight director and manual electric trim are inoperative. | | | GIA No. 2 | The autopilot disconnects and autopilot and manual electric trim are inoperative. Flight director is available. | | | GPS No. 1 and 2 | The autopilot and flight director operates in NAV modes only (LOC, BC, VOR, VAPP) with reduced accuracy. | | | ADC | The autopilot disconnects, and autopilot is inoperative. The flight director is available except for air data modes (ALT, VS, FLC). Manual electric trim is available. | | | Page 4B - 42 Rev. 0 | |---------------------| |---------------------| # 4B.10 L/R AUX FUEL TRANSFER FAIL (IF AUX. TANKS ARE INSTALLED) If the fuel quantity in a main tank does not increase during fuel transfer: - 1. Switch OFF both AUX PUMPS. - 2. Check fuel pump LH/RH OFF. #### **CAUTION** An imbalance in the auxiliary tanks is approved when the imbalance in the main tanks is less than 1 US gal (3.8 liters). - 3. Check fuel imbalance in the main tanks; use CROSSFEED function (above 10000 ft turn LH/RH FUEL PUMP to ON
before crossfeed operation) to keep the LH and RH main tank imbalance within the permissible limit of 1 US gal (3.8 liters). - 4. Switch the remaining AUX PUMP ON. - 5. Use crossfeed function to keep the LH and RH main tank imbalance within the permissible limit of 1 US gal (3.8 liters). # CHAPTER 5 PERFORMANCE | | | Page | |-----|--|------| | 5.1 | INTRODUCTION | 5-2 | | 5.2 | USE OF THE PERFORMANCE TABLES AND DIAGRAMS | 5-2 | | 5.3 | PERFORMANCE TABLES AND DIAGRAMS | 5-3 | | | 5.3.1 AIRSPEED CALIBRATION | 5-3 | | | 5.3.2 FUEL FLOW DIAGRAM | 5-4 | | | 5.3.3 INTERNATIONAL STANDARD ATMOSPHERE | 5-5 | | | 5.3.4 STALLING SPEEDS | 5-6 | | | 5.3.5 WIND COMPONENTS | 5-8 | | | 5.3.6 TAKE-OFF DISTANCE | 5-9 | | | 5.3.7 CLIMB PERFORMANCE - TAKE-OFF CLIMB | 5-35 | | | 5.3.8 CLIMB PERFORMANCE - CRUISE CLIMB | 5-44 | | | 5.3.9 ONE ENGINE INOPERATIVE CLIMB PERFORMANCE | 5-49 | | | 5.3.10 TIME, FUEL & DISTANCE TO CLIMB | 5-54 | | | 5.3.11 CRUISE PERFORMANCE | 5-59 | | | 5.3.12 LANDING DISTANCES | 5-62 | | | 5.3.13 GO-AROUND CLIMB PERFORMANCE | 5-88 | | | 5.3.14 APPROVED NOISE DATA | 5-91 | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 5 - 1 | |---------------------|--------|-------------|------------| | | | | | #### 5.1 INTRODUCTION The performance tables and diagrams on the following pages are presented so that, on the one hand, you can see what performance you can expect from your airplane, while on the other hand they allow comprehensive and sufficiently accurate flight planning. The values in the tables and the diagrams were obtained in the framework of the flight trials using an airplane and power-plant in good condition, and corrected to the conditions of the International Standard Atmosphere (ISA = $15 \, ^{\circ}$ C/59 $^{\circ}$ F and 1013.25 hPa/29.92 inHg at sea level). The performance diagrams and tables do not take into account variations in pilot experience or a poorly maintained airplane. The performances given can be attained if the procedures quoted in this manual are applied, and the airplane has been well maintained. #### 5.2 USE OF THE PERFORMANCE TABLES AND DIAGRAMS In order to illustrate the influence of a number of different variables, the performance data is reproduced in the form of tables or diagrams. These contain sufficiently detailed information so that conservative values can be selected and used for the determination of adequate performance data for the planned flight. For a conversion of units see Chapter 1.6 - UNITS OF MEASUREMENT. For temperatures, altitudes and weights between those provided, use a linear interpolation between the neighboring values. For weights below 1800 kg (3968 lb), use data for the lowest weight. For operation in outside air temperature lower than provided in these tables, use data for lowest temperature shown. For operation in outside air temperature higher than provided in these tables, use extreme caution. | Page 5 - 2 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |------------|--------|-------------|---------------------| |------------|--------|-------------|---------------------| ## **5.3 PERFORMANCE TABLES AND DIAGRAMS** ## **5.3.1 AIRSPEED CALIBRATION** #### **NOTE** The position of the landing gear (extended/retracted) and flaps (extended/retracted) has no significant influence on the airspeed indicator system. | Airspeed Indicator Calibration | | | | | | | |--------------------------------|----------------------------|--|--|--|--|--| | Indicated Airspeed [KIAS] | Calibrated Airspeed [KCAS] | | | | | | | 75 | 74 | | | | | | | 80 | 79 | | | | | | | 85 | 84 | | | | | | | 90 | 89 | | | | | | | 95 | 94 | | | | | | | 100 | 99 | | | | | | | 105 | 104 | | | | | | | 110 | 109 | | | | | | | 115 | 114 | | | | | | | 120 | 119 | | | | | | | 125 | 124 | | | | | | | 130 | 129 | | | | | | | 135 | 134 | | | | | | | 140 | 138 | | | | | | | 150 | 148 | | | | | | | 160 | 158 | | | | | | | 170 | 167 | | | | | | | 180 | 177 | | | | | | | 190 | 186 | | | | | | | 200 | 196 | | | | | | | 205 | 201 | | | | | | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 5 - 3 | |---------------------|--------|-------------|------------| |---------------------|--------|-------------|------------| #### 5.3.2 FUEL FLOW DIAGRAM #### **CAUTION** The table shows the fuel flow per hour for one engine. #### **NOTE** The fuel calculations on the FUEL CALC portion of the G1000 MFD do NOT use the airplane's fuel quantity indicators. The values shown are numbers which are calculated from the last fuel quantity update done by the pilot and actual fuel flow data. Therefore, the endurance and range data is for information only, and must not be used for flight planning. | | Fuel Flow | | | | | | | | |-------------------|----------------------|---------------------|--|--|--|--|--|--| | Power Setting [%] | Fuel Flow [US gal/h] | Fuel Flow [Liter/h] | | | | | | | | 30 | 3.3 | 12.5 | | | | | | | | 35 | 3.7 | 14.0 | | | | | | | | 40 | 4.1 | 15.5 | | | | | | | | 45 | 4.5 | 17.0 | | | | | | | | 50 | 4.9 | 18.5 | | | | | | | | 55 | 5.4 | 20.5 | | | | | | | | 60 | 5.9 | 22.5 | | | | | | | | 65 | 6.4 | 24.5 | | | | | | | | 70 | 6.9 | 26.0 | | | | | | | | 75 | 7.4 | 28.0 | | | | | | | | 80 | 7.8 | 29.5 | | | | | | | | 85 | 8.3 | 31.5 | | | | | | | | 90 | 9.0 | 34.0 | | | | | | | | 95 | 9.7 | 36.5 | | | | | | | | 100 | 10.3 | 39.0 | | | | | | | | Page 5 - 4 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |------------|--------|-------------|---------------------| |------------|--------|-------------|---------------------| #### 5.3.3 INTERNATIONAL STANDARD ATMOSPHERE | Doc. No. 11.01.05-E Rev. | 0 11-Jan-2019 | Page 5 - 5 | |--------------------------|---------------|------------| |--------------------------|---------------|------------| ## **5.3.4 STALLING SPEEDS** Stalling Speeds at Various Flight Masses Airspeeds, most forward CG, power off: | 1800 |) kg | Bank Angle | | | | | | | | |-----------|-------|------------|------|------|------|------|------|------|------| | (3968 lb) | | 0 | 0° 3 | |)° | 45° | | 60° | | | Gear | Flaps | KIAS | KCAS | KIAS | KCAS | KIAS | KCAS | KIAS | KCAS | | UP | UP | 68 | 67 | 73 | 72 | 81 | 80 | 96 | 95 | | DOWN | T/O | 67 | 66 | 72 | 71 | 80 | 78 | 94 | 93 | | DOWN | LDG | 63 | 61 | 67 | 66 | 74 | 73 | 88 | 87 | | 1900 |) kg | Bank Angle | | | | | | | | |------|-------|------------|------|------|------|------|------|------|------| | (418 | 9 lb) | 0 |)° | 30° | | 45° | | 60° | | | Gear | Flaps | KIAS | KCAS | KIAS | KCAS | KIAS | KCAS | KIAS | KCAS | | UP | UP | 69 | 68 | 74 | 73 | 82 | 81 | 97 | 96 | | DOWN | T/O | 68 | 66 | 73 | 71 | 80 | 79 | 95 | 94 | | DOWN | LDG | 63 | 62 | 68 | 67 | 75 | 74 | 89 | 88 | | 1999 | 9 kg | Bank Angle | | | | | | | | |-----------|-------|------------|------|------|------|------|------|------|------| | (4407 lb) | | 0 | 0° | |)° | 45° | | 60° | | | Gear | Flaps | KIAS | KCAS | KIAS | KCAS | KIAS | KCAS | KIAS | KCAS | | UP | UP | 70 | 69 | 75 | 74 | 83 | 82 | 99 | 98 | | DOWN | T/O | 69 | 67 | 74 | 72 | 81 | 80 | 96 | 95 | | DOWN | LDG | 64 | 63 | 69 | 68 | 76 | 75 | 90 | 89 | | Page 5 - 6 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |------------|--------|-------------|---------------------| | | | | | | 2100 |) kg | Bank Angle | | | | | | | | |------|-------|------------|------|------|------|------|------|------|------| | (463 | 0 lb) | 0 |)° | 30 | O° | 4 | 5° | 60° | | | Gear | Flaps | KIAS | KCAS | KIAS | KCAS | KIAS | KCAS | KIAS | KCAS | | UP | UP | 71 | 70 | 76 | 75 | 84 | 83 | 100 | 99 | | DOWN | T/O | 69 | 68 | 74 | 73 | 82 | 80 | 97 | 96 | | DOWN | LDG | 66 | 65 | 71 | 70 | 78 | 77 | 93 | 92 | | 2200 |) kg | Bank Angle | | | | | | | | |------|-------|------------|------|------|------|------|------|------|------| | (485 | 0 lb) | 0 |)° | 30 | O° | 4 | 5° | 60 | 0° | | Gear | Flaps | KIAS | KCAS | KIAS | KCAS | KIAS | KCAS | KIAS | KCAS | | UP | UP | 72 | 71 | 77 | 76 | 85 | 84 | 101 | 100 | | DOWN | T/O | 70 | 68 | 75 | 73 | 83 | 81 | 98 | 97 | | DOWN | LDG | 68 | 67 | 74 | 73 | 82 | 81 | 97 | 96 | | 2300 | 0 kg | | Bank Angle | | | | | | | |------|-------|------|------------|------|------|------|---------|------|------| | (507 | '1lb) | 0 |)° | 30 | O° | 4 | 45° 60° | |)° | | Gear | Flaps | KIAS | KCAS | KIAS | KCAS | KIAS | KCAS | KIAS | KCAS | | UP | UP | 73 | 72 | 78 | 77 | 87 | 86 | 103 | 102 | | DOWN | T/O | 71 | 69 | 76 | 74 | 83 | 82 | 99 | 98 | | DOWN | LDG | 69 | 68 | 74 | 73 | 82 | 81 | 97 | 96 | ## **NOTE** KIAS values may not be accurate at stall. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 5 - 7 | |---------------------|--------|-------------|------------| |---------------------|--------|-------------|------------| ## **5.3.5 WIND COMPONENTS** Example: Flight direction : 360° Wind : 32°/30 kts Result: Crosswind component : 16 kts Max. demonstrated crosswind component : 25 kts | Page 5 - 8 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|--------------|---------------------| | l age 5 - 6 | Nev. o | 11-3411-2019 | DOC. NO. 11.01.03-L | #### 5.3.6 TAKE-OFF DISTANCE Conditions: Power lever both MAX Flaps UP or T/O Runway dry, paved, level The following factors are to be applied to the computed take-off distance for the noted condition: - Headwind: Decrease by 10% for each 12 kt (6.2 m/s) headwind. - Tailwind: Increase by 10% for each 3 kt (1.5 m/s) tailwind. Grass runway, dry, 5 cm (2 in) long: Increase the ground roll by 10%. - Grass runway, dry, 5 cm (2 in) to 10 cm (3.9 in) long: Increase the ground roll by 15%. - Grass runway, dry, 25 cm (9.8 in) long: Increase the ground roll by 25%. - Grass runway, longer than 25 cm (9.8 in): A take-off should not be attempt. - Grass runway, wet: Increase the dry grass runway distance calculation by 10%. - Soft ground: Increase the ground roll by 45% (in addition to the grass runway distance calculation, if applicable). - Uphill slope: Increase the
ground roll by 10% for each 1% (1 m per 100 m or 1 ft per 100 ft) slope. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 5 - 9 | |---------------------|--------|-------------|------------| |---------------------|--------|-------------|------------| If brakes are not held while applying power, distances apply where full power setting is complete. #### WARNING For a safe take-off, the available runway length must be at least equal to the take-off distance over a 50 ft (15 m) obstacle. #### **WARNING** Poor maintenance condition of the airplane, deviation from the given procedures, uneven runway, as well as unfavorable external factors (rain, unfavorable wind conditions, including cross-wind) will increase the take-off distance. #### **CAUTION** The factors in the above corrections are typical values. On wet ground or wet soft grass covered runways, the take-off roll may become significantly longer than stated above. In any case, the pilot must allow for the condition of the runway to ensure a safe take-off. The above corrections for runway slope should be used with caution since published runway slope data is usually the net slope from one end of the runway to the other. Runways may have positions along their length at greater or lesser slopes than the published slope, lengthening (or shortening) the take-off roll estimated with these tables. #### NOTE The effect of 50% of the headwind component and 150% of the tailwind component is already incorporated in the headand tailwind factors. | Page 5 - 10 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| | | | | | ## Take-Off Distances (SI/Metric System) Take-Off Distance - Normal Procedure - 2300 kg/5071 lb Weight: 2300 kg/5071 lb Flaps: T/O **78 KIAS** Power: MAX V_R: | V _R . 76 | KIAS | | | | Runwa | v. drv. na | ved, leve | اد | |------------------------|--------------------|--------------|---------------|----------------|-------|--------------------|------------|------------| | V _{50ft} : 86 | | istance | s are giv | ven in m | | | ived, leve | / 1 | | Press. Alt. | | | | | | <u>- [°C]/</u> [°F | 1 | | | [ft]/[m] | | 0/ 32 | 10/ 50 | 50/ 122 | ISA | | | | | | Ground Roll | 450 | 470 | 500 | 540 | 600 | 690 | 480 | | SL | 15 m/50 ft | 780 | 820 | 860 | 930 | 1050 | 1200 | 833 | | 1000 | Ground Roll | 470 | 500 | 530 | 570 | 650 | 740 | 503 | | 305 | 15 m/50 ft | 820 | 860 | 910 | 980 | 1120 | 1290 | 870 | | 2000 | Ground Roll | 500 | 530 | 560 | 610 | 700 | 790 | 528 | | 610 | 15 m/50 ft | 860 | 910 | 970 | 1050 | 1200 | 1370 | 910 | | 3000 | Ground Roll | 530 | 560 | 600 | 660 | 750 | 850 | 555 | | 914 | 15 m/50 ft | 910 | 960 | 1020 | 1120 | 1290 | 1470 | 952 | | 4000 | Ground Roll | 560 | 600 | 640 | 710 | 810 | 920 | 582 | | 1219 | 15 m/50 ft | 960 | 1020 | 1080 | 1210 | 1390 | 1590 | 996 | | 5000 | Ground Roll | 600 | 640 | 680 | 770 | 870 | | 613 | | 1524 | 15 m/50 ft | 1020 | 1080 | 1150 | 1310 | 1500 | | 1047 | | 6000 | Ground Roll | 650 | 690 | 730 | 840 | 960 | | 655 | | 1829 | 15 m/50 ft | 1100 | 1160 | 1250 | 1430 | 1640 | | 1118 | | 7000 | Ground Roll | 700 | 740 | 810 | 920 | 1050 | | 700 | | 2134 | 15 m/50 ft | 1190 | 1260 | 1370 | 1580 | 1800 | | 1193 | | 8000 | Ground Roll | 760 | 810 | 890 | 1020 | 1160 | | 749 | | 2438 | 15 m/50 ft | 1280 | 1370 | 1520 | 1740 | 1990 | | 1273 | | 9000 | Ground Roll | 820 | 890 | 990 | 1130 | 1300 | | 802 | | 2743 | 15 m/50 ft | 1390 | 1510 | 1680 | 1930 | 2250 | | 1359 | | 10000 | Ground Roll | 900 | 970 | 1090 | 1260 | | | 862 | | 3048 | 15 m/50 ft | 1530 | 1650 | 1870 | 2170 | | | 1464 | | Doc. No. 11.01.05-E | Rev. 0 11-Jan-2019 | Page 5 - 11 | |---------------------|--------------------|-------------| |---------------------|--------------------|-------------| Take-Off Distance - Normal Procedure - 2200 kg/4850 lb Weight: 2200 kg/4850 lb Flaps: T/O v_R: 78 KIAS Power: MAX v_{50ft}: 86 KIAS Runway: dry, paved, level | | D | istance | s are giv | ven in m | eter [m] | | | | |------------------|--------------------|--------------|---------------|---------------|---------------|--------------------|----------------|------| | Press. Alt. | | | Outside | Air Tem | perature | - [°C]/ [°F |] | | | [ft] /[m] | | 0/ 32 | 10/ 50 | 20/ 68 | 30/ 86 | 40/ 104 | 50/ 122 | ISA | | SL | Ground Roll | 420 | 450 | 480 | 510 | 570 | 660 | 457 | | J. | 15 m/50 ft | 730 | 770 | 820 | 870 | 980 | 1130 | 785 | | 1000 | Ground Roll | 450 | 480 | 510 | 540 | 620 | 710 | 479 | | 305 | 15 m/50 ft | 770 | 810 | 860 | 920 | 1050 | 1210 | 820 | | 2000 | Ground Roll | 480 | 510 | 540 | 580 | 660 | 750 | 504 | | 610 | 15 m/50 ft | 810 | 860 | 910 | 990 | 1130 | 1290 | 856 | | 3000 | Ground Roll | 500 | 530 | 570 | 620 | 710 | 810 | 527 | | 914 | 15 m/50 ft | 860 | 910 | 960 | 1060 | 1210 | 1380 | 895 | | 4000 | Ground Roll | 540 | 570 | 610 | 670 | 770 | 880 | 555 | | 1219 | 15 m/50 ft | 910 | 960 | 1020 | 1140 | 1300 | 1490 | 938 | | 5000 | Ground Roll | 570 | 600 | 650 | 730 | 830 | | 584 | | 1524 | 15 m/50 ft | 960 | 1010 | 1080 | 1230 | 1400 | | 984 | | 6000 | Ground Roll | 620 | 650 | 700 | 800 | 910 | | 624 | | 1829 | 15 m/50 ft | 1040 | 1100 | 1170 | 1340 | 1530 | | 1049 | | 7000 | Ground Roll | 670 | 710 | 770 | 880 | 1000 | | 667 | | 2134 | 15 m/50 ft | 1120 | 1180 | 1290 | 1480 | 1690 | | 1118 | | 8000 | Ground Roll | 720 | 770 | 850 | 970 | 1100 | | 713 | | 2438 | 15 m/50 ft | 1200 | 1280 | 1420 | 1630 | 1860 | | 1192 | | 9000 | Ground Roll | 780 | 840 | 940 | 1070 | 1230 | | 762 | | 2743 | 15 m/50 ft | 1300 | 1410 | 1570 | 1800 | 2090 | | 1275 | | 10000 | Ground Roll | 860 | 920 | 1040 | 1190 | | | 820 | | 3048 | 15 m/50 ft | 1430 | 1540 | 1740 | 2020 | | | 1370 | | Page 5 - 12 Rev. 0 11-Jan-2019 Doc. No. 11.01.05-E | |--| |--| Take-Off Distance - Normal Procedure - 2100 kg/4630 lb Weight: 2100 kg/4630 lb Flaps: T/O v_R : 78 KIAS Power: MAX v_{50ft}: 86 KIAS Runway: dry, paved, level ## Distances are given in meter [m] | Press. Alt. | Outside Air Temperature - [°C]/[°F] | | | | | | | | |------------------|-------------------------------------|--------------|---------------|---------------|---------------|----------------|----------------|------| | [ft]/ [m] | | 0/ 32 | 10/ 50 | 20/ 68 | 30/ 86 | 40/ 104 | 50/ 122 | ISA | | SL | Ground Roll | 400 | 430 | 450 | 490 | 550 | 620 | 434 | | J SL | 15 m/50 ft | 690 | 730 | 770 | 820 | 930 | 1060 | 739 | | 1000 | Ground Roll | 430 | 450 | 480 | 510 | 590 | 670 | 456 | | 305 | 15 m/50 ft | 730 | 760 | 810 | 870 | 990 | 1140 | 770 | | 2000 | Ground Roll | 450 | 480 | 510 | 550 | 630 | 720 | 478 | | 610 | 15 m/50 ft | 760 | 810 | 850 | 930 | 1060 | 1210 | 806 | | 3000 | Ground Roll | 480 | 510 | 540 | 590 | 680 | 770 | 502 | | 914 | 15 m/50 ft | 810 | 850 | 900 | 990 | 1130 | 1290 | 841 | | 4000 | Ground Roll | 510 | 540 | 570 | 640 | 730 | 830 | 527 | | 1219 | 15 m/50 ft | 850 | 900 | 960 | 1070 | 1220 | 1400 | 879 | | 5000 | Ground Roll | 540 | 580 | 610 | 690 | 790 | | 555 | | 1524 | 15 m/50 ft | 900 | 950 | 1020 | 1150 | 1310 | | 925 | | 6000 | Ground Roll | 580 | 620 | 660 | 760 | 860 | | 592 | | 1829 | 15 m/50 ft | 970 | 1030 | 1100 | 1260 | 1430 | | 984 | | 7000 | Ground Roll | 630 | 670 | 730 | 830 | 950 | | 633 | | 2134 | 15 m/50 ft | 1050 | 1100 | 1200 | 1380 | 1580 | | 1048 | | 8000 | Ground Roll | 680 | 730 | 800 | 920 | 1050 | | 675 | | 2438 | 15 m/50 ft | 1130 | 1200 | 1330 | 1520 | 1740 | | 1118 | | 9000 | Ground Roll | 740 | 800 | 890 | 1020 | 1160 | | 724 | | 2743 | 15 m/50 ft | 1220 | 1320 | 1470 | 1690 | 1950 | | 1195 | | 10000 | Ground Roll | 810 | 870 | 990 | 1130 | | | 779 | | 3048 | 15 m/50 ft | 1340 | 1440 | 1630 | 1880 | | | 1282 | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 5 - 13 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| Take-Off Distance - Normal Procedure - 1999 kg/4407 lb Weight: 1999 kg/4407 lb Flaps: T/O v_R: 76 KIAS Power: MAX v_{50ft}: 83 KIAS Runway: dry, paved, level | | Distances are given in meter [m] | | | | | | | | |------------------|----------------------------------|--------------|---------------|---------------|---------------|--------------------|----------------|------| | Press. Alt. | | | Outside | Air Tem | perature | - [°C]/ [°F |] | | | [ft]/ [m] | | 0/ 32 | 10/ 50 | 20/ 68 | 30/ 86 | 40/ 104 | 50/ 122 | ISA | | SL | Ground Roll | 360 | 380 | 400 | 430 | 490 | 550 | 385 | | SL | 15 m/50 ft | 590 | 630 | 660 | 710 | 800 | 910 | 638 | | 1000 | Ground Roll | 380 | 400 | 430 | 460 | 520 | 600 | 405 | | 305 | 15 m/50 ft | 630 | 660 | 700 | 750 | 850 | 980 | 664 | | 2000 | Ground Roll | 400 | 430 | 450 | 490 | 560 | 640 | 425 | | 610 | 15 m/50 ft | 660 | 700 | 740 | 800 | 910 | 1040 | 694 | | 3000 | Ground Roll | 430 | 450 | 480 | 530 | 600 | 680 | 444 | | 914 | 15 m/50 ft | 690 | 730 | 780 | 850 | 970 | 1110 | 727 | | 4000 | Ground Roll | 450 | 480 | 510 | 570 | 650 | 740 | 468 | | 1219 | 15 m/50 ft | 730 | 770 | 820 | 920 | 1050 | 1200 | 759 | | 5000 | Ground Roll | 480 | 510 | 540 | 610 | 700 | | 493 | | 1524 | 15 m/50 ft | 780 | 820 | 880 | 990 | 1130 | | 797 | | 6000 | Ground Roll | 520 | 550 | 590 | 670 | 760 | | 525 | | 1829 | 15 m/50 ft | 840 | 880 | 940 | 1080 | 1230 | | 848 | | 7000 | Ground Roll | 560 | 600 | 650 | 740 | 840 | | 563 | | 2134 | 15 m/50 ft | 900 | 950 | 1030 | 1180 | 1350 | | 903 | | 8000 | Ground Roll | 610 | 650 | 710 | 810 | 930 | | 601 | | 2438 | 15 m/50 ft | 970 | 1030 | 1140 | 1300 | 1480 | | 962 | | 9000 | Ground Roll | 660 | 710 | 790 | 900 | 1030 | | 642 | | 2743 | 15 m/50 ft | 1050 | 1130 | 1260 | 1440 | 1660 | | 1025 | | 10000 |
Ground Roll | 720 | 770 | 870 | 1000 | | | 691 | | 3048 | 15 m/50 ft | 1150 | 1230 | 1390 | 1600 | | | 1100 | | Page 5 - 14 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| | | | | | Take-Off Distance - Normal Procedure - 1900 kg/4189 lb Weight: 1900 kg/4189 lb Flaps: T/O v_R: 76 KIAS Power: MAX v_{50ft}: 83 KIAS Runway: dry, paved, level #### Distances are given in meter [m] Outside Air Temperature - [°C]/[°F] Press. Alt. 50/122 0/32 **10/**50 [ft]/[m] 20/68 30/86 **40/**104 ISA **Ground Roll** SL 15 m/50 ft Ground Roll 15 m/50 ft **Ground Roll** | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 5 - 15 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| Take-Off Distance - Normal Procedure - 1800 kg/3968 lb Weight: 1800 kg/3968 lb Flaps: T/O v_R: 76 KIAS Power: MAX v_{50ft}: 83 KIAS Runway: dry, paved, level | 3011 | Distances are given in meter [m] | | | | | | | | |------------------|----------------------------------|--------------|---------------|---------------|---------------|----------------|----------------|-----| | Press. Alt. | | | Outside | Air Tem | perature | - [°C]/[°F |] | | | [ft]/ [m] | | 0/ 32 | 10/ 50 | 20/ 68 | 30/ 86 | 40/ 104 | 50/ 122 | ISA | | SL | Ground Roll | 320 | 340 | 360 | 380 | 430 | 490 | 344 | | JL | 15 m/50 ft | 490 | 510 | 550 | 590 | 670 | 770 | 522 | | 1000 | Ground Roll | 340 | 360 | 380 | 410 | 470 | 530 | 361 | | 305 | 15 m/50 ft | 520 | 540 | 580 | 620 | 720 | 830 | 548 | | 2000 | Ground Roll | 360 | 380 | 400 | 440 | 500 | 570 | 379 | | 610 | 15 m/50 ft | 540 | 570 | 610 | 670 | 770 | 890 | 576 | | 3000 | Ground Roll | 380 | 400 | 430 | 470 | 540 | 610 | 398 | | 914 | 15 m/50 ft | 580 | 610 | 650 | 720 | 830 | 960 | 603 | | 4000 | Ground Roll | 400 | 430 | 450 | 510 | 580 | 660 | 416 | | 1219 | 15 m/50 ft | 610 | 650 | 690 | 780 | 900 | 1050 | 631 | | 5000 | Ground Roll | 430 | 450 | 490 | 550 | 620 | | 438 | | 1524 | 15 m/50 ft | 650 | 690 | 740 | 850 | 980 | | 666 | | 6000 | Ground Roll | 460 | 490 | 520 | 600 | 680 | | 468 | | 1829 | 15 m/50 ft | 710 | 750 | 800 | 930 | 1070 | | 713 | | 7000 | Ground Roll | 500 | 530 | 580 | 660 | 750 | | 501 | | 2134 | 15 m/50 ft | 760 | 810 | 900 | 1030 | 1170 | | 764 | | 8000 | Ground Roll | 540 | 580 | 630 | 720 | 820 | | 535 | | 2438 | 15 m/50 ft | 830 | 890 | 990 | 1130 | 1290 | | 821 | | 9000 | Ground Roll | 590 | 630 | 700 | 800 | 920 | | 571 | | 2743 | 15 m/50 ft | 910 | 990 | 1090 | 1250 | 1440 | | 884 | | 10000 | Ground Roll | 640 | 690 | 780 | 890 | | | 614 | | 3048 | 15 m/50 ft | 1000 | 1080 | 1210 | 1390 | | | 959 | | Page 5 - 16 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | | |-------------|--------|-------------|---------------------|--| | | | | | | 3048 15 m/50 ft 1490 Take-Off Distance - Flaps UP - 2300 kg/5071 lb Weight: 2300 kg/5071 lb Flaps: UP v_R: 80 KIAS Power: MAX v_{50ft}: 89 KIAS Runway: dry, paved, level | | Distances are given in meter [m] | | | | | | | | |------------------|----------------------------------|--------------|---------------|---------------|---------------|--------------------|----------------|------| | Press. Alt. | | | Outside | Air Tem | perature | - [°C]/ [°F |] | | | [ft]/ [m] | | 0/ 32 | 10/ 50 | 20/ 68 | 30/ 86 | 40/ 104 | 50/ 122 | ISA | | SL | Ground Roll | 470 | 500 | 530 | 560 | 630 | 730 | 506 | | JL | 15 m/50 ft | 770 | 810 | 850 | 910 | 1030 | 1170 | 822 | | 1000 | Ground Roll | 500 | 530 | 560 | 600 | 680 | 780 | 530 | | 305 | 15 m/50 ft | 810 | 850 | 900 | 960 | 1100 | 1260 | 858 | | 2000 | Ground Roll | 530 | 560 | 590 | 640 | 730 | 830 | 556 | | 610 | 15 m/50 ft | 850 | 900 | 950 | 1030 | 1170 | 1330 | 895 | | 3000 | Ground Roll | 560 | 590 | 630 | 690 | 780 | 890 | 584 | | 914 | 15 m/50 ft | 900 | 940 | 1000 | 1100 | 1250 | 1430 | 936 | | 4000 | Ground Roll | 590 | 630 | 660 | 740 | 840 | 960 | 611 | | 1219 | 15 m/50 ft | 950 | 1000 | 1060 | 1180 | 1350 | 1540 | 981 | | 5000 | Ground Roll | 630 | 670 | 710 | 800 | 910 | | 643 | | 1524 | 15 m/50 ft | 1000 | 1060 | 1130 | 1280 | 1450 | | 1027 | | 6000 | Ground Roll | 680 | 720 | 770 | 880 | 1000 | | 687 | | 1829 | 15 m/50 ft | 1080 | 1140 | 1220 | 1390 | 1590 | | 1095 | | 7000 | Ground Roll | 730 | 780 | 840 | 960 | 1100 | | 733 | | 2134 | 15 m/50 ft | 1160 | 1230 | 1340 | 1530 | 1750 | | 1165 | | 8000 | Ground Roll | 790 | 840 | 930 | 1060 | 1210 | | 783 | | 2438 | 15 m/50 ft | 1250 | 1330 | 1480 | 1690 | 1920 | | 1245 | | 9000 | Ground Roll | 860 | 930 | 1030 | 1170 | 1340 | | 838 | | 2743 | 15 m/50 ft | 1350 | 1470 | 1630 | 1860 | 2150 | | 1329 | | 10000 | Ground Roll | 940 | 1010 | 1140 | 1300 | | | 902 | | Doc. No. 11.01.05-E Rev. 0 | 11-Jan-2019 | Page 5 - 17 | |----------------------------|-------------|-------------| |----------------------------|-------------|-------------| 1800 1600 2080 1426 Take-Off Distance - Flaps UP - 2200 kg/4850 lb Weight: 2200 kg/4850 lb Flaps: UP v_R: 80 KIAS Power: MAX | 3011 | D | istance | s are giv | ven in m | eter [m] |] | | | |------------------|-------------|--------------|---------------|---------------|---------------|--------------------|----------------|------| | Press. Alt. | | | Outside | Air Tem | perature | - [°C]/ [°F |] | | | [ft] /[m] | | 0 /32 | 10/ 50 | 20/ 68 | 30/ 86 | 40/ 104 | 50/ 122 | ISA | | SL | Ground Roll | 450 | 470 | 500 | 540 | 600 | 690 | 483 | | 5 | 15 m/50 ft | 730 | 760 | 810 | 860 | 970 | 1100 | 776 | | 1000 | Ground Roll | 470 | 500 | 530 | 570 | 650 | 740 | 505 | | 305 | 15 m/50 ft | 760 | 800 | 850 | 910 | 1030 | 1180 | 809 | | 2000 | Ground Roll | 500 | 530 | 560 | 610 | 690 | 790 | 529 | | 610 | 15 m/50 ft | 800 | 840 | 890 | 970 | 1100 | 1260 | 845 | | 3000 | Ground Roll | 530 | 560 | 600 | 650 | 740 | 850 | 556 | | 914 | 15 m/50 ft | 840 | 890 | 940 | 1040 | 1180 | 1340 | 883 | | 4000 | Ground Roll | 560 | 600 | 630 | 700 | 800 | 920 | 582 | | 1219 | 15 m/50 ft | 890 | 940 | 1000 | 1110 | 1270 | 1450 | 921 | | 5000 | Ground Roll | 600 | 630 | 680 | 760 | 870 | | 612 | | 1524 | 15 m/50 ft | 940 | 1000 | 1060 | 1200 | 1370 | | 968 | | 6000 | Ground Roll | 640 | 690 | 730 | 830 | 950 | | 653 | | 1829 | 15 m/50 ft | 1020 | 1070 | 1150 | 1310 | 1490 | | 1030 | | 7000 | Ground Roll | 700 | 740 | 800 | 920 | 1040 | | 697 | | 2134 | 15 m/50 ft | 1090 | 1160 | 1260 | 1440 | 1640 | | 1097 | | 8000 | Ground Roll | 750 | 800 | 880 | 1010 | 1150 | | 745 | | 2438 | 15 m/50 ft | 1180 | 1260 | 1380 | 1580 | 1800 | | 1171 | | 9000 | Ground Roll | 820 | 880 | 980 | 1110 | 1270 | | 797 | | 2743 | 15 m/50 ft | 1270 | 1370 | 1530 | 1750 | 2010 | | 1248 | | 10000 | Ground Roll | 900 | 960 | 1080 | 1240 | | | 857 | | 3048 | 15 m/50 ft | 1390 | 1500 | 1690 | 1950 | | | 1339 | | Page 5 - 18 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | | |-------------|--------|-------------|---------------------|--| | | | | | | Take-Off Distance - Flaps UP - 2100 kg/4630 lb Weight: 2100 kg/4630 lb Flaps: UP v_R: 80 KIAS Power: MAX v_{50ft}: 89 KIAS Runway: dry, paved, level # Distances are given in meter [m] | Press. Alt. | | | Outside | Air Tem | perature | - [°C]/ [°F |] | | |------------------|-------------|--------------|---------------|---------------|---------------|--------------------|----------------|------| | [ft]/ [m] | | 0/ 32 | 10/ 50 | 20/ 68 | 30/ 86 | 40/ 104 | 50/ 122 | ISA | | SL | Ground Roll | 430 | 450 | 480 | 510 | 570 | 650 | 458 | | 3L | 15 m/50 ft | 680 | 720 | 760 | 810 | 910 | 1040 | 729 | | 1000 | Ground Roll | 450 | 480 | 510 | 540 | 620 | 700 | 480 | | 305 | 15 m/50 ft | 720 | 760 | 800 | 850 | 970 | 1110 | 761 | | 2000 | Ground Roll | 480 | 500 | 540 | 580 | 660 | 750 | 503 | | 610 | 15 m/50 ft | 760 | 790 | 840 | 910 | 1040 | 1180 | 796 | | 3000 | Ground Roll | 510 | 530 | 570 | 620 | 710 | 800 | 527 | | 914 | 15 m/50 ft | 800 | 840 | 890 | 970 | 1110 | 1260 | 830 | | 4000 | Ground Roll | 530 | 570 | 600 | 670 | 760 | 870 | 551 | | 1219 | 15 m/50 ft | 840 | 880 | 940 | 1040 | 1190 | 1360 | 868 | | 5000 | Ground Roll | 570 | 600 | 640 | 720 | 820 | | 582 | | 1524 | 15 m/50 ft | 890 | 940 | 1000 | 1130 | 1280 | | 910 | | 6000 | Ground Roll | 610 | 650 | 690 | 790 | 900 | | 621 | | 1829 | 15 m/50 ft | 950 | 1010 | 1080 | 1230 | 1400 | | 967 | | 7000 | Ground Roll | 660 | 700 | 760 | 870 | 990 | | 663 | | 2134 | 15 m/50 ft | 1030 | 1090 | 1180 | 1350 | 1530 | | 1031 | | 8000 | Ground Roll | 720 | 760 | 840 | 960 | 1090 | | 708 | | 2438 | 15 m/50 ft | 1110 | 1180 | 1300 | 1480 | 1680 | | 1098 | | 9000 | Ground Roll | 780 | 830 | 930 | 1060 | 1210 | | 759 | | 2743 | 15 m/50 ft | 1190 | 1290 | 1430 | 1630 | 1880 | | 1173 | | 10000 | Ground Roll | 850 | 910 | 1030 | 1170 | | | 813 | | 3048 | 15 m/50 ft | 1310 | 1400 | 1580 | 1820 | | | 1254 | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page | 5 - 19 | |---------------------|--------|-------------|------|--------| |---------------------|--------|-------------|------|--------| Take-Off Distance - Flaps UP - 1999 kg/4407 lb Weight: 1999 kg/4407 lb Flaps: UP v_R: 80 KIAS Power: MAX | V _{50ft} . Of Kind | | | | | | | | 71 | |-----------------------------|--------------------|--------------|---------------|---------------|---------------|--------------------|----------------|-----------| | | D | istance | s are giv | ven in m | eter [m] | | | | | Press. Alt. | | | Outside | Air Tem | perature | - [°C]/ [°F |] | | | [ft]/ [m] | | 0/ 32 | 10/ 50 | 20/ 68 | 30/ 86 | 40/ 104 | 50/ 122 | ISA | | SL | Ground Roll | 410 | 430 | 450 | 480 | 540 | 620 | 434 | | SL | 15 m/50 ft | 610 | 640 | 680 | 720 | 810 | 920 | 652 | | 1000 | Ground Roll | 430 | 450 | 480 | 510 | 580 | 670 | 455 |
| 305 | 15 m/50 ft | 640 | 670 | 710 | 760 | 860 | 990 | 679 | | 2000 | Ground Roll | 450 | 480 | 510 | 550 | 620 | 710 | 476 | | 610 | 15 m/50 ft | 670 | 710 | 750 | 810 | 920 | 1050 | 709 | | 3000 | Ground Roll | 480 | 510 | 540 | 590 | 670 | 760 | 501 | | 914 | 15 m/50 ft | 710 | 750 | 790 | 870 | 990 | 1120 | 738 | | 4000 | Ground Roll | 510 | 540 | 570 | 630 | 720 | 820 | 523 | | 1219 | 15 m/50 ft | 750 | 790 | 830 | 930 | 1060 | 1200 | 771 | | 5000 | Ground Roll | 540 | 570 | 610 | 690 | 780 | | 550 | | 1524 | 15 m/50 ft | 790 | 830 | 890 | 1000 | 1140 | | 809 | | 6000 | Ground Roll | 580 | 620 | 660 | 750 | 850 | | 589 | | 1829 | 15 m/50 ft | 850 | 900 | 950 | 1090 | 1240 | | 859 | | 7000 | Ground Roll | 630 | 660 | 720 | 830 | 940 | | 629 | | 2134 | 15 m/50 ft | 920 | 960 | 1050 | 1200 | 1360 | | 915 | | 8000 | Ground Roll | 680 | 720 | 790 | 910 | 1030 | | 672 | | 2438 | 15 m/50 ft | 980 | 1050 | 1150 | 1310 | 1490 | | 975 | | 9000 | Ground Roll | 730 | 790 | 880 | 1000 | 1150 | | 717 | | 2743 | 15 m/50 ft | 1060 | 1140 | 1270 | 1440 | 1660 | | 1039 | | 10000 | Ground Roll | 800 | 860 | 970 | 1110 | | | 772 | | 3048 | 15 m/50 ft | 1160 | 1240 | 1400 | 1600 | | | 1112 | | Page 5 - 20 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | | |-------------|--------|-------------|---------------------|--| | | | | | | Take-Off Distance - Flaps UP- 1900 kg/4189 lb Weight: 1900 kg/4189 lb Flaps: UP v_R: 80 KIAS Power: MAX v_{50ft}: 87 KIAS Runway: dry, paved, level | | Distances are given in meter [m] | | | | | | | | |------------------|----------------------------------|--------------|---------------|---------------|---------------|--------------------|----------------|-----| | Press. Alt. | | | Outside | Air Tem | perature | - [°C]/ [°F |] | | | [ft]/ [m] | | 0/ 32 | 10/ 50 | 20/ 68 | 30/ 86 | 40/ 104 | 50/ 122 | ISA | | SL | Ground Roll | 380 | 400 | 430 | 460 | 520 | 590 | 411 | | J. | 15 m/50 ft | 570 | 600 | 640 | 680 | 760 | 870 | 610 | | 1000 | Ground Roll | 410 | 430 | 450 | 480 | 550 | 630 | 430 | | 305 | 15 m/50 ft | 600 | 630 | 670 | 720 | 810 | 930 | 639 | | 2000 | Ground Roll | 430 | 450 | 480 | 520 | 590 | 670 | 451 | | 610 | 15 m/50 ft | 630 | 670 | 700 | 760 | 860 | 980 | 666 | | 3000 | Ground Roll | 450 | 480 | 510 | 560 | 630 | 720 | 472 | | 914 | 15 m/50 ft | 670 | 700 | 740 | 810 | 920 | 1050 | 694 | | 4000 | Ground Roll | 480 | 510 | 540 | 600 | 680 | 780 | 495 | | 1219 | 15 m/50 ft | 700 | 740 | 780 | 870 | 990 | 1130 | 726 | | 5000 | Ground Roll | 510 | 540 | 570 | 650 | 740 | | 520 | | 1524 | 15 m/50 ft | 740 | 780 | 830 | 940 | 1070 | | 759 | | 6000 | Ground Roll | 550 | 580 | 620 | 710 | 810 | | 556 | | 1829 | 15 m/50 ft | 800 | 840 | 900 | 1020 | 1160 | | 809 | | 7000 | Ground Roll | 590 | 630 | 680 | 780 | 880 | | 594 | | 2134 | 15 m/50 ft | 860 | 910 | 980 | 1120 | 1270 | | 860 | | 8000 | Ground Roll | 640 | 680 | 750 | 860 | 970 | | 634 | | 2438 | 15 m/50 ft | 920 | 980 | 1080 | 1220 | 1400 | | 914 | | 9000 | Ground Roll | 700 | 750 | 830 | 940 | 1080 | | 678 | | 2743 | 15 m/50 ft | 990 | 1070 | 1190 | 1350 | 1550 | | 974 | | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 5 - 2 | Doc. No. 11.01.05-E | |---|---------------------| |---|---------------------| 920 1310 1050 1500 728 1045 820 1160 **Ground Roll** 15 m/50 ft 10000 3048 760 1090 Take-Off Distance - Flaps UP - 1800 kg/3968 lb Weight: 1800 kg/3968 lb Flaps: T/O v_R: 80 KIAS Power: MAX | 3011 | D | istance | s are giv | ven in m | eter [m] |] | | | |------------------|--------------------|--------------|---------------|---------------|---------------|--------------------|----------------|-----| | Press. Alt. | | | Outside | Air Tem | perature | - [°C]/ [°F |] | | | [ft] /[m] | | 0/ 32 | 10/ 50 | 20/ 68 | 30/ 86 | 40/ 104 | 50/ 122 | ISA | | SL | Ground Roll | 360 | 380 | 410 | 430 | 480 | 550 | 387 | | 5 | 15 m/50 ft | 520 | 550 | 580 | 620 | 700 | 810 | 557 | | 1000 | Ground Roll | 380 | 400 | 430 | 460 | 520 | 590 | 406 | | 305 | 15 m/50 ft | 550 | 580 | 620 | 660 | 750 | 870 | 584 | | 2000 | Ground Roll | 400 | 430 | 450 | 490 | 560 | 630 | 426 | | 610 | 15 m/50 ft | 580 | 610 | 650 | 700 | 810 | 920 | 610 | | 3000 | Ground Roll | 430 | 450 | 480 | 530 | 600 | 680 | 445 | | 914 | 15 m/50 ft | 610 | 650 | 680 | 760 | 870 | 980 | 637 | | 4000 | Ground Roll | 450 | 480 | 510 | 570 | 640 | 730 | 466 | | 1219 | 15 m/50 ft | 650 | 680 | 730 | 810 | 930 | 1060 | 668 | | 5000 | Ground Roll | 480 | 510 | 540 | 610 | 700 | | 492 | | 1524 | 15 m/50 ft | 690 | 730 | 780 | 880 | 1000 | | 704 | | 6000 | Ground Roll | 520 | 550 | 590 | 670 | 760 | | 524 | | 1829 | 15 m/50 ft | 740 | 790 | 840 | 960 | 1090 | | 751 | | 7000 | Ground Roll | 560 | 590 | 640 | 730 | 830 | | 559 | | 2134 | 15 m/50 ft | 800 | 850 | 920 | 1040 | 1190 | | 803 | | 8000 | Ground Roll | 600 | 640 | 710 | 810 | 910 | | 597 | | 2438 | 15 m/50 ft | 860 | 920 | 1010 | 1150 | 1300 | | 857 | | 9000 | Ground Roll | 650 | 710 | 780 | 890 | 1020 | | 638 | | 2743 | 15 m/50 ft | 930 | 1000 | 1110 | 1260 | 1450 | | 912 | | 10000 | Ground Roll | 720 | 770 | 860 | 990 | | | 686 | | 3048 | 15 m/50 ft | 1020 | 1090 | 1220 | 1400 | | | 977 | | | | | | ı | |-------------|--------|-------------|---------------------|---| | Page 5 - 22 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | ì | | | | | | ì | ## Take-Off Distances (US/Imperial System) Take-Off Distance - Normal Procedure - 2300 kg/5071 lb | Distances | are o | aiven | in 1 | eet l | [ft] | |------------------|---------|----------|------|-------|------| | | | <u> </u> | | | T1 | | Press. Alt. | | | Outside | Air Tem | perature | - [°C] /[°F | 1 | | |------------------|--------------------|------|---------------|---------------|---------------|--------------------|----------------|------| | [ft]/ [m] | | 0/30 | 10 /50 | 20 /70 | 30 /90 | 40/110 | 50 /130 | ISA | | | Ground Roll | 1450 | 1550 | 1650 | 1750 | 2000 | 2300 | 1574 | | SL | 15 m/50 ft | 2550 | 2700 | 2850 | 3050 | 3450 | 3950 | 2730 | | 1000 | Ground Roll | 1550 | 1650 | 1750 | 1900 | 2150 | 2450 | 1650 | | 305 | 15 m/50 ft | 2700 | 2850 | 3000 | 3250 | 3700 | 4250 | 2853 | | 2000 | Ground Roll | 1650 | 1750 | 1850 | 2000 | 2300 | 2600 | 1732 | | 610 | 15 m/50 ft | 2850 | 3000 | 3200 | 3450 | 3950 | 4500 | 2984 | | 3000 | Ground Roll | 1750 | 1850 | 1950 | 2150 | 2450 | 2800 | 1821 | | 914 | 15 m/50 ft | 3000 | 3150 | 3350 | 3700 | 4250 | 4850 | 3121 | | 4000 | Ground Roll | 1850 | 1950 | 2100 | 2350 | 2650 | 3050 | 1909 | | 1219 | 15 m/50 ft | 3150 | 3350 | 3550 | 4000 | 4550 | 5250 | 3268 | | 5000 | Ground Roll | 2000 | 2100 | 2250 | 2550 | 2900 | | 2011 | | 1524 | 15 m/50 ft | 3350 | 3550 | 3800 | 4300 | 4900 | | 3434 | | 6000 | Ground Roll | 2150 | 2250 | 2400 | 2750 | 3150 | | 2148 | | 1829 | 15 m/50 ft | 3650 | 3850 | 4100 | 4700 | 5400 | | 3665 | | 7000 | Ground Roll | 2300 | 2450 | 2650 | 3050 | 3450 | | 2296 | | 2134 | 15 m/50 ft | 3900 | 4150 | 4500 | 5200 | 5900 | | 3912 | | 8000 | Ground Roll | 2500 | 2650 | 2950 | 3350 | 3800 | | 2455 | | 2438 | 15 m/50 ft | 4200 | 4500 | 5000 | 5700 | 6550 | | 4175 | | 9000 | Ground Roll | 2700 | 2900 | 3250 | 3700 | 4250 | | 2631 | | 2743 | 15 m/50 ft | 4550 | 4950 | 5500 | 6350 | 7400 | | 4458 | | 10000 | Ground Roll | 2950 | 3200 | 3600 | 4150 | | | 2827 | | 3048 | 15 m/50 ft | 5000 | 5400 | 6150 | 7100 | | | 4803 | | oc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 5 - 23 | |--------------------|--------|-------------|-------------| |--------------------|--------|-------------|-------------| Take-Off Distance - Normal Procedure - 2200 kg/4850 lb Weight: 2200 kg/4850 lb Flaps: T/O v_R: 78 KIAS Power: MAX | | Distances are given in feet [ft] | | | | | | | | |------------------|----------------------------------|------|---------------|---------------|---------------|--------------------|----------------|------| | Press. Alt. | | | Outside | Air Tem | perature | - [°C] /[°F |] | | | [ft]/ [m] | | 0/30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /130 | ISA | | SL | Ground Roll | 1400 | 1500 | 1600 | 1700 | 1900 | 2150 | 1499 | | SL | 15 m/50 ft | 2400 | 2550 | 2700 | 2900 | 3250 | 3700 | 2574 | | 1000 | Ground Roll | 1500 | 1550 | 1650 | 1800 | 2050 | 2350 | 1570 | | 305 | 15 m/50 ft | 2550 | 2650 | 2850 | 3050 | 3450 | 4000 | 2690 | | 2000 | Ground Roll | 1550 | 1650 | 1750 | 1900 | 2200 | 2500 | 1653 | | 610 | 15 m/50 ft | 2700 | 2800 | 3000 | 3250 | 3700 | 4250 | 2806 | | 3000 | Ground Roll | 1650 | 1750 | 1850 | 2050 | 2350 | 2650 | 1729 | | 914 | 15 m/50 ft | 2800 | 3000 | 3150 | 3500 | 3950 | 4550 | 2936 | | 4000 | Ground Roll | 1750 | 1850 | 2000 | 2200 | 2550 | 2900 | 1819 | | 1219 | 15 m/50 ft | 3000 | 3150 | 3350 | 3750 | 4250 | 4900 | 3076 | | 5000 | Ground Roll | 1900 | 2000 | 2150 | 2400 | 2750 | | 1916 | | 1524 | 15 m/50 ft | 3150 | 3350 | 3550 | 4050 | 4600 | | 3227 | | 6000 | Ground Roll | 2050 | 2150 | 2300 | 2600 | 3000 | | 2046 | | 1829 | 15 m/50 ft | 3400 | 3600 | 3850 | 4400 | 5050 | | 3439 | | 7000 | Ground Roll | 2200 | 2350 | 2550 | 2900 | 3300 | | 2187 | | 2134 | 15 m/50 ft | 3650 | 3900 | 4250 | 4850 | 5550 | | 3667 | | 8000 | Ground Roll | 2350 | 2550 | 2800 | 3200 | 3650 | | 2339 | | 2438 | 15 m/50 ft | 3950 | 4200 | 4650 | 5350 | 6100 | | 3909 | | 9000 | Ground Roll | 2550 | 2800 | 3100 | 3500 | 4050 | | 2499 | | 2743 | 15 m/50 ft | 4300 | 4650 | 5150 | 5900 | 6850 | | 4181 | | 10000 | Ground Roll | 2800 | 3050 | 3400 | 3950 | | | 2688 | | 3048 | 15 m/50 ft | 4700 | 5050 | 5750 | 6650 | | | 4495 | | Page 5 - 24 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | | |-------------|--------
-------------|---------------------|--| | | | | | | Take-Off Distance - Normal Procedure - 2100 kg/4630 lb Weight: 2100 kg/4630 lb Flaps: T/O v_R : 78 KIAS Power: MAX v_{50ft}: 86 KIAS Runway: dry, paved, level #### Distances are given in feet [ft] Outside Air Temperature - [°C]/[°F] Press. Alt. 50/130 0/30 10/50 [ft]/[m] 20/70 30/90 **/110** ISA **Ground Roll** SL 15 m/50 ft Ground Roll 15 m/50 ft **Ground Roll** 15 m/50 ft **Ground Roll** 15 m/50 ft Ground Roll 15 m/50 ft **Ground Roll** 15 m/50 ft **Ground Roll** 15 m/50 ft **Ground Roll** 15 m/50 ft | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 5 - 2 | |---| |---| Take-Off Distance - Normal Procedure - 1999 kg/4407 lb Weight: 1999 kg/4407 lb Flaps: T/O v_R: 76 KIAS Power: MAX | | Distances are given in feet [ft] | | | | | | | | |------------------|----------------------------------|------|---------------|---------------|---------------|--------------------|----------------|------| | Press. Alt. | | | Outside | Air Tem | perature | - [°C] /[°F |] | | | [ft]/ [m] | | 0/30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /130 | ISA | | SL | Ground Roll | 1200 | 1250 | 1350 | 1450 | 1600 | 1850 | 1263 | | SL | 15 m/50 ft | 1950 | 2050 | 2200 | 2350 | 2600 | 3000 | 2093 | | 1000 | Ground Roll | 1250 | 1350 | 1400 | 1500 | 1700 | 1950 | 1328 | | 305 | 15 m/50 ft | 2050 | 2150 | 2300 | 2450 | 2800 | 3200 | 2179 | | 2000 | Ground Roll | 1350 | 1400 | 1500 | 1600 | 1850 | 2100 | 1392 | | 610 | 15 m/50 ft | 2150 | 2300 | 2400 | 2650 | 3000 | 3400 | 2277 | | 3000 | Ground Roll | 1400 | 1500 | 1600 | 1750 | 2000 | 2250 | 1456 | | 914 | 15 m/50 ft | 2300 | 2400 | 2550 | 2800 | 3200 | 3650 | 2383 | | 4000 | Ground Roll | 1500 | 1600 | 1700 | 1900 | 2150 | 2450 | 1534 | | 1219 | 15 m/50 ft | 2400 | 2550 | 2700 | 3000 | 3450 | 3950 | 2490 | | 5000 | Ground Roll | 1600 | 1700 | 1800 | 2050 | 2300 | | 1617 | | 1524 | 15 m/50 ft | 2550 | 2700 | 2900 | 3250 | 3700 | | 2614 | | 6000 | Ground Roll | 1700 | 1800 | 1950 | 2200 | 2500 | | 1722 | | 1829 | 15 m/50 ft | 2750 | 2900 | 3100 | 3550 | 4050 | | 2781 | | 7000 | Ground Roll | 1850 | 1950 | 2150 | 2450 | 2750 | | 1845 | | 2134 | 15 m/50 ft | 2950 | 3150 | 3400 | 3900 | 4450 | | 2962 | | 8000 | Ground Roll | 2000 | 2150 | 2350 | 2700 | 3050 | | 1970 | | 2438 | 15 m/50 ft | 3200 | 3400 | 3750 | 4250 | 4850 | | 3156 | | 9000 | Ground Roll | 2150 | 2350 | 2600 | 2950 | 3400 | | 2104 | | 2743 | 15 m/50 ft | 3450 | 3700 | 4150 | 4750 | 5450 | | 3361 | | 10000 | Ground Roll | 2350 | 2550 | 2850 | 3300 | | | 2266 | | 3048 | 15 m/50 ft | 3750 | 4050 | 4550 | 5250 | | | 3608 | | Page 5 - 26 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | | |-------------|--------|-------------|---------------------|--| | | | | | | Take-Off Distance - Normal Procedure - 1900 kg/4189 lb Weight: 1900 kg/4189 lb Flaps: T/O v_R : 76 KIAS Power: MAX v_{50ft}: 83 KIAS Runway: dry, paved, level # Distances are given in feet [ft] | Press. Alt. | | | Outside | Air Tem | perature | - [°C] /[°F |] | | |------------------|-------------|------|---------------|---------------|---------------|--------------------|----------------|------| | [ft]/ [m] | | 0/30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /130 | ISA | | SL | Ground Roll | 1100 | 1200 | 1250 | 1350 | 1500 | 1750 | 1199 | | J SL | 15 m/50 ft | 1750 | 1850 | 2000 | 2150 | 2450 | 2800 | 1888 | | 1000 | Ground Roll | 1200 | 1250 | 1350 | 1450 | 1650 | 1850 | 1253 | | 305 | 15 m/50 ft | 1850 | 1950 | 2100 | 2300 | 2650 | 3000 | 1979 | | 2000 | Ground Roll | 1250 | 1350 | 1400 | 1550 | 1750 | 2000 | 1318 | | 610 | 15 m/50 ft | 2000 | 2100 | 2250 | 2450 | 2800 | 3200 | 2086 | | 3000 | Ground Roll | 1350 | 1400 | 1500 | 1650 | 1850 | 2150 | 1377 | | 914 | 15 m/50 ft | 2100 | 2250 | 2350 | 2650 | 3000 | 3400 | 2191 | | 4000 | Ground Roll | 1400 | 1500 | 1600 | 1750 | 2000 | 2300 | 1449 | | 1219 | 15 m/50 ft | 2250 | 2350 | 2550 | 2850 | 3200 | 3700 | 2306 | | 5000 | Ground Roll | 1500 | 1600 | 1700 | 1900 | 2200 | | 1526 | | 1524 | 15 m/50 ft | 2400 | 2550 | 2700 | 3050 | 3450 | | 2445 | | 6000 | Ground Roll | 1600 | 1700 | 1850 | 2100 | 2400 | | 1632 | | 1829 | 15 m/50 ft | 2600 | 2750 | 2900 | 3300 | 3750 | | 2603 | | 7000 | Ground Roll | 1750 | 1850 | 2000 | 2300 | 2600 | | 1740 | | 2134 | 15 m/50 ft | 2800 | 2950 | 3200 | 3650 | 4150 | | 2774 | | 8000 | Ground Roll | 1900 | 2000 | 2200 | 2550 | 2900 | | 1858 | | 2438 | 15 m/50 ft | 3000 | 3200 | 3500 | 4000 | 4550 | | 2958 | | 9000 | Ground Roll | 2050 | 2200 | 2450 | 2800 | 3200 | | 1992 | | 2743 | 15 m/50 ft | 3250 | 3500 | 3850 | 4400 | 5100 | | 3145 | | 10000 | Ground Roll | 2250 | 2400 | 2700 | 3100 | | | 2140 | | 3048 | 15 m/50 ft | 3550 | 3800 | 4250 | 4900 | | | 3364 | | . 11.01.05-E | Doc. No. 11.01.0 | |--------------|------------------| |--------------|------------------| Take-Off Distance - Normal Procedure - 1800 kg/3968 lb Weight: 1800 kg/3968 lb Flaps: T/O v_R: 76 KIAS Power: MAX | | Distances are given in feet [ft] | | | | | | | | |------------------|----------------------------------|------|---------------|---------------|---------------|--------------------|----------------|------| | Press. Alt. | | | Outside | Air Tem | perature | - [°C] /[°F |] | | | [ft]/ [m] | | 0/30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /130 | ISA | | SL | Ground Roll | 1050 | 1100 | 1200 | 1250 | 1450 | 1650 | 1129 | | JL | 15 m/50 ft | 1600 | 1700 | 1800 | 1950 | 2200 | 2550 | 1712 | | 1000 | Ground Roll | 1100 | 1200 | 1250 | 1350 | 1550 | 1750 | 1183 | | 305 | 15 m/50 ft | 1700 | 1800 | 1900 | 2050 | 2350 | 2750 | 1796 | | 2000 | Ground Roll | 1200 | 1250 | 1350 | 1450 | 1650 | 1850 | 1243 | | 610 | 15 m/50 ft | 1800 | 1900 | 2000 | 2200 | 2550 | 2900 | 1888 | | 3000 | Ground Roll | 1250 | 1350 | 1400 | 1550 | 1750 | 2000 | 1303 | | 914 | 15 m/50 ft | 1900 | 2000 | 2150 | 2350 | 2700 | 3150 | 1979 | | 4000 | Ground Roll | 1350 | 1400 | 1500 | 1650 | 1900 | 2150 | 1363 | | 1219 | 15 m/50 ft | 2000 | 2150 | 2250 | 2550 | 2950 | 3450 | 2070 | | 5000 | Ground Roll | 1400 | 1500 | 1600 | 1800 | 2050 | | 1435 | | 1524 | 15 m/50 ft | 2150 | 2250 | 2450 | 2800 | 3250 | | 2185 | | 6000 | Ground Roll | 1550 | 1600 | 1750 | 1950 | 2250 | | 1533 | | 1829 | 15 m/50 ft | 2300 | 2450 | 2650 | 3100 | 3500 | | 2338 | | 7000 | Ground Roll | 1650 | 1750 | 1900 | 2150 | 2450 | | 1642 | | 2134 | 15 m/50 ft | 2500 | 2650 | 2950 | 3400 | 3850 | | 2505 | | 8000 | Ground Roll | 1800 | 1900 | 2100 | 2400 | 2700 | | 1753 | | 2438 | 15 m/50 ft | 2750 | 2950 | 3250 | 3750 | 4250 | | 2692 | | 9000 | Ground Roll | 1950 | 2100 | 2300 | 2650 | 3000 | | 1872 | | 2743 | 15 m/50 ft | 3000 | 3250 | 3600 | 4100 | 4750 | | 2901 | | 10000 | Ground Roll | 2100 | 2250 | 2550 | 2950 | | | 2012 | | 3048 | 15 m/50 ft | 3300 | 3550 | 4000 | 4550 | | | 3145 | | Page 5 - 28 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | | |-------------|--------|-------------|---------------------|--| | | | | | | Take-Off Distance - Flaps UP - 2300 kg/5071 lb Weight: 2300 kg/5071 lb Flaps: UP v_R: 80 KIAS Power: MAX | Distances are given in feet [ft] | | | | | | | | | | |----------------------------------|--------------------|--------------|-------------------------------------|---------------|---------------|-------------------|----------------|------|--| | Press. Alt. | | Distaile | | • | | [0C1 /[0E | 1 | | | | | | 0.10.0 | Outside Air Temperature - [°C]/[°F] | | | | | | | | [ft]/ [m] | | 0 /30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /130 | ISA | | | SL | Ground Roll | 1550 | 1650 | 1750 | 1850 | 2100 | 2400 | 1660 | | | | 15 m/50 ft | 2550 | 2650 | 2800 | 3000 | 3400 | 3850 | 2696 | | | 1000 | Ground Roll | 1650 | 1750 | 1850 | 1950 | 2250 | 2550 | 1739 | | | 305 | 15 m/50 ft | 2650 | 2800 | 2950 | 3150 | 3600 | 4150 | 2813 | | | 2000 | Ground Roll | 1750 | 1850 | 1950 | 2100 | 2400 | 2750 | 1823 | | | 610 | 15 m/50 ft | 2800 | 2950 | 3100 | 3400 | 3850 | 4400 | 2936 | | | 3000 | Ground Roll | 1850 | 1950 | 2050 | 2250 | 2600 | 2950 | 1914 | | | 914 | 15 m/50 ft | 2950 | 3100 | 3300 | 3600 | 4100 | 4700 | 3068 | | | 4000 | Ground Roll | 1950 | 2050 | 2200 | 2450 | 2800 | 3150 | 2005 | | | 1219 | 15 m/50 ft | 3100 | 3300 | 3500 | 3900 | 4450 | 5100 | 3217 | | | 5000 | Ground Roll | 2050 | 2200 | 2350 | 2650 | 3000 | | 2110 | | | 1524 | 15 m/50 ft | 3300 | 3500 | 3700 | 4200 | 4800 | | 3369 | | | 6000 | Ground Roll | 2250 | 2350 | 2550 | 2900 | 3300 | | 2252 | | | 1829 | 15 m/50 ft | 3550 | 3750 | 4000 | 4600 | 5250 | | 3592 | | | 7000 | Ground Roll | 2400 | 2550 | 2800 | 3150 | 3600 | | 2405 | | | 2134 | 15 m/50 ft | 3800 | 4050 | 4400 | 5050 | 5750 | | 3822 | | | 8000 | Ground Roll | 2600 | 2800 | 3050 | 3500 | 3950 | | 2568 | | | 2438 | 15 m/50 ft | 4100 | 4400 | 4850 | 5550 | 6300 | | 4084 | | | 9000 | Ground Roll | 2850 | 3050 | 3400 | 3850 | 4400 | | 2749 | | | 2743 | 15 m/50 ft | 4450 | 4800 | 5350 | 6100 | 7050 | | 4359 | | | 10000 | Ground Roll | 3100 | 3350 | 3750 | 4300 | | | 2960 | | | 3048 | 15 m/50 ft | 4900 | 5250 | 5900 | 6850 | | | 4677 | | | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 5 - 29 | |--| |--| Take-Off Distance - Flaps UP - 2200 kg/4850 lb Weight: 2200 kg/4850 lb Flaps: UP v_R: 80 KIAS Power: MAX | 3011 | Distances are given in feet [ft] | | | | | | | | | |------------------|----------------------------------|------|---------------|---------------|---------------|--------------------|----------------|------|--| | Press. Alt. | | | Outside | Air Tem | perature | - [°C] /[°F |] | | | |
[ft]/ [m] | | 0/30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /130 | ISA | | | SL | Ground Roll | 1500 | 1550 | 1650 | 1750 | 2000 | 2250 | 1584 | | | 5 L | 15 m/50 ft | 2400 | 2500 | 2650 | 2850 | 3200 | 3650 | 2544 | | | 1000 | Ground Roll | 1550 | 1650 | 1750 | 1900 | 2150 | 2450 | 1657 | | | 305 | 15 m/50 ft | 2500 | 2650 | 2800 | 3000 | 3400 | 3900 | 2654 | | | 2000 | Ground Roll | 1650 | 1750 | 1850 | 2000 | 2300 | 2600 | 1736 | | | 610 | 15 m/50 ft | 2650 | 2800 | 2950 | 3200 | 3650 | 4150 | 2771 | | | 3000 | Ground Roll | 1750 | 1850 | 1950 | 2150 | 2450 | 2800 | 1821 | | | 914 | 15 m/50 ft | 2800 | 2950 | 3100 | 3400 | 3900 | 4400 | 2896 | | | 4000 | Ground Roll | 1850 | 1950 | 2100 | 2300 | 2650 | 3000 | 1907 | | | 1219 | 15 m/50 ft | 2950 | 3100 | 3300 | 3650 | 4150 | 4750 | 3021 | | | 5000 | Ground Roll | 2000 | 2100 | 2250 | 2500 | 2850 | | 2006 | | | 1524 | 15 m/50 ft | 3100 | 3300 | 3500 | 3950 | 4500 | | 3173 | | | 6000 | Ground Roll | 2100 | 2250 | 2400 | 2750 | 3150 | | 2140 | | | 1829 | 15 m/50 ft | 3350 | 3550 | 3750 | 4300 | 4900 | | 3378 | | | 7000 | Ground Roll | 2300 | 2450 | 2650 | 3000 | 3450 | | 2286 | | | 2134 | 15 m/50 ft | 3600 | 3800 | 4150 | 4700 | 5400 | | 3597 | | | 8000 | Ground Roll | 2500 | 2650 | 2900 | 3300 | 3750 | | 2442 | | | 2438 | 15 m/50 ft | 3900 | 4150 | 4550 | 5200 | 5900 | | 3839 | | | 9000 | Ground Roll | 2700 | 2900 | 3200 | 3650 | 4200 | | 2615 | | | 2743 | 15 m/50 ft | 4200 | 4500 | 5000 | 5750 | 6600 | | 4093 | | | 10000 | Ground Roll | 2950 | 3150 | 3550 | 4050 | | | 2810 | | | 3048 | 15 m/50 ft | 4600 | 4950 | 5550 | 6400 | | | 4391 | | | Page 5 - 30 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | | |-------------|--------|-------------|---------------------|--| | | | | | | Take-Off Distance - Flaps UP - 2100 kg/4630 lb Weight: 2100 kg/4630 lb Flaps: UP v_R: 80 KIAS Power: MAX | Distances are given in feet [ft] | | | | | | | | | |----------------------------------|-------------|------|---------------|---------------|---------------|--------------------|----------------|------| | Press. Alt. | | | | • | | - [°C] /[°F |] | | | [ft]/ [m] | | 0/30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /130 | ISA | | CI. | Ground Roll | 1400 | 1500 | 1600 | 1700 | 1900 | 2150 | 1501 | | SL | 15 m/50 ft | 2250 | 2350 | 2500 | 2650 | 3000 | 3400 | 2391 | | 1000 | Ground Roll | 1500 | 1550 | 1650 | 1800 | 2050 | 2300 | 1575 | | 305 | 15 m/50 ft | 2350 | 2500 | 2650 | 2800 | 3200 | 3650 | 2494 | | 2000 | Ground Roll | 1550 | 1650 | 1750 | 1900 | 2150 | 2450 | 1648 | | 610 | 15 m/50 ft | 2500 | 2600 | 2750 | 3000 | 3400 | 3900 | 2612 | | 3000 | Ground Roll | 1650 | 1750 | 1850 | 2050 | 2350 | 2650 | 1728 | | 914 | 15 m/50 ft | 2600 | 2750 | 2900 | 3200 | 3650 | 4150 | 2722 | | 4000 | Ground Roll | 1750 | 1850 | 2000 | 2200 | 2500 | 2850 | 1808 | | 1219 | 15 m/50 ft | 2750 | 2900 | 3100 | 3450 | 3900 | 4500 | 2848 | | 5000 | Ground Roll | 1900 | 2000 | 2100 | 2400 | 2700 | | 1909 | | 1524 | 15 m/50 ft | 2950 | 3100 | 3300 | 3700 | 4200 | | 2985 | | 6000 | Ground Roll | 2000 | 2150 | 2300 | 2600 | 2950 | | 2036 | | 1829 | 15 m/50 ft | 3150 | 3300 | 3550 | 4050 | 4600 | | 3172 | | 7000 | Ground Roll | 2200 | 2300 | 2500 | 2850 | 3250 | | 2174 | | 2134 | 15 m/50 ft | 3400 | 3550 | 3900 | 4450 | 5050 | | 3380 | | 8000 | Ground Roll | 2350 | 2500 | 2750 | 3150 | 3600 | | 2323 | | 2438 | 15 m/50 ft | 3650 | 3850 | 4250 | 4850 | 5550 | | 3603 | | 9000 | Ground Roll | 2550 | 2750 | 3050 | 3450 | 4000 | | 2488 | | 2743 | 15 m/50 ft | 3950 | 4250 | 4700 | 5350 | 6200 | | 3846 | | 10000 | Ground Roll | 2800 | 3000 | 3350 | 3850 | | | 2667 | | 3048 | 15 m/50 ft | 4300 | 4600 | 5200 | 5950 | | | 4113 | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | | Page 5 - 31 | |---------------------|--------|-------------|--|-------------| |---------------------|--------|-------------|--|-------------| Take-Off Distance - Flaps UP - 1999 kg/4407 lb Weight: 1999 kg/4407 lb Flaps: UP v_R: 80 KIAS Power: MAX | 3011 | Distances are given in feet [ft] | | | | | | | | | |------------------|----------------------------------|------|---------------|---------------|---------------|--------------------|----------------|------|--| | Press. Alt. | | | Outside | Air Tem | perature | - [°C] /[°F |] | | | | [ft]/ [m] | | 0/30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /130 | ISA | | | SL | Ground Roll | 1350 | 1400 | 1500 | 1600 | 1800 | 2050 | 1424 | | | 5 L | 15 m/50 ft | 2000 | 2100 | 2250 | 2400 | 2650 | 3050 | 2138 | | | 1000 | Ground Roll | 1400 | 1500 | 1600 | 1700 | 1950 | 2200 | 1493 | | | 305 | 15 m/50 ft | 2100 | 2200 | 2350 | 2500 | 2850 | 3250 | 2225 | | | 2000 | Ground Roll | 1500 | 1600 | 1650 | 1800 | 2050 | 2350 | 1560 | | | 610 | 15 m/50 ft | 2200 | 2350 | 2450 | 2650 | 3050 | 3450 | 2326 | | | 3000 | Ground Roll | 1600 | 1650 | 1750 | 1950 | 2200 | 2500 | 1642 | | | 914 | 15 m/50 ft | 2350 | 2450 | 2600 | 2850 | 3250 | 3700 | 2419 | | | 4000 | Ground Roll | 1700 | 1750 | 1900 | 2100 | 2400 | 2700 | 1716 | | | 1219 | 15 m/50 ft | 2450 | 2600 | 2750 | 3050 | 3500 | 3950 | 2528 | | | 5000 | Ground Roll | 1800 | 1900 | 2000 | 2250 | 2550 | | 1803 | | | 1524 | 15 m/50 ft | 2600 | 2750 | 2950 | 3300 | 3750 | | 2654 | | | 6000 | Ground Roll | 1900 | 2050 | 2150 | 2450 | 2800 | | 1930 | | | 1829 | 15 m/50 ft | 2800 | 2950 | 3150 | 3600 | 4050 | | 2818 | | | 7000 | Ground Roll | 2050 | 2200 | 2400 | 2700 | 3100 | | 2061 | | | 2134 | 15 m/50 ft | 3000 | 3150 | 3450 | 3950 | 4450 | | 3002 | | | 8000 | Ground Roll | 2250 | 2400 | 2600 | 3000 | 3400 | | 2202 | | | 2438 | 15 m/50 ft | 3250 | 3450 | 3800 | 4300 | 4900 | | 3199 | | | 9000 | Ground Roll | 2400 | 2600 | 2900 | 3300 | 3750 | | 2352 | | | 2743 | 15 m/50 ft | 3500 | 3750 | 4150 | 4750 | 5450 | | 3406 | | | 10000 | Ground Roll | 2650 | 2850 | 3200 | 3650 | | | 2532 | | | 3048 | 15 m/50 ft | 3800 | 4100 | 4600 | 5250 | | | 3648 | | | | | | | 1 | |-------------|--------|-------------|---------------------|---| | Page 5 - 32 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | ì | | | | | | ì | Take-Off Distance - Flaps UP- 1900 kg/4189 lb Weight: 1900 kg/4189 lb Flaps: UP v_R: 80 KIAS Power: MAX | Distances are given in feet [ft] | | | | | | | | | |----------------------------------|--------------------|------|-------|---------------|-------|--------------------|------------------------|------| | Press. Alt. | | | | | | - [°C] /[°F | 1 | | | [ft]/[m] | | 0/30 | 10/50 | 20 /70 | 30/90 | 40/110 | ISA | | | | Ground Roll | 1250 | 1350 | 1400 | 1500 | 1700 | 50 /130
1950 | 1347 | | SL | 15 m/50 ft | 1900 | 1950 | 2100 | 2250 | 2500 | 2850 | 2001 | | 1000 | Ground Roll | 1350 | 1400 | 1500 | 1600 | 1800 | 2050 | 1409 | | 305 | 15 m/50 ft | 2000 | 2100 | 2200 | 2350 | 2650 | 3050 | 2096 | | 2000 | Ground Roll | 1400 | 1500 | 1600 | 1700 | 1950 | 2200 | 1478 | | 610 | 15 m/50 ft | 2100 | 2200 | 2300 | 2500 | 2850 | 3250 | 2183 | | 3000 | Ground Roll | 1500 | 1600 | 1700 | 1850 | 2100 | 2350 | 1547 | | 914 | 15 m/50 ft | 2200 | 2300 | 2450 | 2700 | 3050 | 3450 | 2277 | | 4000 | Ground Roll | 1600 | 1650 | 1800 | 2000 | 2250 | 2550 | 1623 | | 1219 | 15 m/50 ft | 2300 | 2450 | 2600 | 2850 | 3250 | 3700 | 2380 | | 5000 | Ground Roll | 1700 | 1800 | 1900 | 2150 | 2450 | | 1704 | | 1524 | 15 m/50 ft | 2450 | 2600 | 2750 | 3100 | 3500 | | 2491 | | 6000 | Ground Roll | 1800 | 1900 | 2050 | 2350 | 2650 | | 1824 | | 1829 | 15 m/50 ft | 2650 | 2750 | 2950 | 3350 | 3800 | | 2653 | | 7000 | Ground Roll | 1950 | 2050 | 2250 | 2550 | 2900 | | 1947 | | 2134 | 15 m/50 ft | 2800 | 3000 | 3250 | 3700 | 4200 | | 2819 | | 8000 | Ground Roll | 2100 | 2250 | 2450 | 2800 | 3200 | | 2080 | | 2438 | 15 m/50 ft | 3050 | 3250 | 3550 | 4050 | 4600 | | 2997 | | 9000 | Ground Roll | 2300 | 2450 | 2750 | 3100 | 3550 | | 2223 | | 2743 | 15 m/50 ft | 3250 | 3550 | 3900 | 4450 | 5100 | | 3195 | | 10000 | Ground Roll | 2500 | 2700 | 3000 | 3450 | | | 2387 | | 3048 | 15 m/50 ft | 3550 | 3850 | 4300 | 4950 | | | 3426 | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | | Page 5 - 33 | |---------------------|--------|-------------|--|-------------| |---------------------|--------|-------------|--|-------------| Take-Off Distance - Flaps UP - 1800 kg/3968 lb Weight: 1800 kg/3968 lb Flaps: T/O v_R: 80 KIAS Power: MAX | | Distances are given in feet [ft] | | | | | | | | | |------------------|----------------------------------|------|---------------|---------------|---------------|--------------------|----------------|------|--| | Press. Alt. | | | Outside | Air Tem | perature | - [°C] /[°F |] | | | | [ft]/ [m] | | 0/30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /130 | ISA | | | SL | Ground Roll | 1200 | 1250 | 1350 | 1450 | 1600 | 1850 | 1268 | | | JL | 15 m/50 ft | 1700 | 1800 | 1900 | 2050 | 2300 | 2650 | 1825 | | | 1000 | Ground Roll | 1250 | 1350 | 1400 | 1500 | 1700 | 1950 | 1332 | | | 305 | 15 m/50 ft | 1800 | 1900 | 2050 | 2150 | 2500 | 2850 | 1913 | | | 2000 | Ground Roll | 1350 | 1400 | 1500 | 1600 | 1850 | 2100 | 1396 | | | 610 | 15 m/50 ft | 1900 | 2000 | 2150 | 2300 | 2650 | 3050 | 2001 | | | 3000 | Ground Roll | 1400 | 1500 | 1600 | 1750 | 1950 | 2250 | 1459 | | | 914 | 15 m/50 ft | 2050 | 2150 | 2250 | 2500 | 2850 | 3250 | 2087 | | | 4000 | Ground Roll | 1500 | 1600 | 1700 | 1850 | 2100 | 2400 | 1529 | | | 1219 | 15 m/50 ft | 2150 | 2250 | 2400 | 2700 | 3050 | 3500 | 2190 | | | 5000 | Ground Roll | 1600 | 1700 | 1800 | 2000 | 2300 | | 1612 | | | 1524 | 15 m/50 ft | 2250 | 2400 | 2550 | 2900 | 3300 | | 2310 | | | 6000 | Ground Roll | 1700 | 1800 | 1950 | 2200 | 2500 | | 1717 | | | 1829 | 15 m/50 ft | 2450 | 2600 | 2750 | 3150 | 3550 | | 2462 | | | 7000 | Ground Roll | 1850 | 1950 | 2100 | 2400 | 2750 |
 1832 | | | 2134 | 15 m/50 ft | 2650 | 2800 | 3000 | 3450 | 3900 | | 2634 | | | 8000 | Ground Roll | 2000 | 2100 | 2350 | 2650 | 3000 | | 1958 | | | 2438 | 15 m/50 ft | 2850 | 3000 | 3300 | 3800 | 4300 | | 2812 | | | 9000 | Ground Roll | 2150 | 2300 | 2550 | 2950 | 3350 | | 2092 | | | 2743 | 15 m/50 ft | 3050 | 3300 | 3650 | 4150 | 4750 | | 2990 | | | 10000 | Ground Roll | 2350 | 2550 | 2850 | 3250 | | | 2249 | | | 3048 | 15 m/50 ft | 3350 | 3600 | 4000 | 4600 | | | 3204 | | | Page 5 - 34 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | | |-------------|--------|-------------|---------------------|--| | | | | | | #### 5.3.7 CLIMB PERFORMANCE - TAKE-OFF CLIMB #### Conditions: | - | Power lever | both 95% | |---|--------------|----------------| | - | Flaps | UP or T/O | | - | Landing gear | retracted | | _ | Airspeed | V _v | The climb performance tables show the rate of climb. The gradient of climb can be calculated using the following formula: Gradient [%] = $$\frac{ROC[fpm]}{TAS[KTAS]} \cdot 0.98$$ #### **NOTE** Rate of climb at MTOM (2300 kg/5071 lb) with a power setting of 100% at MSL and ISA conditions: - 1075 ft/min (5.5 m/s) with flaps UP - 1018 ft/min (5.2 m/s) with flaps T/O. Rate of climb at 1999 kg/4407 lb with a power setting of 100% at MSL and ISA conditions: - 1317 ft/min (6.7 m/s) with flaps UP - 1250 ft/min (6.4 m/s) with flaps T/O. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 5 - 35 | |---------------------|--------|-------------|-------------| | | | | | | | | | - | Take-C | off Clim | b - Fla | ps T/O | | | | | |-------------------|--------------|-------------|------|--------|----------|---------|---------|-----------|-------|--------|------| | Flap | s: T/O | | | | | | | | Powe | r: 95% | | | V _Y : | 86 KI | AS | | | | | | | Gear: | retra | cted | |] | | | | | I | Rate of | Climb - | - [ft/mir | 1] | | | | q]]/[b ; | Press. | Press. | | Οι | ıtside A | ir Tem | peratur | e - [°C]/ | /[°F] | | | | Weight [kg]/[lb] | Alt.
[ft] | Alt.
[m] | -20 | -10 | 0 | 10 | 20 | 30 | 40 | 50 | ISA | | Wei | | | -4 | 14 | 32 | 50 | 68 | 86 | 104 | 122 | | | | S | L | 990 | 980 | 980 | 970 | 960 | 950 | 910 | 810 | 965 | | | 2000 | 610 | 970 | 960 | 950 | 940 | 930 | 930 | 860 | 760 | 943 | | | 4000 | 1219 | 940 | 940 | 930 | 920 | 910 | 880 | 800 | 710 | 919 | | | 6000 | 1829 | 920 | 910 | 900 | 890 | 880 | 830 | 740 | | 895 | | _ | 8000 | 2438 | 890 | 880 | 870 | 860 | 840 | 760 | 660 | | 870 | | /507 | 10000 | 3048 | 860 | 850 | 830 | 820 | 770 | 670 | | | 839 | | 2300 /5071 | 12000 | 3658 | 820 | 810 | 790 | 760 | 660 | 560 | | | 806 | | 7 | 14000 | 4267 | 750 | 730 | 690 | 630 | 510 | 400 | | | 733 | | | 16000 | 4877 | 650 | 630 | 590 | 490 | 390 | | | | 642 | | | 18000 | 5486 | 540 | 510 | 470 | 370 | 270 | | | | 540 | | | 20000 | 6096 | 440 | 410 | 350 | 240 | | | | | 447 | | | s | L | 1060 | 1050 | 1050 | 1040 | 1030 | 1030 | 980 | 870 | 1037 | | | 2000 | 610 | 1040 | 1030 | 1020 | 1020 | 1010 | 1000 | 920 | 820 | 1015 | | | 4000 | 1219 | 1010 | 1010 | 1000 | 990 | 980 | 950 | 870 | 770 | 990 | | | 6000 | 1829 | 990 | 980 | 970 | 960 | 950 | 900 | 810 | | 966 | | 50 | 8000 | 2438 | 960 | 950 | 940 | 930 | 910 | 830 | 730 | | 941 | | 2200 /4850 | 10000 | 3048 | 930 | 920 | 900 | 890 | 830 | 730 | | | 910 | | 200 | 12000 | 3658 | 890 | 880 | 860 | 820 | 730 | 620 | | | 876 | | ~ | 14000 | 4267 | 820 | 790 | 760 | 690 | 570 | 450 | | | 801 | | | 16000 | 4877 | 720 | 690 | 650 | 550 | 440 | | | | 707 | | | 18000 | 5486 | 600 | 570 | 530 | 420 | 320 | | | | 601 | | Page 5 - 36 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| | | | | - | Take-C | off Clim | b - Fla | ps T/O | | | | | |-------------------|--------------|-------------|---------|----------|-----------|---------|---------|-----------|----------|----------------|------| | Flap | s: T/O | | | | | | | | Power | r: 95 % | | | V _Y : | 86 KI | AS | | | | | | | Gear: | retra | cted | | [o] | | | | | ı | Rate of | Climb - | - [ft/min |] | | | | (g]/[| Press. | Press. | | Οι | ıtside A | ir Temp | peratur | e - [°C]/ | [°F] | | | | Weight [kg]/[lb] | Alt.
[ft] | Alt.
[m] | -20 | -10 | 0 | 10 | 20 | 30 | 40 | 50 | ISA | | Wei | | | -4 | 14 | 32 | 50 | 68 | 86 | 104 | 122 | | | | 9 | L | 1130 | 1130 | 1120 | 1120 | 1110 | 1100 | 1050 | 940 | 1114 | | | 2000 | 610 | 1120 | 1110 | 1100 | 1090 | 1080 | 1080 | 1000 | 890 | 1092 | | | 4000 | 1219 | 1090 | 1080 | 1070 | 1060 | 1060 | 1030 | 940 | 830 | 1067 | | | 6000 | 1829 | 1060 | 1050 | 1050 | 1040 | 1030 | 970 | 880 | | 1043 | | 30 | 8000 | 2438 | 1040 | 1030 | 1020 | 1000 | 980 | 900 | 790 | | 1017 | |) /46 | 10000 | 3048 | 1010 | 990 | 980 | 960 | 910 | 800 | | | 986 | | 2100 /4630 | 12000 | 3658 | 970 | 950 | 930 | 900 | 800 | 680 | | | 952 | | `` | 14000 | 4267 | 890 | 870 | 830 | 760 | 630 | 510 | | | 874 | | | 16000 | 4877 | 790 | 760 | 720 | 610 | 490 | | | | 777 | | | 18000 | 5486 | 670 | 640 | 600 | 480 | 370 | | | | 667 | | | 20000 | 6096 | 560 | 530 | 470 | 340 | | | | | 569 | | | Fo | r the rate | of clim | b in [m/ | s] divide | by 196 | .8 or m | ultiply b | y 0.0050 | 08. | | | | | | | Take-Off Climb - Flaps T/O | | | | | | | | |-------------------|--------|--------|------|----------------------------|----------|---------|---------|-----------|-------|----------------|------| | | | | | Take-C | off Clim | b - Fla | ps T/O | | | | | | Flap | s: T/O | | | | | | | | Powe | r: 95 % | | | V _Y : | 83 KI | AS | | | | | | | Gear: | retra | cted | | | | | | | ı | Rate of | Climb | - [ft/mir | ո] | | | | Weight [kg]/[lb] | Press. | Press. | | Οι | ıtside A | ir Tem | peratur | e - [°C]/ | ′[°F] | | | | t
K | Alt. | Alt. | | 40 | • | 40 | -00 | 20 | 40 | 50 | 10.4 | |)
Jigh | [ft] | [m] | -20 | -10 | 0 | 10 | 20 | 30 | 40 | 50 | ISA | | š | | | -4 | 14 | 32 | 50 | 68 | 86 | 104 | 122 | | | | S | SL . | 1210 | 1200 | 1200 | 1190 | 1190 | 1180 | 1130 | 1010 | 1193 | | | 2000 | 610 | 1190 | 1180 | 1180 | 1170 | 1160 | 1150 | 1070 | 960 | 1172 | | | 4000 | 1219 | 1170 | 1160 | 1150 | 1140 | 1130 | 1100 | 1010 | 900 | 1146 | | | 6000 | 1829 | 1140 | 1130 | 1120 | 1110 | 1100 | 1040 | 950 | | 1120 | | 07 | 8000 | 2438 | 1110 | 1100 | 1090 | 1080 | 1060 | 970 | 860 | | 1092 | | 1999/4407 | 10000 | 3048 | 1080 | 1070 | 1060 | 1040 | 980 | 870 | | | 1063 | | 3661 | 12000 | 3658 | 1050 | 1030 | 1010 | 980 | 870 | 740 | | | 1030 | | | 14000 | 4267 | 970 | 940 | 910 | 830 | 700 | 580 | | | 950 | | | 16000 | 4877 | 860 | 830 | 790 | 690 | 560 | | | | 851 | | | 18000 | 5486 | 740 | 720 | 670 | 550 | 430 | | | | 741 | | | 20000 | 6096 | 630 | 610 | 540 | 410 | | | | | 644 | | | S | L | 1290 | 1290 | 1280 | 1280 | 1280 | 1270 | 1210 | 1090 | 1278 | | | 2000 | 610 | 1270 | 1270 | 1270 | 1260 | 1250 | 1240 | 1150 | 1030 | 1257 | | | 4000 | 1219 | 1250 | 1250 | 1240 | 1230 | 1220 | 1190 | 1090 | 970 | 1230 | | | 6000 | 1829 | 1230 | 1220 | 1210 | 1200 | 1190 | 1120 | 1020 | | 1204 | | 89 | 8000 | 2438 | 1200 | 1190 | 1170 | 1160 | 1150 | 1050 | 930 | | 1176 | | 1900 /4189 | 10000 | 3048 | 1160 | 1150 | 1140 | 1130 | 1060 | 940 | | | 1147 | | 006 | 12000 | 3658 | 1130 | 1110 | 1090 | 1060 | 940 | 810 | | | 1113 | | - | 14000 | 4267 | 1050 | 1020 | 980 | 910 | 770 | 630 | | | 1029 | | | 16000 | 4877 | 930 | 910 | 870 | 750 | 620 | | | | 926 | | | 18000 | 5486 | 810 | 790 | 740 | 610 | 490 | | | | 812 | | | 20000 | 6096 | 700 | 680 | 600 | 460 | | | | | 711 | | Page 5 - 38 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | | |-------------|--------|-------------|---------------------|--| | | | | | | | | | | | Take-C | off Clim | b - Fla | ps T/O | | | | | |-------------------|----------------|-------------|---------|----------|-----------|---------|----------|-----------|----------|----------------|------| | Flap | s: T/O | | | | | | | | Power | r: 95 % | | | V _Y : | 83 KI | AS | | | | | | | Gear: | retra | cted | | [q | | | | | ı | Rate of | Climb | - [ft/mir | 1] | | | | (g]/[| Press.
Alt. | Press. | | Οι | ıtside A | ir Temp | peratur | e - [°C]/ | [°F] | | | | Weight [kg]/[lb] | [ft] | Alt.
[m] | -20 | -10 | 0 | 10 | 20 | 30 | 40 | 50 | ISA | | We | | | -4 | 14 | 32 | 50 | 68 | 86 | 104 | 122 | | | | 9 | L | 1380 | 1380 | 1380 | 1370 | 1370 | 1360 | 1300 | 1170 | 1371 | | | 2000 | 610 | 1370 | 1360 | 1360 | 1350 | 1340 | 1330 | 1240 | 1110 | 1349 | | | 4000 | 1219 | 1350 | 1340 | 1330 | 1320 | 1310 | 1280 | 1170 | 1040 | 1322 | | | 6000 | 1829 | 1320 | 1310 | 1300 | 1290 | 1280 | 1210 | 1100 | | 1295 | | 89 | 8000 | 2438 | 1290 | 1280 | 1270 | 1260 | 1240 | 1130 | 1000 | | 1266 | | 1800 /3968 | 10000 | 3048 | 1250 | 1240 | 1230 | 1220 | 1150 | 1020 | | | 1237 | | 08 | 12000 | 3658 | 1220 | 1200 | 1180 | 1140 | 1020 | 880 | | | 1202 | | | 14000 | 4267 | 1130 | 1110 | 1070 | 990 | 840 | 700 | | | 1115 | | | 16000 | 4877 | 1020 | 990 | 950 | 830 | 690 | | | | 1008 | | | 18000 | 5486 | 890 | 860 | 810 | 680 | 540 | | | | 889 | | | 20000 | 6096 | 770 | 750 | 670 | 520 | | | | | 783 | | | Fo | r the rate | of clim | b in [m/ | s] divide | by 196 | 3.8 or m | ultiply b | y 0.0050 | 08. | | | | | | | Tako-C | Off Clim | h - Fla | ne IIP | | | | | |-------------------|--------|--------|------|--------|----------|-----------|---------|-----------|-------|--------|------| | Flan | s: UP | | | rane-c |) | 10 - 1 10 | ips oi | | Powe | r: 95% | | | ν _γ : | 89 KI | AS | | | | | | | Gear: | retra | cted | | - 1 | | | | | | Rate of | Climb - | . [ft/mir | | | | | [9] | Press. | Press. | | | | | | | | | | | .kg | Alt. | Alt. | | Οι | ıtside A | ir Temp | peratur | e - [°C]/ | ([°F] | | | | ght | [ft] | [m] | -20 | -10 | 0 | 10 | 20 | 30 | 40 | 50 | ISA | | Weight [kg]/[lb] | | | -4 | 14 | 32 | 50 | 68 | 86 | 104 | 122 | | | | S | SL | 1040 | 1040 | 1030 | 1020 | 1020 | 1010 | 960 | 860 | 1019 | | | 2000 |
610 | 1020 | 1010 | 1010 | 1000 | 990 | 990 | 920 | 820 | 1000 | | | 4000 | 1219 | 1000 | 990 | 980 | 980 | 970 | 940 | 860 | 760 | 979 | | | 6000 | 1829 | 980 | 970 | 960 | 950 | 940 | 890 | 800 | | 958 | | _ | 8000 | 2438 | 950 | 940 | 930 | 920 | 900 | 820 | 720 | | 931 | | 2300/5071 | 10000 | 3048 | 920 | 910 | 900 | 880 | 830 | 730 | | | 901 | | 300 | 12000 | 3658 | 890 | 870 | 860 | 820 | 730 | 620 | | | 872 | | ~ | 14000 | 4267 | 810 | 790 | 760 | 690 | 570 | 460 | | | 801 | | | 16000 | 4877 | 720 | 690 | 650 | 550 | 450 | | | | 708 | | | 18000 | 5486 | 600 | 580 | 540 | 430 | 330 | | | | 604 | | | 20000 | 6096 | 500 | 480 | 420 | 300 | | | | | 513 | | | S | L | 1110 | 1110 | 1100 | 1100 | 1090 | 1080 | 1030 | 930 | 1092 | | | 2000 | 610 | 1090 | 1090 | 1080 | 1070 | 1070 | 1060 | 980 | 880 | 1073 | | | 4000 | 1219 | 1070 | 1060 | 1060 | 1050 | 1040 | 1020 | 930 | 820 | 1052 | | 2200 /4850 | 6000 | 1829 | 1050 | 1040 | 1030 | 1020 | 1010 | 960 | 870 | | 1031 | | 00/4 | 8000 | 2438 | 1020 | 1010 | 1000 | 990 | 970 | 890 | 790 | | 1003 | | 22 | 10000 | 3048 | 990 | 980 | 970 | 960 | 900 | 800 | | | 974 | | | 12000 | 3658 | 960 | 950 | 930 | 890 | 790 | 680 | | | 944 | | | 14000 | 4267 | 880 | 860 | 830 | 760 | 630 | 510 | | | 870 | | | 16000 | 4877 | 780 | 760 | 720 | 610 | 500 | | | | 775 | | | 18000 | 5486 | 670 | 640 | 600 | 490 | 380 | | | | 667 | | | 20000 | 6096 | 560 | 540 | 480 | 360 | | | | | 573 | | Page 5 - 40 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | | |-------------|--------|-------------|---------------------|--| | | | | | | | | | | 1 | Take-C | Off Clim | ıb - Fla | ps UP | | | | | |-------------------|--------------|-------------|---------|----------|-----------|----------|---------|-----------|----------|--------|------| | Flap | s: UP | | | | | | | | Power | r: 95% | | | V _Y : | 89 KI | AS | | | | | | | Gear: | retra | cted | | [o] | | | | | ı | Rate of | Climb · | - [ft/mir | 1] | | | | (g]/[| Press. | Press. | | Οι | ıtside A | ir Temp | peratur | e - [°C]/ | [°F] | | | | Weight [kg]/[lb] | Alt.
[ft] | Alt.
[m] | -20 | -10 | 0 | 10 | 20 | 30 | 40 | 50 | ISA | | We | | | -4 | 14 | 32 | 50 | 68 | 86 | 104 | 122 | | | | S | L | 1190 | 1190 | 1180 | 1170 | 1170 | 1160 | 1110 | 1000 | 1171 | | | 2000 | 610 | 1170 | 1160 | 1160 | 1150 | 1150 | 1140 | 1060 | 950 | 1152 | | | 4000 | 1219 | 1150 | 1140 | 1140 | 1130 | 1120 | 1090 | 1000 | 890 | 1130 | | | 6000 | 1829 | 1130 | 1120 | 1110 | 1100 | 1090 | 1030 | 940 | | 1109 | | 30 | 8000 | 2438 | 1100 | 1090 | 1080 | 1070 | 1050 | 960 | 850 | | 1081 | | 2100 /4630 | 10000 | 3048 | 1070 | 1060 | 1050 | 1030 | 980 | 860 | | | 1052 | | 710 | 12000 | 3658 | 1040 | 1020 | 1010 | 970 | 870 | 740 | | | 1021 | | `` | 14000 | 4267 | 960 | 940 | 900 | 830 | 700 | 570 | | | 945 | | | 16000 | 4877 | 860 | 830 | 790 | 680 | 560 | | | | 846 | | | 18000 | 5486 | 730 | 710 | 670 | 550 | 430 | | | | 734 | | | 20000 | 6096 | 630 | 610 | 540 | 410 | | | | | 637 | | | Fo | r the rate | of clim | b in [m/ | s] divide | by 196 | .8 or m | ultiply b | y 0.0050 | 08. | | | | | | | Take-C | Off Clim | ıb - Fla | ips UP | | | | | |------------------|--------|---------|-------------------|--------|----------|----------|---------|-----------|-------|--------|------| | - | s: UP | | | | | | | | | r: 95% | | | V _Y : | 87 KI | AS | | | | | | | Gear: | retra | cted | | [q | | | | | | Rate of | Climb - | - [ft/mir | 1] | | | | Weight [kg]/[lb] | Press. | Press. | | Οι | ıtside A | ir Tem | peratur | e - [°C]/ | /[°F] | | | | 는
보 | Alt. | Alt. | -20 | -10 | 0 | 10 | 20 | 30 | 40 | 50 | ISA | | eigh | [ft] | [m] | - 20
-4 | 14 | 32 | 50 | 68 | 86 | 104 | 122 | ISA | | Š | | | | | | | | | | | | | | | SL
- | 1270 | 1270 | 1260 | 1260 | 1250 | 1240 | 1190 | 1070 | 1254 | | | 2000 | 610 | 1250 | 1250 | 1240 | 1230 | 1230 | 1220 | 1130 | 1020 | 1233 | | | 4000 | 1219 | 1230 | 1220 | 1220 | 1210 | 1200 | 1170 | 1080 | 960 | 1210 | | | 6000 | 1829 | 1210 | 1200 | 1190 | 1180 | 1170 | 1110 | 1010 | | 1188 | | 07 | 8000 | 2438 | 1180 | 1170 | 1160 | 1150 | 1130 | 1040 | 920 | | 1164 | | 1999/4407 | 10000 | 3048 | 1150 | 1140 | 1130 | 1110 | 1050 | 930 | | | 1133 | | 1999 | 12000 | 3658 | 1120 | 1100 | 1080 | 1050 | 940 | 810 | | | 1101 | | | 14000 | 4267 | 1040 | 1020 | 980 | 910 | 770 | 630 | | | 1022 | | | 16000 | 4877 | 930 | 910 | 860 | 750 | 620 | | | | 924 | | | 18000 | 5486 | 810 | 780 | 740 | 620 | 490 | | | | 809 | | | 20000 | 6096 | 700 | 680 | 610 | 470 | | | | | 709 | | | S | L | 1360 | 1350 | 1350 | 1340 | 1340 | 1330 | 1270 | 1150 | 1340 | | | 2000 | 610 | 1340 | 1330 | 1330 | 1320 | 1310 | 1310 | 1220 | 1090 | 1320 | | | 4000 | 1219 | 1320 | 1310 | 1300 | 1290 | 1290 | 1260 | 1150 | 1030 | 1297 | | 189 | 6000 | 1829 | 1290 | 1280 | 1280 | 1270 | 1260 | 1190 | 1080 | | 1274 | | 1900/418 | 8000 | 2438 | 1270 | 1260 | 1250 | 1240 | 1220 | 1120 | 990 | | 1250 | | 19 | 10000 | 3048 | 1240 | 1220 | 1210 | 1200 | 1130 | 1010 | | | 1218 | | | 12000 | 3658 | 1200 | 1190 | 1170 | 1130 | 1010 | 880 | | | 1185 | | | 14000 | 4267 | 1120 | 1100 | 1060 | 980 | 830 | 690 | | | 1103 | | | 16000 | 4877 | 1010 | 980 | 940 | 820 | 680 | | | | 1001 | | | 18000 | 5486 | 880 | 850 | 810 | 680 | 550 | | | | 881 | | | 20000 | 6096 | 770 | 750 | 670 | 530 | | | | | 778 | | Page 5 - 42 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | | |-------------|--------|-------------|---------------------|--| | | | | | | | | | | · | Take-C | Off Clim | ıb - Fla | ıps UP | | | | | |--------------------------|--------------|-------------|---------|----------|-----------|----------|----------|-----------|----------|----------------|------| | Flap | s: UP | | | | | | | | Power | r: 95 % | | | V _Y : | 87 KI | AS | | | | | | | Gear: | retra | cted | | 5] | | | | | ı | Rate of | Climb | - [ft/mir | 1] | | | | k g] /[lk | Press. | Press. | | Οι | ıtside A | ir Tem | peratur | e - [°C]/ | [°F] | | | | Weight [kg] /[lb] | Alt.
[ft] | Alt.
[m] | -20 | -10 | 0 | 10 | 20 | 30 | 40 | 50 | ISA | | Wei | | | -4 | 14 | 32 | 50 | 68 | 86 | 104 | 122 | | | | S | L | 1450 | 1450 | 1440 | 1440 | 1430 | 1430 | 1360 | 1230 | 1435 | | | 2000 | 610 | 1430 | 1430 | 1420 | 1410 | 1410 | 1400 | 1300 | 1170 | 1414 | | | 4000 | 1219 | 1410 | 1400 | 1400 | 1390 | 1380 | 1350 | 1240 | 1110 | 1390 | | | 6000 | 1829 | 1380 | 1380 | 1370 | 1360 | 1350 | 1280 | 1170 | | 1368 | | 89 | 8000 | 2438 | 1360 | 1350 | 1340 | 1330 | 1310 | 1200 | 1070 | | 1343 | |)/36 | 10000 | 3048 | 1330 | 1320 | 1300 | 1290 | 1220 | 1090 | | | 1310 | | 1800 /3968 | 12000 | 3658 | 1290 | 1280 | 1260 | 1220 | 1100 | 950 | | | 1276 | | | 14000 | 4267 | 1210 | 1190 | 1150 | 1060 | 910 | 760 | | | 1192 | | | 16000 | 4877 | 1090 | 1070 | 1020 | 890 | 750 | | | | 1085 | | | 18000 | 5486 | 960 | 930 | 880 | 750 | 610 | | | | 960 | | | 20000 | 6096 | 840 | 820 | 740 | 590 | | | | | 851 | | | Fo | r the rate | of clim | b in [m/ | s] divide | by 196 | 3.8 or m | ultiply b | y 0.0050 | 08. | | #### 5.3.8 CLIMB PERFORMANCE - CRUISE CLIMB #### Conditions: The climb performance tables show the rate of climb. The gradient of climb can be calculated using the following formula: Gradient [%] = $$\frac{ROC[fpm]}{TAS[KTAS]} \cdot 0.98$$ | | Cruise Climb | | | | | | | | | | | |-------------------|-----------------------|--------|----------|------|----------|---------|---------|-----------|----------|----------------|------| | Flap | s: UP | | | | | | | | Powe | r: 95 % | | | V _{CLII} | _{мв} : 96 КІ | AS | | | | | | | Gear: | retra | cted | | | | | | | ı | Rate of | Climb - | - [ft/mir | n] | | | | Weight [kg]/[lb] | Press. | Press. | | Οι | ıtside A | ir Temp | peratur | e - [°C]/ |
[°F] | | | | t
F | Alt. | Alt. | | | | | | |
 | | | | jgh | [ft] | [m] | -20
4 | -10 | 0 | 10 | 20 | 30 | 40 | 50 | ISA | | × | | | -4 | 14 | 32 | 50 | 68 | 86 | 104 | 122 | | | | S | SL . | 1050 | 1040 | 1040 | 1030 | 1030 | 1020 | 970 | 870 | 1028 | | | 2000 | 610 | 1030 | 1020 | 1020 | 1010 | 1000 | 990 | 920 | 820 | 1009 | | | 4000 | 1219 | 1010 | 1000 | 990 | 980 | 970 | 950 | 860 | 760 | 985 | | | 6000 | 1829 | 980 | 970 | 960 | 950 | 940 | 890 | 810 | | 961 | | = | 8000 | 2438 | 960 | 940 | 930 | 920 | 910 | 830 | 720 | | 935 | | /201 | 10000 | 3048 | 930 | 910 | 900 | 890 | 830 | 730 | | | 909 | | 2300/5071 | 12000 | 3658 | 890 | 880 | 860 | 820 | 730 | 610 | | | 877 | | ~ | 14000 | 4267 | 820 | 790 | 760 | 690 | 570 | 450 | | | 799 | | | 16000 | 4877 | 710 | 690 | 640 | 540 | 430 | | | | 702 | | | 18000 | 5486 | 590 | 570 | 520 | 420 | 310 | | | | 594 | | | 20000 | 6096 | 490 | 470 | 400 | 280 | | | | | 498 | | | S | L | 1120 | 1110 | 1110 | 1100 | 1100 | 1090 | 1040 | 930 | 1100 | | | 2000 | 610 | 1100 | 1090 | 1090 | 1080 | 1070 | 1060 | 990 | 880 | 1080 | | | 4000 | 1219 | 1080 | 1070 | 1060 | 1050 | 1050 | 1020 | 930 | 820 | 1056 | | 850 | 6000 | 1829 | 1050 | 1040 | 1040 | 1020 | 1020 | 960 | 870 | | 1032 | | 2200/4 | 8000 | 2438 | 1030 | 1010 | 1000 | 1000 | 980 | 890 | 780 | | 1006 | | 72 | 10000 | 3048 | 1000 | 990 | 970 | 960 | 900 | 790 | | | 979 | | | 12000 | 3658 | 960 | 950 | 930 | 890 | 790 | 670 | | | 947 | | | 14000 | 4267 | 880 | 860 | 820 | 750 | 620 | 500 | | | 867 | | | 16000 | 4877 | 770 | 750 | 710 | 600 | 480 | | | | 766 | | | 18000 | 5486 | 650 | 630 | 580 | 470 | 360 | | | | 654 | | | 20000 | 6096 | 540 | 520 | 460 | 330 | | | | | 555 | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 5 - 45 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| | Cruise Climb | | | | | | | | | | | | | |-------------------|-----------------------|-------------|---------|-------------------------------------|-----------|--------|---------|-----------|----------|--------|------|--| | Flap | s: UP | | | | | | | | Power | r: 95% | | | | V _{CLII} | _{ив} : 96 KI | AS | | | | | | | Gear: | retra | cted | | | [c | | | | Rate
of Climb - [ft/min] | | | | | | | | | | (g]/[ll | Press. | | | Outside Air Temperature - [°C]/[°F] | | | | | | | | | | Weight [kg]/[lb] | (ft] | Alt.
[m] | -20 | -10 | 0 | 10 | 20 | 30 | 40 | 50 | ISA | | | We | | | -4 | 14 | 32 | 50 | 68 | 86 | 104 | 122 | | | | | S | L | 1200 | 1190 | 1180 | 1180 | 1170 | 1170 | 1110 | 1000 | 1177 | | | | 2000 | 610 | 1180 | 1170 | 1170 | 1160 | 1150 | 1140 | 1060 | 950 | 1158 | | | | 4000 | 1219 | 1160 | 1150 | 1140 | 1130 | 1120 | 1090 | 1000 | 880 | 1133 | | | | 6000 | 1829 | 1130 | 1120 | 1110 | 1100 | 1090 | 1030 | 940 | | 1108 | | | 330 | 8000 | 2438 | 1100 | 1090 | 1080 | 1070 | 1050 | 960 | 850 | | 1082 | | | 2100 /4630 | 10000 | 3048 | 1070 | 1060 | 1050 | 1040 | 970 | 860 | | | 1055 | | | 210 | 12000 | 3658 | 1040 | 1020 | 1000 | 970 | 860 | 730 | | | 1022 | | | | 14000 | 4267 | 960 | 930 | 890 | 820 | 680 | 550 | | | 939 | | | | 16000 | 4877 | 840 | 820 | 770 | 660 | 540 | | | | 835 | | | | 18000 | 5486 | 720 | 690 | 650 | 530 | 410 | | | | 719 | | | | 20000 | 6096 | 600 | 580 | 510 | 380 | | | | | 616 | | | | Fc | r the rate | of clim | b in [m/ | s] divide | by 196 | .8 or m | ultiply b | y 0.0050 |)8. | | | | | | | | | Cruise | Climb | | | | | | | |-------------------|-----------------------|--------|------|--------------------------|----------|--------|---------|-----------|-------|--------|------|--| | Flap | s: UP | | | | | | | | Power | r: 95% | | | | V _{CLII} | _{мв} : 93 КІ | AS | | | | | | | Gear: | retra | cted | | | | | | | Rate of Climb - [ft/min] | | | | | | | | | | Weight [kg]/[lb] | Press. | Press. | | Οι | ıtside A | ir Tem | peratur | e - [°C]/ | [°F] | | | | | 1 | Alt. | Alt. | | | | | | | | | | | | igh | [ft] | [m] | -20 | -10 | 0 | 10 | 20 | 30 | 40 | 50 | ISA | | | × | | | -4 | 14 | 32 | 50 | 68 | 86 | 104 | 122 | | | | | S | L | 1280 | 1270 | 1270 | 1260 | 1260 | 1250 | 1200 | 1080 | 1261 | | | | 2000 | 610 | 1260 | 1250 | 1250 | 1240 | 1240 | 1230 | 1140 | 1020 | 1242 | | | | 4000 | 1219 | 1240 | 1230 | 1230 | 1220 | 1210 | 1180 | 1080 | 960 | 1220 | | | | 6000 | 1829 | 1220 | 1210 | 1200 | 1190 | 1180 | 1110 | 1010 | | 1194 | | | | 8000 | 2438 | 1190 | 1180 | 1170 | 1160 | 1140 | 1040 | 930 | | 1167 | | | 44/ | 10000 | 3048 | 1160 | 1140 | 1130 | 1120 | 1060 | 940 | | | 1138 | | | 1999/4407 | 12000 | 3658 | 1120 | 1110 | 1090 | 1050 | 940 | 800 | | | 1110 | | | - | 14000 | 4267 | 1040 | 1020 | 980 | 900 | 760 | 620 | | | 1024 | | | | 16000 | 4877 | 930 | 900 | 850 | 740 | 610 | | | | 917 | | | | 18000 | 5486 | 800 | 770 | 730 | 600 | 470 | | | | 799 | | | | 20000 | 6096 | 680 | 660 | 590 | 450 | | | | | 695 | | | | S | L | 1360 | 1360 | 1350 | 1350 | 1340 | 1340 | 1280 | 1150 | 1346 | | | | 2000 | 610 | 1340 | 1340 | 1330 | 1330 | 1320 | 1310 | 1220 | 1090 | 1327 | | | | 4000 | 1219 | 1320 | 1320 | 1310 | 1300 | 1290 | 1260 | 1150 | 1030 | 1305 | | | 189 | 6000 | 1829 | 1300 | 1290 | 1280 | 1270 | 1260 | 1200 | 1090 | | 1279 | | | 1900/4 | 8000 | 2438 | 1270 | 1260 | 1250 | 1240 | 1220 | 1120 | 1000 | | 1250 | | | 19(| 10000 | 3048 | 1240 | 1230 | 1220 | 1210 | 1140 | 1010 | | | 1221 | | | | 12000 | 3658 | 1200 | 1190 | 1170 | 1130 | 1010 | 870 | | | 1192 | | | | 14000 | 4267 | 1120 | 1100 | 1060 | 970 | 820 | 680 | | | 1103 | | | | 16000 | 4877 | 1000 | 970 | 930 | 810 | 670 | | | | 991 | | | | 18000 | 5486 | 870 | 840 | 790 | 660 | 530 | | | | 868 | | | | 20000 | 6096 | 750 | 730 | 650 | 500 | | | | | 761 | | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 5 - 47 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| | | Cruise Climb | | | | | | | | | | | |-------------------|-----------------------|-------------|--------------------------|-------------------------------------|----------------|--------------|--------------|-----------------|---------------|---------------|------| | Flap | s: UP | | | | | | | | Power | r: 95% | | | V _{CLII} | _{ив} : 93 KI | AS | | | | | | | Gear: | retra | cted | | o] | | | Rate of Climb - [ft/min] | | | | | | | | | | (g]/[lk | Press. | Press. | | Outside Air Temperature - [°C]/[°F] | | | | | | | | | Weight [kg]/[lb] | Alt.
[ft] | Alt.
[m] | -20
-4 | -10 | 0
32 | 10 50 | 20 68 | 30
86 | 40 104 | 50 122 | ISA | | > | | | | | | | | | | | | | | S | L | 1460 | 1450 | 1450 | 1440 | 1440 | 1430 | 1370 | 1230 | 1439 | | | 2000 | 610 | 1440 | 1430 | 1430 | 1420 | 1420 | 1410 | 1310 | 1170 | 1420 | | | 4000 | 1219 | 1410 | 1410 | 1400 | 1390 | 1390 | 1350 | 1240 | 1100 | 1398 | | | 6000 | 1829 | 1390 | 1380 | 1370 | 1360 | 1350 | 1280 | 1170 | | 1370 | | 89 | 8000 | 2438 | 1360 | 1350 | 1340 | 1330 | 1310 | 1200 | 1070 | | 1341 | | 1800 /3968 | 10000 | 3048 | 1330 | 1320 | 1310 | 1300 | 1220 | 1090 | | | 1312 | | 80(| 12000 | 3658 | 1290 | 1280 | 1260 | 1220 | 1090 | 940 | | | 1282 | | | 14000 | 4267 | 1210 | 1180 | 1140 | 1050 | 890 | 740 | | | 1189 | | | 16000 | 4877 | 1080 | 1050 | 1010 | 880 | 730 | | | | 1072 | | | 18000 | 5486 | 940 | 920 | 860 | 720 | 580 | | | | 943 | | | 20000 | 6096 | 820 | 800 | 710 | 560 | | | | | 831 | | | Fo | r the rate | of clim | b in [m/ | s] divide | by 196 | .8 or m | ultiply b | y 0.0050 | 08. | | ### 5.3.9 ONE ENGINE INOPERATIVE CLIMB PERFORMANCE #### Conditions: | - | Remaining engine | 95% load | |---|------------------|----------------------------| | - | Dead engine | feathered and secured | | - | Flaps | UP | | - | Landing gear | retracted | | - | Airspeed | V _{YSE} | | - | Sideslip | one ball out, max. 5° bank | #### **NOTE** With respect to handling and performance, the left-hand engine (pilots view) is considered the "critical" engine. The climb performance tables show the rate of climb. The gradient of climb can be calculated using the following formula: Gradient [%] = $$\frac{ROC[fpm]}{TAS[KTAS]} \cdot 0.98$$ | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | | Page 5 - 49 | |---------------------|--------|-------------|--|-------------| |---------------------|--------|-------------|--|-------------| | One Engine Inoperative Climb | | | | | | | | | | | | | |------------------------------|----------|-----------|------|--------------------------|----------|---------|----------|----------|----------|--------|------|--| | Flap | s: UP | | | | | | | | Powe | r: 95% | | | | V _{YSE} | : 89 KIA | AS | | | | | | | Gear: | retra | cted | | | | | | | Rate of Climb - [ft/min] | | | | | | | | | | Weight [kg]/[lb] | Press. | Press. | | Ou | ıtside A | ir Temr | perature | - [°C]/ |
[°F] | | | | | [kg | Alt. | Alt. | | | TOTAL A | | l | <u> </u> | L ' J | | | | | ight | [ft] | [m] | -20 | -10 | 0 | 10 | 20 | 30 | 40 | 50 | ISA | | | We | | | -4 | 14 | 32 | 50 | 68 | 86 | 104 | 122 | | | | | S | SL. | 200 | 190 | 180 | 170 | 160 | 150 | 130 | 95 | 163 | | | | 2000 | 610 | 180 | 170 | 160 | 145 | 135 | 125 | 105 | 70 | 146 | | | | 4000 | 1219 | 160 | 145 | 135 | 125 | 115 | 100 | 75 | 40 | 128 | | | | 6000 | 1829 | 135 | 125 | 115 | 100 | 90 | 70 | 40 | | 110 | | | 7 | 8000 | 2438 | 115 | 100 | 85 | 75 | 60 | 35 | 0 | | 88 | | | 2300 /5071 | 10000 | 3048 | 85 | 70 | 60 | 45 | 20 | -15 | | | 65 | | | 300 | 12000 | 3658 | 55 | 40 | 25 | 0 | -35 | -75 | | | 41 | | | `` | 14000 | 4267 | 10 | -10 | -35 | -70 | -120 | -160 | | | -5 | | | | 16000 | 4877 | -55 | -75 | -105 | -145 | -190 | | | | -61 | | | | 18000 | 5486 | -125 | -145 | -175 | -215 | -255 | | | | -124 | | | | 20000 | 6096 | -190 | -210 | -240 | -285 | | | | | -181 | | | | S | L | 240 | 230 | 220 | 210 | 200 | 190 | 170 | 130 | 204 | | | | 2000 | 610 | 220 | 210 | 200 | 190 | 180 | 170 | 145 | 105 | 187 | | | | 4000 | 1219 | 200 | 190 | 175 | 165 | 155 | 140 | 110 | 75 | 170 | | | | 6000 | 1829 | 175 | 165 | 155 | 145 | 130 | 110 | 80 | | 151 | | | 50 | 8000 | 2438 | 155 | 140 | 130 | 115 | 100 | 75 | 35 | | 130 | | |)/48 | 10000 | 3048 | 130 | 115 | 100 | 85 | 60 | 25 | | | 107 | | | 2200 /4850 | 12000 | 3658 | 100 | 85 | 70 | 45 | 5 | -40 | | | 83 | | | `` | 14000 | 4267 | 50 | 30 | 5 | -30 | -80 | -130 | | | 37 | | | | 16000 | 4877 | -15 | -35 | -65 | -110 | -155 | | | | -21 | | | | 18000 | 5486 | -85 | -105 | -135 | -180 | -225 | | | | -85 | | | | 20000 | 6096 | -150 | -170 | -205 | -250 | | | | | -143 | | | Page 5 - 50 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| | | | | | | One Engine Inoperative Climb | | | | | | | | | | | | |------------------------------|--------------|-------------|------------------|--------------------------|----------------|--------------|--------------|-----------------|------------------|----------------|------| | Flap | s: UP | | | | | | | | Powe | r: 95 % | | | V _{YSE} | : 89 KI | AS | | | | | | | Gear: | retra | cted | | [c | | | | Rate of Climb - [ft/min] | | | | | | | | |]/[b | Press. | Press. | | Ou | ıtside A | ir Temp | erature | e - [°C]/ | [°F] | | | | Weight [kg]/[lb] | Alt.
[ft] | Alt.
[m] | -20
-4 | -10
14 | 0
32 | 10 50 | 20 68 | 30
86 | 40
104 | 50 122 | ISA | | | S | L | 280 | 275 | 260 | 250 | 245 | 235 | 210 | 170 | 247 | | | 2000 | 610 | 265 | 250 | 240 | 230 | 220 | 210 | 185 | 145 | 231 | | | 4000 | 1219 | 245 | 230 | 220 | 210 | 200 | 185 | 155 | 110 | 213 | | | 6000 | 1829 | 220 | 210 | 200 | 185 | 175 | 150 | 120 | | 196 | | 30 | 8000 | 2438 | 200 | 185 | 175 | 160 | 145 | 115 | 75 | | 174 | |)/46 | 10000 | 3048 | 175 | 160 | 145 | 130 | 105 | 60 | | | 151 | | 2100 /4630 | 12000 | 3658 | 145 | 130 | 115 | 90 | 45 | -5 | | | 128 | | `` | 14000 | 4267 | 95 | 75 | 50 | 10 | -45 | -95 | | | 81 | | | 16000 | 4877 | 30 | 5 | -20 | -70 | -120 | | | | 22 | | | 18000 | 5486 | -45 | -65 | -95 | -140 | -185 | | | | -44 | | | 20000 | 6096 | -115 | -130 | -165 | -220 | | | | | -103 | | | Fo | r the rate | of clim | b in
[m/ | s] divide | by 196 | 3.8 or m | ultiply b | y 0.005 | 08. | | | One Engine Inoperative Climb | | | | | | | | | | | | | |------------------------------|---------|--------|-----|--------------------------|----------|--------|----------|-----------|-------|----------------|------|--| | Flap | s: UP | | | | | | | | Powe | r: 95 % | | | | V _{YSE} | : 87 KI | AS | | | | | | | Gear: | retra | cted | | | | | | | Rate of Climb - [ft/min] | | | | | | | | | | Weight [kg]/[lb] | Press. | Press. | | Ou | ıtside A | ir Tem | perature | e - [°C1/ | ſ°F1 | | | | | [kg | Alt. | Alt. | | | | | | | | | | | | ight | [ft] | [m] | -20 | -10 | 0 | 10 | 20 | 30 | 40 | 50 | ISA | | | We | | | -4 | 14 | 32 | 50 | 68 | 86 | 104 | 122 | | | | | S | SL . | 325 | 320 | 310 | 300 | 290 | 280 | 255 | 210 | 294 | | | | 2000 | 610 | 310 | 300 | 290 | 280 | 270 | 260 | 225 | 185 | 277 | | | | 4000 | 1219 | 290 | 280 | 265 | 255 | 245 | 230 | 195 | 150 | 259 | | | | 6000 | 1829 | 265 | 255 | 245 | 235 | 225 | 200 | 160 | | 241 | | | 22 | 8000 | 2438 | 245 | 235 | 220 | 210 | 195 | 160 | 115 | | 222 | | | 1999/4407 | 10000 | 3048 | 220 | 205 | 190 | 180 | 150 | 105 | | | 199 | | | 3661 | 12000 | 3658 | 190 | 175 | 160 | 135 | 90 | 40 | | | 175 | | | ` | 14000 | 4267 | 140 | 120 | 95 | 55 | 0 | -55 | | | 127 | | | | 16000 | 4877 | 75 | 55 | 25 | -25 | -75 | | | | 69 | | | | 18000 | 5486 | 0 | -20 | -50 | -100 | -145 | | | | 2 | | | | 20000 | 6096 | -65 | -85 | -120 | -175 | | | | | -58 | | | | S | L | 375 | 365 | 355 | 345 | 335 | 330 | 300 | 255 | 342 | | | | 2000 | 610 | 360 | 345 | 335 | 325 | 315 | 305 | 275 | 225 | 326 | | | | 4000 | 1219 | 335 | 325 | 315 | 305 | 295 | 280 | 240 | 190 | 308 | | | | 6000 | 1829 | 315 | 305 | 295 | 285 | 270 | 245 | 205 | | 290 | | | 89 | 8000 | 2438 | 295 | 280 | 270 | 255 | 240 | 205 | 155 | | 271 | | | 1900 /4189 | 10000 | 3048 | 270 | 255 | 240 | 225 | 195 | 150 | | | 248 | | | 190(| 12000 | 3658 | 240 | 225 | 210 | 185 | 135 | 80 | | | 224 | | | | 14000 | 4267 | 190 | 170 | 145 | 100 | 40 | -15 | | | 175 | | | | 16000 | 4877 | 120 | 100 | 70 | 15 | -40 | | | | 115 | | | | 18000 | 5486 | 45 | 25 | -5 | -60 | -110 | | | | 46 | | | | 20000 | 6096 | -25 | -45 | -80 | -140 | | | | | -15 | | | Page 5 - 52 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | | |-------------|--------|-------------|---------------------|--| | | | | | | | | One Engine Inoperative Climb | | | | | | | | | | | |--|------------------------------|-----------------------|-------------------------------------|-----|-----|------|-----|-----|-----------------|-----|-----| | Flap | Flaps: UP | | | | | | | | Power: 95% | | | | V _{YSE} | V _{YSE} : 87 KIAS | | | | | | | | Gear: retracted | | | | [o | | Press.
Alt.
[m] | Rate of Climb - [ft/min] | | | | | | | | | | (g]/[∥ | Press.
Alt. | | Outside Air Temperature - [°C]/[°F] | | | | | | | | | | Weight [kg]/[lb] | [ft] | | -20 | -10 | 0 | 10 | 20 | 30 | 40 | 50 | ISA | | Wei | | | -4 | 14 | 32 | 50 | 68 | 86 | 104 | 122 | | | | SL | | 425 | 415 | 410 | 400 | 390 | 380 | 350 | 300 | 393 | | | 2000 | 610 | 410 | 400 | 390 | 380 | 370 | 360 | 320 | 270 | 377 | | | 4000 | 1219 | 390 | 380 | 365 | 355 | 345 | 330 | 290 | 235 | 360 | | | 6000 | 1829 | 365 | 355 | 345 | 335 | 325 | 295 | 250 | | 342 | | 89 | 8000 | 2438 | 345 | 335 | 320 | 310 | 295 | 250 | 200 | | 323 | | 36/0 | 10000 | 3048 | 320 | 305 | 295 | 280 | 245 | 195 | | | 300 | | 1800 /3968 | 12000 | 3658 | 290 | 275 | 260 | 235 | 180 | 125 | | | 276 | | ` | 14000 | 4267 | 240 | 220 | 195 | 150 | 85 | 20 | | | 226 | | | 16000 | 4877 | 170 | 150 | 115 | 60 | 0 | | | | 164 | | | 18000 | 5486 | 90 | 70 | 40 | -20 | -75 | | | | 93 | | | 20000 | 6096 | 20 | 0 | -40 | -100 | | | | | 29 | | For the rate of climb in [m/s] divide by 196.8 or multiply by 0.00508. | | | | | | | | | | | | #### 5.3.10 TIME, FUEL & DISTANCE TO CLIMB # Conditions: | - | Power lever | both 95% | |---|--------------|-------------| | - | Flaps | UP | | - | Landing gear | retracted | | - | Airspeed | V_{climb} | #### **NOTE** Distances shown are based on zero wind. Fuel for start, taxi and take-off not included. Add 10% to the time, fuel and distance for each 10° C (12° F) increase in OAT. The climb rates (ROC) are the average climb rates from sea level to the altitude indicated in the tables. ## Example: | OAT at take-off | 11°C (52°F) | |----------------------------|-------------------| | Airfield pressure altitude | 2000 ft (600 m) | | Initial climb weight | 1900 kg (4189 lb) | | OAT at cruise | -17° C (2° F) | | Cruise altitude | 16000 ft (4900 m) | Time, fuel and distance to climb at airfield: 2 min, 0.5 US gal and 2 NM (1) Time, fuel and distance to climb at cruise: 14 min, 4.2 US gal and 22 NM (2) Subtract (1) from (2) to obtain time, fuel and distance to climb from airfield to cruise: Time to cruise altitude: 14 min - 2 min = 12 min Fuel to cruise altitude: 4.2 US gal - 0.5 US gal = 3.7 US gal Distance to cruise altitude: 22 NM - 2 NM = 20 NM | Page 5 - 54 Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |--------------------|-------------|---------------------| |--------------------|-------------|---------------------| | Time, Fuel and Distance to Climb | | | | | | | | | | | |----------------------------------|------------------------|-----------------------|-------------|-------------|-------------|-----------------|--------------|---------------|---------------------|-----------------------| | Flaps: | Flaps: UP Power: 95% | | | | | | | | | | | V _{climb} : | 96 KIA | S | | | | | | Gear: | retracte | d | | Weight [kg]/[lb] | Press.
Alt.
[ft] | Press.
Alt.
[m] | OAT
[°C] | OAT
[°F] | TAS
[kt] | RoC
[ft/min] | RoC
[m/s] | Time
[min] | Fuel
[US
gal] | Dist-
ance
[NM] | | | 5 | SL. | 15 | 59 | 95 | 1030 | 5.2 | 0 | 0.0 | 0 | | | 2000 | 600 | 11 | 52 | 96 | 1015 | 5.1 | 2 | 0.7 | 3 | | | 4000 | 1219 | 7 | 45 | 97 | 1005 | 5.1 | 4 | 1.3 | 6 | | | 6000 | 1829 | 3 | 38 | 99 | 995 | 5.0 | 7 | 2.0 | 9 | | | 8000 | 2438 | -1 | 30 | 100 | 980 | 4.9 | 9 | 2.7 | 13 | | 2300 /5071 | 10000 | 3048 | -5 | 23 | 102 | 970 | 4.9 | 11 | 3.4 | 17 | | 300 | 12000 | 3658 | -9 | 16 | 104 | 955 | 4.8 | 13 | 4.1 | 21 | | `` | 14000 | 4267 | -13 | 9 | 105 | 940 | 4.7 | 15 | 4.8 | 26 | | | 16000 | 4877 | -17 | 2 | 107 | 915 | 4.6 | 18 | 5.6 | 31 | | | 18000 | 5486 | -21 | -5 | 109 | 885 | 4.5 | 21 | 6.4 | 36 | | | 20000 | 6096 | -25 | -12 | 111 | 850 | 4.3 | 24 | 7.3 | 43 | | | 8 | SL . | 15 | 59 | 95 | 1100 | 5.6 | 0 | 0.0 | 0 | | | 2000 | 600 | 11 | 52 | 96 | 1090 | 5.5 | 2 | 0.6 | 2 | | | 4000 | 1219 | 7 | 45 | 97 | 1075 | 5.4 | 4 | 1.2 | 6 | | | 6000 | 1829 | 3 | 38 | 99 | 1065 | 5.4 | 6 | 1.9 | 9 | | 20 | 8000 | 2438 | -1 | 30 | 100 | 1055 | 5.3 | 8 | 2.5 | 12 | | 148 | 10000 | 3048 | -5 | 23 | 102 | 1040 | 5.2 | 10 | 3.1 | 16 | | 2200 /4850 | 12000 | 3658 | -9 | 16 | 104 | 1025 | 5.2 | 12 | 3.8 | 20 | | ~ | 14000 | 4267 | -13 | 9 | 105 | 1010 | 5.1 | 14 | 4.5 | 24 | | | 16000 | 4877 | -17 | 2 | 107 | 985 | 5.0 | 17 | 5.2 | 28 | | | 18000 | 5486 | -21 | -5 | 109 | 955 | 4.8 | 19 | 6.0 | 34 | | | 20000 | 6096 | -25 | -12 | 111 | 920 | 4.6 | 22 | 6.7 | 40 | | Doc. No. 11.01.05-E Rev. 0 | 11-Jan-2019 | Page 5 - 55 | |----------------------------|-------------|-------------| |----------------------------|-------------|-------------| | Time, Fuel and Distance to Climb | | | | | | | | | | | | |----------------------------------|------------------------|-----------------------|-------------|-------------|-------------|-----------------|--------------|---------------|---------------------|-----------------------|--| | Flaps: | Flaps: UP Power: 95% | | | | | | | | | | | | v _{climb} : | 96 KIA | S | | | | | | Gear: | retracte | d | | | Weight [kg]/[lb] | Press.
Alt.
[ft] | Press.
Alt.
[m] | OAT
[°C] | OAT
[°F] | TAS
[kt] | RoC
[ft/min] | RoC
[m/s] | Time
[min] | Fuel
[US
gal] | Dist-
ance
[NM] | | | | SL | | 15 | 59 | 95 | 1175 | 6.0 | 0 | 0.0 | 0 | | | | 2000 | 600 | 11 | 52 | 96 | 1165 | 5.9 | 2 | 0.6 | 2 | | | | 4000 | 1219 | 7 | 45 | 97 | 1155 | 5.8 | 4 | 1.2 | 5 | | | | 6000 | 1829 | 3 | 38 | 99 | 1140 | 5.8 | 6 | 1.7 | 8 | | | ၂ တ္က | 8000 | 2438 | -1 | 30 | 100 | 1130 | 5.7 | 8 | 2.3 | 11 | | | 2100 /4630 | 10000 | 3048 | -5 | 23 | 102 | 1115 | 5.6 | 9 | 2.9 | 15 | | | 7100 | 12000 | 3658 | -9 | 16 | 104 | 1105 | 5.6 | 11 | 3.5 | 18 | | | `` | 14000 | 4267 | -13 | 9 | 105 | 1085 | 5.5 | 13 | 4.2 | 22 | | | | 16000 | 4877 | -17 | 2 | 107 | 1060 | 5.4 | 16 | 4.9 | 26 | | | | 18000 | 5486 | -21 | -5 | 109 | 1030 | 5.2 | 18 | 5.5 | 31 | | | | 20000 | 6096 | -25 | -12 | 111 | 995 | 5.0 | 21 | 6.2 | 37 | | | Page 5 - 56 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| | Time, Fuel and Distance to Climb | | | | | | | | | | | |---|------------------------|-----------------------|-------------|-------------|-------------|-----------------|--------------|----------------|---------------------|-----------------------| | Flaps: UP
v _{climb} : 93 KIAS | | | | | | | | Power
Gear: | : 95%
retracte | d | | Weight [kg]/[lb] | Press.
Alt.
[ft] | Press.
Alt.
[m] | OAT
[°C] | OAT
[°F] | TAS
[kt] | RoC
[ft/min] | RoC
[m/s] | Time
[min] | Fuel
[US
gal] | Dist-
ance
[NM] | | | S | SL | 15 | 59 | 92 | 1260 | 6.4 | 0 | 0.0 | 0 | | | 2000 | 600 | 11 | 52 | 93 | 1250 | 6.3 | 2 | 0.6 | 2 | | | 4000 | 1219 | 7 | 45 | 94 | 1240 | 6.3 | 4 | 1.1 | 5 | | | 6000 | 1829 | 3 | 38 | 96 | 1230 | 6.2 | 5 | 1.6 | 7 | | 04 | 8000 | 2438 | -1 | 30 | 97 | 1215 | 6.1 | 7 | 2.2 | 10 | | 1999 /4407 | 10000 | 3048 | -5 | 23 | 99 | 1200 | 6.1 | 9 | 2.7 | 13 | | 661 | 12000 | 3658 | -9 | 16 | 100 | 1190 | 6.0 | 11 | 3.3
| 16 | | | 14000 | 4267 | -13 | 9 | 102 | 1170 | 5.9 | 12 | 3.9 | 20 | | | 16000 | 4877 | -17 | 2 | 104 | 1145 | 5.8 | 14 | 4.5 | 24 | | | 18000 | 5486 | -21 | -5 | 105 | 1115 | 5.6 | 17 | 5.1 | 28 | | | 20000 | 6096 | -25 | -12 | 107 | 1075 | 5.4 | 19 | 5.8 | 33 | | | S | SL. | 15 | 59 | 92 | 1345 | 6.8 | 0 | 0.0 | 0 | | | 2000 | 600 | 11 | 52 | 93 | 1335 | 6.7 | 2 | 0.5 | 2 | | | 4000 | 1219 | 7 | 45 | 94 | 1325 | 6.7 | 4 | 1.0 | 4 | | | 6000 | 1829 | 3 | 38 | 96 | 1315 | 6.6 | 5 | 1.5 | 7 | | 68 | 8000 | 2438 | -1 | 30 | 97 | 1300 | 6.6 | 7 | 2.0 | 9 | | 47 | 10000 | 3048 | -5 | 23 | 99 | 1285 | 6.5 | 8 | 2.6 | 12 | | 1900 /4189 | 12000 | 3658 | -9 | 16 | 100 | 1275 | 6.4 | 10 | 3.1 | 15 | | ` | 14000 | 4267 | -13 | 9 | 102 | 1255 | 6.3 | 12 | 3.6 | 18 | | | 16000 | 4877 | -17 | 2 | 104 | 1230 | 6.2 | 14 | 4.2 | 22 | | | 18000 | 5486 | -21 | -5 | 105 | 1195 | 6.0 | 16 | 4.8 | 26 | | | 20000 | 6096 | -25 | -12 | 107 | 1155 | 5.8 | 18 | 5.4 | 30 | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | | Page 5 - 57 | |---------------------|--------|-------------|--|-------------| |---------------------|--------|-------------|--|-------------| | Time, Fuel and Distance to Climb | | | | | | | | | | | | |----------------------------------|------------------------|-----------------------|-------------|-------------|-------------|-----------------|--------------|---------------|---------------------|-----------------------|--| | Flaps: | Flaps: UP Power: 95% | | | | | | | | | | | | V _{climb} : | 93 KIA | S | | | | | | Gear: | retracte | d | | | Weight [kg]/[lb] | Press.
Alt.
[ft] | Press.
Alt.
[m] | OAT
[°C] | OAT
[°F] | TAS
[kt] | RoC
[ft/min] | RoC
[m/s] | Time
[min] | Fuel
[US
gal] | Dist-
ance
[NM] | | | | SL | | 15 | 59 | 92 | 1440 | 7.3 | 0 | 0.0 | 0 | | | | 2000 | 600 | 11 | 52 | 93 | 1425 | 7.2 | 2 | 0.5 | 2 | | | | 4000 | 1219 | 7 | 45 | 94 | 1415 | 7.2 | 3 | 1.0 | 4 | | | | 6000 | 1829 | 3 | 38 | 96 | 1405 | 7.1 | 5 | 1.4 | 6 | | | 890 | 8000 | 2438 | -1 | 30 | 97 | 1390 | 7.0 | 6 | 1.9 | 9 | | | 1800 /3968 | 10000 | 3048 | -5 | 23 | 99 | 1380 | 7.0 | 8 | 2.4 | 11 | | | 180 | 12000 | 3658 | -9 | 16 | 100 | 1365 | 6.9 | 9 | 2.9 | 14 | | | | 14000 | 4267 | -13 | 9 | 102 | 1345 | 6.8 | 11 | 3.4 | 17 | | | | 16000 | 4877 | -17 | 2 | 104 | 1320 | 6.7 | 13 | 3.9 | 21 | | | | 18000 | 5486 | -21 | -5 | 105 | 1285 | 6.5 | 15 | 4.4 | 24 | | | | 20000 | 6096 | -25 | -12 | 107 | 1245 | 6.3 | 17 | 5.0 | 28 | | | Page 5 - 58 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| # **5.3.11 CRUISE PERFORMANCE** ### Conditions: | - | Flaps | UP | |---|--------------|----------------------------| | - | Landing gear | retracted | | - | Weight | up to1999 kg/above 1999 kg | For conversion of OAT to delta-ISA temperatures refer to Chapter 5.3.3 - INTERNATIONAL STANDARD ATMOSPHERE. | | | | C | ruise l | Perfo | rmanc | e up | to 199 | 9 kg (| 4407 | b) | | | | | |---------------------|------------|---------------------|-------------|------------|---------------------|-------------|------------|---------------------|-------------|------------|---------------------|-------------|------------|---------------------|-------------| | | | | | | | Outsid | le Air | Tempe | erature | e - [°C] | | | | | | | Press. Alt. | | SA-10 | | ISA | | | | ISA+10 | 0 | | SA+20 |) | Į; | SA+30 | | | [ft]/[m] | Pwr
[%] | FF
[US
gal/h] | TAS
[kt] | | | 95 | 19.3 | 172 | 95 | 19.3 | 174 | 95 | 19.3 | 176 | 95 | 19.3 | 177 | 95 | 19.2 | 179 | | 2000 | 75 | 14.8 | 156 | 75 | 14.8 | 158 | 75 | 14.8 | 160 | 75 | 14.8 | 162 | 75 | 14.8 | 163 | | 610 | 60 | 11.8 | 143 | 60 | 11.8 | 145 | 60 | 11.8 | 146 | 60 | 11.8 | 148 | 60 | 11.8 | 149 | | | 45 | 9.0 | 126 | 45 | 9.0 | 127 | 45 | 9.0 | 128 | 45 | 9.0 | 130 | 45 | 9.0 | 131 | | | 95 | 19.3 | 175 | 95 | 19.3 | 177 | 95 | 19.3 | 179 | 95 | 19.3 | 181 | 95 | 19.2 | 182 | | 4000 | 75 | 14.8 | 159 | 75 | 14.8 | 161 | 75 | 14.8 | 163 | 75 | 14.8 | 165 | 75 | 14.8 | 166 | | 1219 | 60 | 11.8 | 146 | 60 | 11.8 | 147 | 60 | 11.8 | 149 | 60 | 11.8 | 150 | 60 | 11.8 | 152 | | | 45 | 9.0 | 128 | 45 | 9.0 | 129 | 45 | 9.0 | 131 | 45 | 9.0 | 132 | 45 | 9.0 | 133 | | | 95 | 19.3 | 178 | 95 | 19.3 | 180 | 95 | 19.3 | 182 | 95 | 19.3 | 184 | 95 | 19.3 | 186 | | 6000 | 75 | 14.8 | 162 | 75 | 14.8 | 164 | 75 | 14.8 | 166 | 75 | 14.8 | 168 | 75 | 14.8 | 170 | | 1829 | 60 | 11.8 | 148 | 60 | 11.8 | 150 | 60 | 11.8 | 152 | 60 | 11.8 | 153 | 60 | 11.8 | 155 | | | 45 | 9.0 | 130 | 45 | 9.0 | 132 | 45 | 9.0 | 133 | 45 | 9.0 | 134 | 50 | 9.8 | 143 | | | 95 | 19.3 | 182 | 95 | 19.3 | 184 | 95 | 19.3 | 186 | 95 | 19.3 | 188 | 95 | 19.2 | 190 | | 8000
2438 | 75 | 14.8 | 166 | 75 | 14.8 | 168 | 75 | 14.8 | 169 | 75 | 14.8 | 171 | 75 | 14.8
11.8 | 173 | | 2430 | 60
45 | 11.8
9.0 | 151
133 | 60
45 | 11.8
9.0 | 153
134 | 60
50 | 11.8
9.8 | 155
142 | 60
50 | 11.8
9.8 | 156
144 | 60
50 | 9.8 | 158
145 | | | 95 | 19.3 | 185 | 95 | 19.3 | 188 | 95 | 19.3 | 190 | 95 | 19.3 | 191 | 95 | 18.8 | 192 | | 10000 | 75 | 14.8 | 169 | 75 | 14.8 | 171 | 75 | 14.8 | 173 | 75 | 14.8 | 175 | 75 | 14.8 | 176 | | 3048 | 60 | 11.8 | 154 | 60 | 11.8 | 156 | 60 | 11.8 | 157 | 60 | 11.8 | 159 | 60 | 11.8 | 161 | | 00.10 | 45 | 8.9 | 135 | 50 | 9.8 | 144 | 50 | 9.8 | 145 | 50 | 9.8 | 146 | 50 | 9.8 | 148 | | | 95 | 19.3 | 189 | 95 | 19.3 | 191 | 95 | 19.2 | 193 | 95 | 18.8 | 194 | 95 | 18.1 | 194 | | 12000 | 75 | 14.8 | 172 | 75 | 14.8 | 174 | 75 | 14.8 | 176 | 75 | 14.8 | 178 | 75 | 14.8 | 180 | | 3658 | 60 | 11.8 | 157 | 60 | 11.8 | 159 | 60 | 11.8 | 160 | 60 | 11.8 | 162 | 60 | 11.8 | 164 | | | 50 | 9.7 | 145 | 50 | 9.7 | 146 | 50 | 9.7 | 148 | 50 | 9.7 | 149 | 50 | 9.7 | 150 | | | 95 | 18.7 | 190 | 95 | 18.5 | 192 | 95 | 18.1 | 193 | 85 | 16.7 | 191 | 80 | 15.6 | 188 | | 14000 | 75 | 14.8 | 175 | 75 | 14.8 | 177 | 75 | 14.8 | 179 | 75 | 14.8 | 181 | 75 | 14.8 | 183 | | 4267 | 60 | 11.8 | 160 | 60 | 11.8 | 162 | 60 | 11.8 | 163 | 60 | 11.8 | 165 | 60 | 11.8 | 167 | | | 50 | 9.7 | 147 | 50 | 9.7 | 149 | 50 | 9.7 | 150 | 50 | 9.7 | 152 | 55 | 10.7 | 160 | | | 95 | 17.3 | 190 | 87 | 17.1 | 192 | 85 | 16.7 | 192 | 80 | 15.7 | 190 | - | - | - | | 16000 | 75 | 14.8 | 179 | 75 | 14.8 | 181 | 75 | 14.8 | 183 | 75 | 14.8 | 185 | 75 | 14.8 | 187 | | 4877 | 60 | 11.8 | 163 | 60 | 11.8 | 165 | 60 | 11.8 | 166 | 60 | 11.8 | 168 | 60 | 11.8 | 170 | | | 50 | 9.7 | 150 | 50 | 9.7 | 151 | 55 | 10.7 | 160 | 55 | 10.7 | 162 | 55 | 10.7 | 163 | | | 80 | 15.7 | 187 | 80 | 15.7 | 189 | 80 | 15.7 | 191 | - | - | - | - | - | - | | 18000 | 75 | 14.8 | 182 | 75 | 14.8 | 184 | 75 | 14.8 | 186 | 75 | 14.8 | 188 | 75 | 14.8 | 190 | | 5486 | 60 | 11.8 | 166 | 60 | 11.8 | 168 | 60 | 11.8 | 170 | 60 | 11.8 | 171 | 60 | 11.8 | 173 | | | 55 | 10.7 | 159 | 55 | 10.7 | 161 | 55 | 10.7 | 163 | 55 | 10.7 | 164 | 55 | 10.7 | 166 | | 20000 | 75 | 14.8 | 186 | 75 | 14.8 | 188 | 70 | 13.9 | 185 | 70 | 13.9 | 187 | 70 | 13.9 | 189 | | 6096 | 60 | 11.8 | 169 | 60 | 11.8 | 171 | 60 | 11.8 | 173 | 60 | 11.8 | 174 | 60 | 11.8 | 176 | | Page 5 - 60 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | | |-------------|--------|-------------|---------------------|--| | | | | | | | | Cru | ıise P | erfori | nance | abo | ve 199 | 9 kg | (4407 | lb) up | to 23 | 00 kg | (5071 | lb) | | | |----------------------|------------|---------------------|-------------|------------|---------------------|-------------|------------|---------------------|----------------|------------|---------------------|-------------|------------|---------------------|-------------| | | | | | | | Outsic | le Air | Tempe | erature | - [°C] | | | | | | | Press. Alt. | ı | SA-10 | | | ISA | | | ISA+10 | 0 | ı | SA+20 |) | I: | SA+30 | | | [ft]/[m] | Pwr
[%] | FF
[US
gal/h] | TAS
[kt] | | | 95 | 19.3 | 170 | 95 | 19.3 | 172 | 95 | 19.3 | 174 | 95 | 19.3 | 176 | 95 | 19.2 | 177 | | 2000 | 75 | 14.8 | 154 | 75 | 14.8 | 156 | 75 | 14.8 | 158 | 75 | 14.8 | 159 | 75 | 14.8 | 161 | | 610 | 60 | 11.8 | 140 | 60 | 11.8 | 142 | 60 | 11.8 | 143 | 60 | 11.8 | 145 | 60 | 11.8 | 146 | | | 45 | 9.0 | 121 | 45 | 9.0 | 122 | 45 | 9.0 | 124 | 45 | 9.0 | 125 | 45 | 9.0 | 126 | | 4000 | 95 | 19.3 | 173 | 95 | 19.3 | 175 | 95 | 19.3 | 177 | 95 | 19.3 | 179 | 95 | 19.2 | 180 | | 4000 | 75 | 14.8 | 157 | 75 | 14.8 | 159 | 75 | 14.8 | 161 | 75 | 14.8 | 162 | 75 | 14.8 | 164 | | 1219 | 60 | 11.8 | 143 | 60 | 11.8 | 144 | 60 | 11.8 | 146 | 60 | 11.8 | 147 | 60 | 11.8 | 148 | | | 45 | 9.0 | 123 | 45 | 9.0 | 124 | 45 | 9.0 | 125 | 45 | 9.0 | 127 | 45 | 9.0 | 128 | | 0000 | 95 | 19.3 | 176 | 95 | 19.3 | 179 | 95 | 19.3 | 180 | 95 | 19.3 | 182 | 95 | 19.3 | 184 | | 6000
1829 | 75 | 14.8
11.8 | 160
145 | 75 | 14.8 | 162 | 75 | 14.8 | 164 | 75 | 14.8 | 165 | 75
60 | 14.8 | 167 | | 1029 | 60
45 | 9.0 | 125 | 60
45 | 11.8
9.0 | 147
126 | 60
45 | 11.8
9.0 | 148
127 | 60
45 | 11.8
9.0 | 150
128 | 50 | 11.8
9.8 | 151
138 | | | 95 | 19.3 | 180 | 95 | 19.3 | 182 | 95 | 19.3 | 184 | 95 | 19.3 | 186 | 95 | 19.2 | 187 | | 8000 | 75 | 14.8 | 163 | 75 | 14.8 | 165 | 75 | 14.8 | 167 | 75 | 14.8 | 168 | 75 | 14.8 | 170 | | 2438 | 60 | 11.8 | 148 | 60 | 11.8 | 149 | 60 | 11.8 | 151 | 60 | 11.8 | 152 | 60 | 11.8 | 154 | | 1 - 100 | 45 | 9.0 | 127 | 45 | 9.0 | 128 | 50 | 9.8 | 137 | 50 | 9.8 | 139 | 50 | 9.8 | 140 | | | 95 | 19.3 | 183 | 95 | 19.3 | 185 | 95 | 19.3 | 187 | 95 | 19.3 | 189 | 95 | 18.8 | 189 | | 10000 | 75 | 14.8 | 166 | 75 | 14.8 | 168 | 75 | 14.8 | 170 | 75 | 14.8 | 171 | 75 | 14.8 | 173 | | 3048 | 60 | 11.8 | 150 | 60 | 11.8 | 152 | 60 | 11.8 | 153 | 60 | 11.8 | 155 | 60 | 11.8 | 156 | | | 45 | 8.9 | 129 | 50 | 9.8 | 138 | 50 | 9.8 | 140 | 50 | 9.8 | 141 | 50 | 9.8 | 142 | | | 95 | 19.3 | 187 | 95 | 19.3 | 189 | 95 | 19.2 | 191 | 95 | 18.8 | 191 | 95 | 18.1 | 191
 | 12000 | 75 | 14.8 | 169 | 75 | 14.8 | 171 | 75 | 14.8 | 173 | 75 | 14.8 | 175 | 75 | 14.8 | 176 | | 3658 | 60 | 11.8 | 153 | 60 | 11.8 | 154 | 60 | 11.8 | 156 | 60 | 11.8 | 157 | 60 | 11.8 | 159 | | | 50 | 9.7 | 139 | 50 | 9.7 | 140 | 50 | 9.7 | 142 | 50 | 9.7 | 143 | 50 | 9.7 | 144 | | 4.4000 | 95 | 18.7 | 188 | 95 | 18.5 | 190 | 95 | 18.1 | 191 | 85 | 16.7 | 187 | 80 | 15.6 | 184 | | 14000
4267 | 75 | 14.8 | 172 | 75 | 14.8 | 174 | 75 | 14.8 | 176 | 75 | 14.8 | 178 | 75 | 14.8 | 179 | | 4201 | 60 | 11.8 | 155 | 60 | 11.8 | 157 | 60 | 11.8 | 159 | 60 | 11.8 | 160 | 60 | 11.8 | 161 | | | 50 | 9.7 | 141 | 50 | 9.7 | 142 | 50 | 9.7 | 144 | 50 | 9.7 | 145 | 55 | 10.7 | 154 | | | 95 | 17.3 | 187 | 87 | 17.1 | 189 | 85 | 16.7 | 189 | 80 | 15.7 | 186 | - | - | - | | 16000 | 75 | 14.8 | 175 | 75 | 14.8 | 177 | 75 | 14.8 | 179 | 75 | 14.8 | 181 | 75 | 14.8 | 182 | | 4877 | 60 | 11.8 | 158 | 60 | 11.8 | 160 | 60 | 11.8 | 161 | 60 | 11.8 | 163 | 60 | 11.8 | 164 | | | 50 | 9.7 | 143 | 50 | 9.7 | 144 | 55 | 10.7 | 154 | 55 | 10.7 | 155 | 55 | 10.7 | 156 | | | 80 | 15.7 | 184 | 80 | 15.7 | 186 | 80 | 15.7 | 188 | -
75 | 140 | - 104 | -
75 | 140 | 100 | | 18000
5486 | 75 | 14.8 | 178 | 75 | 14.8 | 180 | 75 | 14.8 | 182 | 75 | 14.8
11.8 | 184 | 75 | 14.8
11.8 | 186 | | 5 4 60 | 60
55 | | 161 | 60
55 | 11.8 | 162 | 60
55 | | 164 | 60
55 | | 165 | 60
55 | _ | 166 | | 20000 | 55
75 | 10.7 | 153
182 | 55
75 | 10.7 | 155
184 | 55
70 | 10.7
13.9 | 156
180 | 55
70 | 10.7
13.9 | 157
181 | 55
70 | 10.7
13.9 | 158 | | 20000
6096 | 75
60 | 14.8
11.8 | | | 14.8 | | | | | | | | | | 183 | | 0090 | 60 | 11.8 | 163 | 60 | 11.8 | 165 | 60 | 11.8 | 166 | 60 | 11.8 | 167 | 60 | 11.8 | 169 | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 5 - 61 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| #### **5.3.12 LANDING DISTANCES** #### Conditions: - Paved runway, wet: Increase by 15%. - Power lever both IDLE - Grass runway, dry, 5 cm (2 in) long: Increase the ground roll by 10%. - Grass runway, dry, 5 cm (2 in) to 10 cm (3.9 in) long: Increase the ground roll by 15%. - Grass runway, dry, longer than 10 cm (3.9 in): Increase the ground roll at least by 25%. - Grass runway, wet or soft runway: Increase the ground roll by 10%. Downhill slope: Increase the ground roll by 20% for each 1% (1 m per 100 m or 1 ft per 100 ft) of slope. ### **WARNING** For a safe landing, the available runway length must be at least equal to the landing distance over a 50 ft (15 m) obstacle. #### **WARNING** Poor maintenance condition of the airplane, deviation from the given procedures, uneven runway, as well as unfavorable external factors (rain, unfavorable wind conditions, including cross-wind) will increase the landing distance. # **CAUTION** The factors in the above corrections are typical values. On wet ground or wet soft grass covered runways, the landing distance may become significantly longer than stated above. In any case, the pilot must allow for the condition of the runway to ensure a safe landing. The above corrections for runway slope should be used with caution since published runway slope data is usually the net slope from one end of the runway to the other. Runways may have positions along their length at greater or lesser slopes than the published slope, lengthening (or shortening) the landing roll estimated with these tables. #### NOTE The effect of 50% of the headwind component and 150% of the tailwind component is already incorporated in the headand tailwind factors. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 5 - 63 | |---------------------|--------|-------------|-------------| | | | | | # Landing Distances (SI/Metric System) Landing Distance - Flaps LDG - 2300 kg/5071 lb Weight: 2300 kg/5071 lb Flaps: LDG **89 KIAS** Power: IDLE V_{REF}: | Distances | are | given | in | meter | [m] | | |------------------|-----|--------|----|---------|-----|--| | Distances | aic | giveii | | IIICICI | L | | | | Distances are given in meter [m] | | | | | | | | | | | |------------------|----------------------------------|-------------------------------------|---------------|---------------|---------------|----------------|----------------|------|--|--|--| | Press. Alt. | | Outside Air Temperature - [°C]/[°F] | | | | | | | | | | | [ft]/ [m] | | 0/ 32 | 10/ 50 | 20/ 68 | 30/ 86 | 40/ 104 | 50/ 122 | ISA | | | | | SL | Ground Roll | 420 | 440 | 450 | 470 | 510 | 560 | 441 | | | | | | 15 m/50 ft | 750 | 770 | 790 | 810 | 880 | 960 | 779 | | | | | 1000 | Ground Roll | 440 | 450 | 470 | 480 | 530 | 580 | 453 | | | | | 305 | 15 m/50 ft | 770 | 790 | 810 | 840 | 920 | 1000 | 796 | | | | | 2000 | Ground Roll | 460 | 470 | 490 | 510 | 560 | 620 | 469 | | | | | 610 | 15 m/50 ft | 800 | 820 | 840 | 870 | 960 | 1050 | 817 | | | | | 3000 | Ground Roll | 510 | 530 | 550 | 580 | 640 | 700 | 526 | | | | | 914 | 15 m/50 ft | 860 | 890 | 910 | 960 | 1050 | 1150 | 879 | | | | | 4000 | Ground Roll | 570 | 590 | 610 | 650 | 720 | 790 | 577 | | | | | 1219 | 15 m/50 ft | 920 | 950 | 970 | 1040 | 1140 | 1250 | 936 | | | | | 5000 | Ground Roll | 610 | 640 | 660 | 720 | 790 | | 621 | | | | | 1524 | 15 m/50 ft | 970 | 1000 | 1030 | 1120 | 1220 | | 985 | | | | | 6000 | Ground Roll | 660 | 680 | 700 | 770 | 850 | | 659 | | | | | 1829 | 15 m/50 ft | 1020 | 1050 | 1080 | 1190 | 1300 | | 1029 | | | | | 7000 | Ground Roll | 720 | 740 | 770 | 860 | 940 | | 715 | | | | | 2134 | 15 m/50 ft | 1090 | 1120 | 1170 | 1290 | 1410 | | 1091 | | | | | 8000 | Ground Roll | 810 | 840 | 890 | 980 | 1080 | | 802 | | | | | 2438 | 15 m/50 ft | 1190 | 1230 | 1290 | 1420 | 1560 | | 1183 | | | | | 9000 | Ground Roll | 940 | 970 | 1040 | 1150 | 1260 | | 922 | | | | | 2743 | 15 m/50 ft | 1320 | 1370 | 1460 | 1600 | 1750 | | 1309 | | | | | 10000 | Ground Roll | 1090 | 1130 | 1220 | 1350 | | | 1070 | | | | | 3048 | 15 m/50 ft | 1490 | 1530 | 1660 | 1820 | | | 1463 | | | | | Page 5 - 64 Rev. 0 11-Jan-2019 Doc. No. 11.01.05-E | Page 5 - 64 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |--|-------------|--------|-------------|---------------------| |--|-------------|--------|-------------|---------------------| Landing Distance - Flaps LDG - 2200 kg/4850 lb Weight: 2200 kg/4850 lb Flaps: LDG v_{REF}: 89 KIAS Power: IDLE Runway: dry, paved, level # Distances are given in meter [m] Outside Air Temperature - | Press. Alt. | | | Outside Air Temperature - [°C]/[°F] | | | | | | | | | |------------------|--------------------|--------------|-------------------------------------|---------------|---------------|----------------|----------------|------|--|--|--| | [ft]/ [m] | | 0/ 32 | 10/ 50 | 20/ 68 | 30/ 86 | 40/ 104 | 50/ 122 | ISA | | | | | SL | Ground Roll | 410 | 420 | 430 | 450 | 490 | 540 | 423 | | | | | | 15 m/50 ft | 740 | 760 | 780 | 800 | 870 | 950 | 770 | | | | | 1000 | Ground Roll | 420 | 430 | 450 | 460 | 510 | 560 | 434 | | | | | 305 | 15 m/50 ft | 760 | 780 | 800 | 830 | 900 | 990 | 787 | | | | | 2000 | Ground Roll | 440 | 450 | 470 | 490 | 540 | 590 | 450 | | | | | 610 | 15 m/50 ft | 790 | 810 | 830 | 860 | 950 | 1030 | 807 | | | | | 3000 | Ground Roll | 490 | 510 | 530 | 560 | 620 | 680 | 504 | | | | | 914 | 15 m/50 ft | 850 | 870 | 900 | 940 | 1040 | 1130 | 867 | | | | | 4000 | Ground Roll | 540 | 560 | 580 | 630 | 690 | 760 | 553 | | | | | 1219 | 15 m/50 ft | 910 | 930 | 960 | 1020 | 1120 | 1230 | 922 | | | | | 5000 | Ground Roll | 590 | 610 | 630 | 690 | 760 | | 595 | | | | | 1524 | 15 m/50 ft | 960 | 990 | 1010 | 1100 | 1210 | | 969 | | | | | 6000 | Ground Roll | 630 | 650 | 670 | 740 | 810 | | 632 | | | | | 1829 | 15 m/50 ft | 1010 | 1040 | 1070 | 1170 | 1280 | | 1012 | | | | | 7000 | Ground Roll | 690 | 710 | 740 | 820 | 900 | | 688 | | | | | 2134 | 15 m/50 ft | 1070 | 1110 | 1150 | 1260 | 1380 | | 1073 | | | | | 8000 | Ground Roll | 780 | 800 | 850 | 940 | 1040 | | 769 | | | | | 2438 | 15 m/50 ft | 1170 | 1210 | 1270 | 1400 | 1530 | | 1163 | | | | | 9000 | Ground Roll | 910 | 940 | 1010 | 1110 | 1220 | | 892 | | | | | 2743 | 15 m/50 ft | 1310 | 1350 | 1440 | 1580 | 1730 | | 1293 | | | | | 10000 | Ground Roll | 1060 | 1100 | 1190 | 1310 | | | 1043 | | | | | 3048 | 15 m/50 ft | 1470 | 1520 | 1640 | 1800 | | | 1449 | | | | | . No. 11.01.05-E | 11.01.05-E Rev. 0 | 11-Jan-2019 | Page 5 - 65 | |------------------|-------------------|-------------|-------------| |------------------|-------------------|-------------|-------------| 1010 1432 Landing Distance - Flaps LDG - 2100 kg/4630 lb Weight: 2100 kg/4630 lb Flaps: LDG v_{REF}: 89 KIAS Power: IDLE Runway: dry, paved, level | Runway: dry, paved, level | | | | | | | | | | | |---------------------------|--------------------|--------------|---------------|---------------|---------------|----------------|----------------|------|--|--| | | | Distance | es are gi | ven in mo | eter [m] | | | | | | | Press. Alt. | | | Outside | Air Tem | perature | - [°C]/[°F |] | | | | | [ft]/ [m] | | 0/ 32 | 10/ 50 | 20/ 68 | 30/ 86 | 40/ 104 | 50/ 122 | ISA | | | | SL | Ground Roll | 390 | 400 | 410 | 430 | 470 | 510 | 404 | | | | | 15 m/50 ft | 730 | 750 | 770 | 790 | 860 | 940 | 760 | | | | 1000 | Ground Roll | 400 | 420 | 430 | 440 | 490 | 530 | 416 | | | | 305 | 15 m/50 ft | 750 | 770 | 790 | 820 | 890 | 970 | 777 | | | | 2000 | Ground Roll | 420 | 430 | 450 | 470 | 510 | 560 | 430 | | | | 610 | 15 m/50 ft | 780 | 800 | 820 | 850 | 930 | 1020 | 797 | | | | 3000 | Ground Roll | 470 | 490 | 500 | 530 | 590 | 640 | 482 | | |
| 914 | 15 m/50 ft | 840 | 860 | 880 | 930 | 1020 | 1110 | 854 | | | | 4000 | Ground Roll | 520 | 540 | 550 | 590 | 660 | 720 | 529 | | | | 1219 | 15 m/50 ft | 890 | 920 | 940 | 1010 | 1100 | 1200 | 907 | | | | 5000 | Ground Roll | 560 | 580 | 600 | 650 | 720 | | 564 | | | | 1524 | 15 m/50 ft | 940 | 970 | 990 | 1080 | 1180 | | 950 | | | | 6000 | Ground Roll | 600 | 620 | 640 | 710 | 780 | | 600 | | | | 1829 | 15 m/50 ft | 990 | 1020 | 1040 | 1150 | 1260 | | 991 | | | | 7000 | Ground Roll | 660 | 680 | 710 | 780 | 860 | | 655 | | | | 2134 | 15 m/50 ft | 1050 | 1080 | 1130 | 1240 | 1360 | | 1052 | | | | 8000 | Ground Roll | 740 | 770 | 820 | 910 | 1000 | | 737 | | | | 2438 | 15 m/50 ft | 1150 | 1190 | 1250 | 1380 | 1510 | | 1144 | | | | 9000 | Ground Roll | 880 | 910 | 970 | 1070 | 1170 | | 863 | | | | 2743 | 15 m/50 ft | 1290 | 1330 | 1420 | 1560 | 1710 | | 1276 | | | | | | | | | | | VIIIIIIII | | | | | Page 5 - 66 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | | |-------------|--------|-------------|---------------------|--| | | | | | | 1060 1500 1160 1620 1270 1780 **Ground Roll** 15 m/50 ft **10000** 3048 1030 1460 Landing Distance - Flaps LDG - 1999 kg/4407 lb Weight: 1999 kg/4407 lb Flaps: LDG v_{REF}: 84 KIAS Power: IDLE Runway: dry, paved, level # Distances are given in meter [m] | Press. Alt. | | | Outside Air Temperature - [°C]/[°F] | | | | | | | | |------------------|--------------------|--------------|-------------------------------------|---------------|---------------|----------------|----------------|------|--|--| | [ft]/ [m] | | 0/ 32 | 10/ 50 | 20/ 68 | 30/ 86 | 40/ 104 | 50/ 122 | ISA | | | | SL | Ground Roll | 370 | 390 | 390 | 410 | 440 | 490 | 383 | | | | | 15 m/50 ft | 680 | 700 | 720 | 740 | 800 | 870 | 706 | | | | 1000 | Ground Roll | 390 | 390 | 410 | 420 | 460 | 510 | 394 | | | | 305 | 15 m/50 ft | 700 | 720 | 740 | 760 | 830 | 910 | 722 | | | | 2000 | Ground Roll | 400 | 410 | 420 | 440 | 490 | 540 | 408 | | | | 610 | 15 m/50 ft | 720 | 740 | 760 | 790 | 870 | 950 | 740 | | | | 3000 | Ground Roll | 450 | 460 | 480 | 500 | 560 | 610 | 456 | | | | 914 | 15 m/50 ft | 780 | 800 | 820 | 860 | 950 | 1040 | 793 | | | | 4000 | Ground Roll | 490 | 510 | 530 | 560 | 620 | 680 | 500 | | | | 1219 | 15 m/50 ft | 830 | 850 | 880 | 940 | 1030 | 1120 | 842 | | | | 5000 | Ground Roll | 530 | 550 | 570 | 620 | 680 | | 537 | | | | 1524 | 15 m/50 ft | 880 | 900 | 930 | 1000 | 1100 | | 885 | | | | 6000 | Ground Roll | 570 | 590 | 610 | 670 | 740 | | 570 | | | | 1829 | 15 m/50 ft | 920 | 950 | 970 | 1070 | 1170 | | 923 | | | | 7000 | Ground Roll | 620 | 650 | 670 | 750 | 820 | | 622 | | | | 2134 | 15 m/50 ft | 980 | 1010 | 1050 | 1160 | 1270 | | 981 | | | | 8000 | Ground Roll | 710 | 740 | 790 | 870 | 960 | | 709 | | | | 2438 | 15 m/50 ft | 1080 | 1110 | 1170 | 1290 | 1410 | | 1073 | | | | 9000 | Ground Roll | 850 | 880 | 940 | 1030 | 1130 | | 834 | | | | 2743 | 15 m/50 ft | 1220 | 1260 | 1340 | 1470 | 1610 | | 1204 | | | | 10000 | Ground Roll | 1010 | 1030 | 1120 | 1230 | | | 988 | | | | 3048 | 15 m/50 ft | 1390 | 1420 | 1540 | 1690 | | | 1364 | | | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 5 - 67 | |---------------------|--------|-------------|-------------| | | | | 3 - 3 | Landing Distance - Flaps LDG - 1900 kg/4189 lb Weight: 1900 kg/4189 lb Flaps: LDG v_{REF}: 84 KIAS Power: IDLE | Runway: dry, paved, level | | | | | | | | | | | |---------------------------|----------------------------------|--------------|---------------|---------------|---------------|--------------------|----------------|------|--|--| | | Distances are given in meter [m] | | | | | | | | | | | Press. Alt. | | | Outside | Air Tem | perature | - [°C]/ [°F |] | | | | | [ft] /[m] | | 0/ 32 | 10/ 50 | 20/ 68 | 30/ 86 | 40/ 104 | 50/ 122 | ISA | | | | SL | Ground Roll | 350 | 360 | 380 | 390 | 420 | 460 | 366 | | | | JL JL | 15 m/50 ft | 670 | 690 | 710 | 730 | 790 | 860 | 697 | | | | 1000 | Ground Roll | 360 | 380 | 390 | 400 | 440 | 490 | 376 | | | | 305 | 15 m/50 ft | 690 | 710 | 730 | 750 | 820 | 900 | 712 | | | | 2000 | Ground Roll | 380 | 390 | 410 | 420 | 470 | 510 | 389 | | | | 610 | 15 m/50 ft | 710 | 730 | 750 | 780 | 860 | 930 | 731 | | | | 3000 | Ground Roll | 430 | 440 | 460 | 480 | 530 | 580 | 435 | | | | 914 | 15 m/50 ft | 770 | 790 | 810 | 850 | 930 | 1020 | 781 | | | | 4000 | Ground Roll | 470 | 490 | 500 | 530 | 590 | 650 | 477 | | | | 1219 | 15 m/50 ft | 820 | 840 | 860 | 920 | 1010 | 1100 | 828 | | | | 5000 | Ground Roll | 510 | 520 | 540 | 590 | 650 | | 512 | | | | 1524 | 15 m/50 ft | 860 | 880 | 910 | 980 | 1080 | | 869 | | | | 6000 | Ground Roll | 540 | 560 | 580 | 640 | 700 | | 539 | | | | 1829 | 15 m/50 ft | 900 | 930 | 950 | 1040 | 1140 | | 904 | | | | 7000 | Ground Roll | 590 | 610 | 640 | 710 | 780 | | 590 | | | | 2134 | 15 m/50 ft | 960 | 990 | 1030 | 1130 | 1240 | | 961 | | | | 8000 | Ground Roll | 680 | 710 | 750 | 830 | 910 | | 678 | | | | 2438 | 15 m/50 ft | 1060 | 1090 | 1150 | 1270 | 1390 | | 1055 | | | | 9000 | Ground Roll | 810 | 850 | 910 | 1000 | 1090 | | 802 | | | | 2743 | 15 m/50 ft | 1200 | 1240 | 1320 | 1450 | 1580 | | 1187 | | | | 10000 | Ground Roll | 980 | 1000 | 1090 | 1200 | | | 960 | | | | 3048 | 15 m/50 ft | 1370 | 1410 | 1520 | 1670 | | | 1351 | | | | Page 5 - 68 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | | |-------------|--------|-------------|---------------------|--| | | | | | | Landing Distance - Flaps LDG - 1800 kg/3968 lb Weight: 1800 kg/3968 lb Flaps: LDG v_{REF}: 84 KIAS Power: IDLE #### Runway: dry, paved, level Distances are given in meter [m] Outside Air Temperature - [°C]/[°F] Press. Alt. [ft]/[m] 0/32 **10/**50 **20/**68 30/86 **40/**104 **50/**122 ISA **Ground Roll** SL 15 m/50 ft **Ground Roll** |--| Landing Distance - Abnormal Flap Position - 2300 kg/5071 lb Weight: 2300 kg/5071 lb Flaps: T/O or UP v_{REF}: 91 KIAS (Flaps T/O) Power: IDLE 95 KIAS (Flaps UP) | | Distances are given in meter [m] | | | | | | | | |------------------|----------------------------------|--------------|---------------|---------------|---------------|--------------------|----------------|------| | Press. Alt. | | | Outside | Air Tem | perature | - [°C]/ [°F |] | | | [ft] /[m] | | 0/ 32 | 10/ 50 | 20/ 68 | 30/ 86 | 40/ 104 | 50/ 122 | ISA | | SL | Ground Roll | 570 | 580 | 600 | 620 | 670 | 740 | 587 | | J SL | 15 m/50 ft | 920 | 950 | 970 | 1000 | 1080 | 1180 | 955 | | 1000 | Ground Roll | 580 | 600 | 620 | 640 | 710 | 780 | 603 | | 305 | 15 m/50 ft | 950 | 970 | 1000 | 1030 | 1130 | 1230 | 977 | | 2000 | Ground Roll | 610 | 630 | 650 | 680 | 750 | 820 | 626 | | 610 | 15 m/50 ft | 980 | 1010 | 1030 | 1070 | 1180 | 1290 | 1005 | | 3000 | Ground Roll | 710 | 730 | 760 | 800 | 880 | 970 | 725 | | 914 | 15 m/50 ft | 1090 | 1120 | 1150 | 1210 | 1330 | 1450 | 1110 | | 4000 | Ground Roll | 800 | 830 | 860 | 920 | 1020 | 1120 | 818 | | 1219 | 15 m/50 ft | 1190 | 1220 | 1260 | 1350 | 1480 | 1620 | 1209 | | 5000 | Ground Roll | 890 | 920 | 950 | 1030 | 1140 | | 898 | | 1524 | 15 m/50 ft | 1280 | 1320 | 1360 | 1470 | 1610 | | 1295 | | 6000 | Ground Roll | 960 | 990 | 1030 | 1140 | 1250 | | 967 | | 1829 | 15 m/50 ft | 1360 | 1400 | 1440 | 1590 | 1740 | | 1370 | | 7000 | Ground Roll | 1070 | 1110 | 1160 | 1280 | 1410 | | 1070 | | 2134 | 15 m/50 ft | 1480 | 1520 | 1590 | 1750 | 1920 | | 1479 | | 8000 | Ground Roll | 1240 | 1290 | 1360 | 1500 | 1650 | | 1235 | | 2438 | 15 m/50 ft | 1660 | 1710 | 1800 | 1990 | 2180 | | 1650 | | 9000 | Ground Roll | 1490 | 1550 | 1660 | 1830 | 2010 | | 1474 | | 2743 | 15 m/50 ft | 1920 | 1980 | 2120 | 2330 | 2550 | | 1899 | | 10000 | Ground Roll | 1850 | 1910 | 2070 | 2280 | | | 1820 | | 3048 | 15 m/50 ft | 2290 | 2350 | 2550 | 2790 | | | 2252 | | Page 5 - 70 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|---------|-------------|---------------------| | rage 3 - 70 | ixev. o | 11-Jan-2019 | DOC. NO. 11.01.03-L | Landing Distance - Abnormal Flap Position - 2200 kg/4850 lb Weight: 2200 kg/4850 lb Flaps: T/O or UP v_{REF}: 91 KIAS (Flaps T/O) Power: IDLE 95 KIAS (Flaps UP) | Distances are given in meter [m] | | | | | | | | | |----------------------------------|--------------------|--------------|---------------|---------------|---------------|----------------|----------------|------| | Press. Alt. | | Outside | Air Tem | perature | • - [°C]/[° | F] | | | | [ft]/ [m] | | 0/ 32 | 10/ 50 | 20/ 68 | 30/ 86 | 40/ 104 | 50/ 122 | ISA | | SL | Ground Roll | 540 | 560 | 580 | 590 | 650 | 710 | 562 | | JL JL | 15 m/50 ft | 910 | 940 | 960 | 990 | 1070 | 1170 | 945 | | 1000 | Ground Roll | 560 | 580 | 600 | 610 | 680 | 750 | 578 | | 305 | 15 m/50 ft | 940 | 960 | 990 | 1010 | 1110 | 1220 | 966 | | 2000 | Ground Roll | 580 | 600 | 620 | 650 | 710 | 780 | 600 | | 610 | 15 m/50 ft | 970 | 1000 | 1020 | 1060 | 1160 | 1270 | 994 | | 3000 | Ground Roll | 680 | 700 | 720 | 760 | 840 | 930 | 694 | | 914 | 15 m/50 ft | 1070 | 1100 | 1130 | 1190 | 1310 | 1430 | 1094 | | 4000 | Ground Roll | 770 | 800 | 820 | 880 | 970 | 1070 | 783 | | 1219 | 15 m/50 ft | 1170 | 1200 | 1240 | 1320 | 1450 | 1590 | 1190 | | 5000 | Ground Roll | 850 | 870 | 900 | 990 | 1090 | | 860 | | 1524 | 15 m/50 ft | 1260 | 1290 | 1330 | 1440 | 1580 | | 1272 | | 6000 | Ground Roll | 910 | 950 | 980 | 1080 | 1190 | | 920 | | 1829 | 15 m/50 ft | 1330 | 1370 | 1410 | 1560 | 1710 | | 1342 | | 7000 | Ground Roll | 1020 | 1060 | 1110 | 1220 | 1340 | | 1022 | | 2134 | 15 m/50 ft | 1450 | 1490 | 1550 | 1710 | 1870 | | 1450 | | 8000 | Ground Roll | 1190 | 1230 | 1310 | 1450 | 1590 | | 1182 | |
2438 | 15 m/50 ft | 1630 | 1680 | 1770 | 1960 | 2140 | | 1619 | | 9000 | Ground Roll | 1450 | 1500 | 1610 | 1780 | 1950 | | 1428 | | 2743 | 15 m/50 ft | 1900 | 1960 | 2090 | 2300 | 2520 | | 1875 | | 10000 | Ground Roll | 1820 | 1860 | 2020 | 2220 | | | 1783 | | 3048 | 15 m/50 ft | 2270 | 2330 | 2530 | 2770 | | | 2238 | | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 5 - 71 | |--| |--| Landing Distance - Abnormal Flap Position - 2100 kg/4630 lb Weight: 2100 kg/4630 lb Flaps: T/O or UP v_{REF}: 91 KIAS (Flaps T/O) Power: IDLE 95 KIAS (Flaps UP) | | Distances are given in meter [m] | | | | | | | | | |------------------|-------------------------------------|--------------|---------------|---------------|---------------|----------------|----------------|------|--| | Press. Alt. | Outside Air Temperature - [°C]/[°F] | | | | | | | | | | [ft]/ [m] | | 0/ 32 | 10/ 50 | 20/ 68 | 30/ 86 | 40/ 104 | 50/ 122 | ISA | | | SL | Ground Roll | 520 | 530 | 550 | 570 | 610 | 680 | 537 | | | JL . | 15 m/50 ft | 900 | 930 | 950 | 980 | 1050 | 1150 | 934 | | | 1000 | Ground Roll | 530 | 550 | 570 | 580 | 650 | 710 | 552 | | | 305 | 15 m/50 ft | 930 | 950 | 980 | 1000 | 1100 | 1200 | 955 | | | 2000 | Ground Roll | 560 | 580 | 590 | 620 | 680 | 750 | 574 | | | 610 | 15 m/50 ft | 960 | 980 | 1010 | 1050 | 1150 | 1260 | 982 | | | 3000 | Ground Roll | 650 | 660 | 690 | 730 | 800 | 880 | 659 | | | 914 | 15 m/50 ft | 1050 | 1080 | 1110 | 1170 | 1290 | 1410 | 1076 | | | 4000 | Ground Roll | 730 | 760 | 780 | 840 | 920 | 1020 | 743 | | | 1219 | 15 m/50 ft | 1150 | 1180 | 1220 | 1300 | 1430 | 1560 | 1167 | | | 5000 | Ground Roll | 800 | 830 | 860 | 940 | 1030 | | 816 | | | 1524 | 15 m/50 ft | 1230 | 1270 | 1300 | 1410 | 1550 | | 1246 | | | 6000 | Ground Roll | 870 | 900 | 930 | 1030 | 1130 | | 880 | | | 1829 | 15 m/50 ft | 1310 | 1340 | 1380 | 1520 | 1670 | | 1317 | | | 7000 | Ground Roll | 970 | 1010 | 1050 | 1160 | 1280 | | 974 | | | 2134 | 15 m/50 ft | 1420 | 1460 | 1520 | 1680 | 1840 | | 1420 | | | 8000 | Ground Roll | 1140 | 1180 | 1250 | 1390 | 1520 | | 1137 | | | 2438 | 15 m/50 ft | 1600 | 1650 | 1740 | 1920 | 2100 | | 1593 | | | 9000 | Ground Roll | 1400 | 1460 | 1560 | 1720 | 1880 | | 1392 | | | 2743 | 15 m/50 ft | 1870 | 1940 | 2070 | 2270 | 2480 | | 1857 | | | 10000 | Ground Roll | 1770 | 1830 | 1990 | 2170 | | | 1742 | | | 3048 | 15 m/50 ft | 2260 | 2320 | 2520 | 2750 | | | 2221 | | | Page 5 - 72 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | | |-------------|--------|-------------|---------------------|--| | | | | | | Landing Distance - Abnormal Flap Position - 1999 kg/4407 lb Weight: 1999 kg/4407 lb Flaps: T/O or UP v_{REF}: 88 KIAS (Flaps T/O) 91 KIAS (Flaps UP) Runway: dry, paved, level Power: IDLE | | Distances are given in meter [m] | | | | | | | | | |------------------|----------------------------------|--------------|---------------|---------------|---------------|--------------------|----------------|------|--| | Press. Alt. | | | Outside | Air Tem | perature | - [°C]/[°F |] | | | | [ft]/ [m] | | 0/ 32 | 10/ 50 | 20/ 68 | 30/ 86 | 40/ 104 | 50/ 122 | ISA | | | SL | Ground Roll | 490 | 510 | 530 | 540 | 590 | 640 | 513 | | | 3L | 15 m/50 ft | 850 | 870 | 890 | 920 | 990 | 1090 | 879 | | | 1000 | Ground Roll | 510 | 530 | 540 | 560 | 610 | 680 | 527 | | | 305 | 15 m/50 ft | 870 | 900 | 920 | 940 | 1030 | 1130 | 899 | | | 2000 | Ground Roll | 530 | 550 | 560 | 590 | 650 | 720 | 543 | | | 610 | 15 m/50 ft | 900 | 920 | 950 | 990 | 1080 | 1180 | 923 | | | 3000 | Ground Roll | 610 | 630 | 650 | 690 | 770 | 840 | 627 | | | 914 | 15 m/50 ft | 990 | 1020 | 1050 | 1100 | 1210 | 1320 | 1012 | | | 4000 | Ground Roll | 690 | 720 | 740 | 800 | 880 | 960 | 706 | | | 1219 | 15 m/50 ft | 1080 | 1110 | 1140 | 1220 | 1340 | 1460 | 1097 | | | 5000 | Ground Roll | 760 | 790 | 820 | 890 | 980 | | 774 | | | 1524 | 15 m/50 ft | 1160 | 1190 | 1230 | 1330 | 1460 | | 1171 | | | 6000 | Ground Roll | 830 | 860 | 880 | 980 | 1080 | | 834 | | | 1829 | 15 m/50 ft | 1230 | 1270 | 1300 | 1430 | 1570 | | 1237 | | | 7000 | Ground Roll | 920 | 960 | 1000 | 1110 | 1220 | | 924 | | | 2134 | 15 m/50 ft | 1340 | 1380 | 1430 | 1580 | 1730 | | 1336 | | | 8000 | Ground Roll | 1090 | 1130 | 1200 | 1330 | 1470 | | 1085 | | | 2438 | 15 m/50 ft | 1510 | 1560 | 1650 | 1820 | 1990 | | 1506 | | | 9000 | Ground Roll | 1360 | 1410 | 1510 | 1670 | 1830 | | 1349 | | | 2743 | 15 m/50 ft | 1790 | 1850 | 1980 | 2180 | 2380 | | 1776 | | | 10000 | Ground Roll | 1750 | 1790 | 1940 | 2130 | | | 1715 | | | 3048 | 15 m/50 ft | 2190 | 2240 | 2430 | 2660 | | | 2153 | | | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 5 - 73 | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 5 - 73 | |--|--|---------------------|--------|-------------|-------------| |--|--|---------------------|--------|-------------|-------------| Landing Distance - Abnormal Flap Position - 1900 kg/4189 lb Weight: 1900 kg/4189 lb Flaps: T/O or UP v_{REF}: 88 KIAS (Flaps T/O) Power: IDLE 91 KIAS (Flaps UP) | Distances are given in meter [m] | | | | | | | | | |----------------------------------|--------------------|--------------|---------------|---------------|---------------|--------------------|----------------|------| | Press. Alt. | | | Outside | Air Tem | perature | - [°C]/ [°F |] | | | [ft] /[m] | | 0/ 32 | 10/ 50 | 20/ 68 | 30/ 86 | 40/ 104 | 50/ 122 | ISA | | SL | Ground Roll | 470 | 480 | 500 | 510 | 560 | 610 | 484 | | J. | 15 m/50 ft | 840 | 860 | 880 | 910 | 980 | 1070 | 867 | | 1000 | Ground Roll | 480 | 500 | 510 | 530 | 580 | 640 | 499 | | 305 | 15 m/50 ft | 860 | 880 | 910 | 930 | 1020 | 1120 | 886 | | 2000 | Ground Roll | 500 | 520 | 540 | 560 | 620 | 680 | 518 | | 610 | 15 m/50 ft | 890 | 910 | 940 | 970 | 1070 | 1170 | 911 | | 3000 | Ground Roll | 580 | 600 | 620 | 660 | 730 | 790 | 597 | | 914 | 15 m/50 ft | 980 | 1000 | 1030 | 1090 | 1190 | 1300 | 997 | | 4000 | Ground Roll | 660 | 680 | 700 | 760 | 830 | 910 | 667 | | 1219 | 15 m/50 ft | 1060 | 1090 | 1120 | 1200 | 1310 | 1440 | 1075 | | 5000 | Ground Roll | 720 | 750 | 780 | 840 | 930 | | 732 | | 1524 | 15 m/50 ft | 1130 | 1170 | 1200 | 1300 | 1430 | | 1146 | | 6000 | Ground Roll | 780 | 810 | 840 | 920 | 1010 | | 789 | | 1829 | 15 m/50 ft | 1200 | 1240 | 1270 | 1400 | 1530 | | 1209 | | 7000 | Ground Roll | 880 | 910 | 950 | 1050 | 1160 | | 879 | | 2134 | 15 m/50 ft | 1310 | 1350 | 1400 | 1540 | 1690 | | 1308 | | 8000 | Ground Roll | 1050 | 1080 | 1150 | 1270 | 1400 | | 1043 | | 2438 | 15 m/50 ft | 1490 | 1530 | 1620 | 1780 | 1960 | | 1482 | | 9000 | Ground Roll | 1320 | 1370 | 1470 | 1620 | 1760 | | 1303 | | 2743 | 15 m/50 ft | 1780 | 1830 | 1960 | 2150 | 2350 | | 1754 | | 10000 | Ground Roll | 1720 | 1760 | 1910 | 2090 | | | 1688 | | 3048 | 15 m/50 ft | 2180 | 2240 | 2420 | 2650 | | | 2149 | | Page 5 - 74 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | | |-------------|--------|-------------|---------------------|--| | | | | | | Landing Distance - Abnormal Flap Position - 1800 kg/3968 lb Weight: 1800 kg/3968 lb Flaps: T/O or UP v_{REF}: 88 KIAS (Flaps T/O) 91 KIAS (Flaps UP) Runway: dry, paved, level Power: IDLE | | Distances are given in meter [m] | | | | | | | | | | |------------------|----------------------------------|--------------|---------------|---------------|---------------|--------------------|----------------|------|--|--| | Press. Alt. | | | Outside | Air Tem | perature | - [°C]/ [°F |] | | | | | [ft]/ [m] | | 0/ 32 | 10/ 50 | 20/ 68 | 30/ 86 | 40/ 104 | 50/ 122 | ISA | | | | SL | Ground Roll | 440 | 460 | 470 | 480 | 530 | 580 | 460 | | | | J. | 15 m/50 ft | 830 | 850 | 870 | 890 | 970 | 1060 | 855 | | | | 1000 | Ground Roll | 460 | 470 | 490 | 500 | 550 | 610 | 474 | | | | 305 | 15 m/50 ft | 850 | 870 | 890 | 920 | 1010 | 1100 | 875 | | | | 2000 | Ground Roll | 480 | 490 | 510 | 530 | 580 | 640 | 489 | | | | 610 | 15 m/50 ft | 880 | 900 | 920 | 960 | 1050 | 1150 | 898 | | | | 3000 | Ground Roll | 550 | 570 | 590 | 620 | 680 | 750 | 563 | | | | 914 | 15 m/50 ft | 960 | 990 | 1010 | 1070 | 1170 | 1280 | 979 | | | | 4000 | Ground Roll | 620 | 640 | 660 | 710 | 780 | 860 | 629 | | | | 1219 | 15 m/50 ft | 1040 | 1070 | 1100 | 1170 | 1290 | 1410 | 1053 | | | | 5000 | Ground Roll | 680 | 710 | 730 | 790 | 870 | | 690 | | | | 1524 | 15 m/50 ft | 1110 | 1140 | 1170 | 1270 | 1390 | | 1120 | | | | 6000 | Ground Roll | 740 | 760 | 790 | 870 | 960 | | 744 | | | | 1829 | 15 m/50 ft | 1170 | 1210 | 1240 | 1360 | 1500 | | 1181 | | | | 7000 | Ground Roll | 830 | 860 | 900 | 990 | 1100 | | 827 | | | | 2134 | 15 m/50 ft | 1280 | 1320 | 1370 | 1510 | 1650 | | 1276 | | | | 8000 | Ground Roll | 1000 | 1030 | 1100 | 1210 | 1340 | | 995 | | | | 2438 | 15 m/50 ft | 1460 | 1500 | 1590 | 1750 | 1920 | | 1454 | | | | 9000 | Ground Roll | 1280 | 1330 | 1420 | 1570 | 1710 | | 1261 | | | | 2743 | 15 m/50 ft | 1760 | 1820 | 1940 | 2130 | 2320 | | 1735 | | | | 10000 | Ground Roll | 1690 | 1740 | 1880 | 2060 | | | 1668 | | | | 3048 | 15 m/50 ft | 2180 | 2240 | 2420 | 2650 | | | 2152 | | | | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 5 - 75 | |--| |--| # Landing Distances (US/Imperial System) Landing Distance - Flaps LDG - 2300 kg/5071 lb Weight:
2300 kg/5071 lb Flaps: LDG v_{REF}: 89 KIAS Power: IDLE | V _{REF} : | 89 KIAS | Power: IDLE | | | | | | | |--------------------|--------------------|-------------|---------------|---------------|---------------|---------------------|----------------|------| | | | | | | Runwa | y: dry, pa | ved, leve | el | | | | Distan | ces are (| given in f | eet [ft] | | | | | Press. Alt. | | | Outsid | e Air Tem | perature | - [°C]/ [°F] | | | | [ft]/ [m] | | 0/30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /130 | ISA | | SL | Ground Roll | 1400 | 1450 | 1500 | 1550 | 1650 | 1850 | 1446 | | | 15 m/50 ft | 2500 | 2550 | 2600 | 2700 | 2900 | 3150 | 2555 | | 1000 | Ground Roll | 1450 | 1500 | 1550 | 1600 | 1750 | 1950 | 1486 | | 305 | 15 m/50 ft | 2550 | 2600 | 2700 | 2750 | 3000 | 3300 | 2611 | | 2000 | Ground Roll | 1500 | 1550 | 1600 | 1700 | 1850 | 2050 | 1538 | | 610 | 15 m/50 ft | 2650 | 2700 | 2750 | 2850 | 3150 | 3450 | 2680 | | 3000 | Ground Roll | 1700 | 1750 | 1800 | 1900 | 2100 | 2300 | 1723 | | 914 | 15 m/50 ft | 2850 | 2900 | 3000 | 3150 | 3450 | 3750 | 2882 | | 4000 | Ground Roll | 1850 | 1950 | 2000 | 2150 | 2350 | 2600 | 1893 | | 1219 | 15 m/50 ft | 3050 | 3100 | 3200 | 3400 | 3750 | 4100 | 3069 | | 5000 | Ground Roll | 2000 | 2100 | 2150 | 2350 | 2600 | | 2036 | | 1524 | 15 m/50 ft | 3200 | 3300 | 3400 | 3650 | 4050 | | 3231 | | 6000 | Ground Roll | 2150 | 2250 | 2300 | 2550 | 2800 | | 2162 | | 1829 | 15 m/50 ft | 3350 | 3450 | 3550 | 3900 | 4300 | | 3375 | | 7000 | Ground Roll | 2350 | 2450 | 2550 | 2800 | 3100 | | 2345 | | 2134 | 15 m/50 ft | 3600 | 3700 | 3850 | 4250 | 4650 | | 3577 | | 8000 | Ground Roll | 2650 | 2750 | 2900 | 3250 | 3550 | | 2629 | | 2438 | 15 m/50 ft | 3900 | 4050 | 4250 | 4700 | 5100 | | 3880 | | 9000 | Ground Roll | 3100 | 3200 | 3400 | 3750 | 4150 | | 3025 | | 2743 | 15 m/50 ft | 4350 | 4500 | 4800 | 5250 | 5750 | | 4295 | | 10000 | Ground Roll | 3600 | 3700 | 4050 | 4450 | | | 3509 | | 3048 | 15 m/50 ft | 4900 | 5050 | 5450 | 5950 | | | 4799 | | Page 5 - 76 Rev. 0 11-Jan-2019 Doc. No. 11.01.05-E | |--| |--| Landing Distance - Flaps LDG - 2200 kg/4850 lb Weight: 2200 kg/4850 lb Flaps: LDG v_{REF} : 89 KIAS Power: IDLE Runway: dry, paved, level # Distances are given in feet [ft] | Press. Alt. | | Outside Air Temperature - [°C]/[°F] | | | | | | | | |------------------|--------------------|-------------------------------------|---------------|---------------|---------------|----------------|----------------|------|--| | [ft]/ [m] | | 0/30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /130 | ISA | | | SL | Ground Roll | 1350 | 1400 | 1450 | 1500 | 1600 | 1750 | 1385 | | | | 15 m/50 ft | 2450 | 2500 | 2600 | 2650 | 2850 | 3150 | 2524 | | | 1000 | Ground Roll | 1400 | 1450 | 1500 | 1550 | 1700 | 1850 | 1424 | | | 305 | 15 m/50 ft | 2500 | 2600 | 2650 | 2700 | 3000 | 3250 | 2580 | | | 2000 | Ground Roll | 1450 | 1500 | 1550 | 1600 | 1800 | 1950 | 1475 | | | 610 | 15 m/50 ft | 2600 | 2650 | 2750 | 2850 | 3100 | 3400 | 2647 | | | 3000 | Ground Roll | 1600 | 1700 | 1750 | 1850 | 2050 | 2250 | 1652 | | | 914 | 15 m/50 ft | 2800 | 2850 | 2950 | 3100 | 3400 | 3700 | 2842 | | | 4000 | Ground Roll | 1800 | 1850 | 1900 | 2050 | 2250 | 2500 | 1814 | | | 1219 | 15 m/50 ft | 3000 | 3050 | 3150 | 3350 | 3700 | 4050 | 3022 | | | 5000 | Ground Roll | 1950 | 2000 | 2100 | 2250 | 2500 | | 1952 | | | 1524 | 15 m/50 ft | 3150 | 3250 | 3350 | 3600 | 3950 | | 3178 | | | 6000 | Ground Roll | 2050 | 2150 | 2200 | 2450 | 2700 | | 2073 | | | 1829 | 15 m/50 ft | 3300 | 3400 | 3500 | 3850 | 4200 | | 3319 | | | 7000 | Ground Roll | 2250 | 2350 | 2450 | 2700 | 2950 | | 2255 | | | 2134 | 15 m/50 ft | 3550 | 3650 | 3750 | 4150 | 4550 | | 3520 | | | 8000 | Ground Roll | 2550 | 2650 | 2800 | 3100 | 3400 | | 2523 | | | 2438 | 15 m/50 ft | 3850 | 3950 | 4200 | 4600 | 5050 | | 3816 | | | 9000 | Ground Roll | 3000 | 3100 | 3300 | 3650 | 4000 | | 2927 | | | 2743 | 15 m/50 ft | 4300 | 4450 | 4750 | 5200 | 5700 | | 4240 | | | 10000 | Ground Roll | 3500 | 3600 | 3900 | 4300 | | | 3419 | | | 3048 | 15 m/50 ft | 4850 | 5000 | 5400 | 5900 | | | 4753 | | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 5 - 77 | |---------------------|--------|-------------|-------------| | | | | 9. | Landing Distance - Flaps LDG - 2100 kg/4630 lb Weight: 2100 kg/4630 lb Flaps: LDG **89 KIAS** Power: IDLE V_{REF}: | | Distances are given in feet [ft] | | | | | | | | | |------------------|----------------------------------|------|---------------|---------------|---------------|----------------------|---------------|--|--| | Press. Alt. | | | Outside | Air Tem | perature | - [°C] /[°F] |] | | | | [ft]/ [m] | | 0/30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /13 | | | | SL | Ground Roll | 1300 | 1350 | 1350 | 1400 | 1550 | 1700 | | | | | | | | | | | | | | | [ft]/ [m] | | 0/30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /130 | ISA | |------------------|--------------------|------|---------------|---------------|---------------|----------------|----------------|------| | SL | Ground Roll | 1300 | 1350 | 1350 | 1400 | 1550 | 1700 | 1324 | | | 15 m/50 ft | 2400 | 2500 | 2550 | 2600 | 2800 | 3100 | 2492 | | 1000 | Ground Roll | 1350 | 1350 | 1400 | 1450 | 1600 | 1750 | 1362 | | 305 | 15 m/50 ft | 2500 | 2550 | 2600 | 2700 | 2950 | 3200 | 2547 | | 2000 | Ground Roll | 1400 | 1450 | 1500 | 1550 | 1700 | 1850 | 1411 | | 610 | 15 m/50 ft | 2550 | 2650 | 2700 | 2800 | 3050 | 3350 | 2614 | | 3000 | Ground Roll | 1550 | 1600 | 1650 | 1750 | 1950 | 2100 | 1580 | | 914 | 15 m/50 ft | 2750 | 2850 | 2900 | 3050 | 3350 | 3650 | 2801 | | 4000 | Ground Roll | 1700 | 1800 | 1800 | 1950 | 2150 | 2350 | 1735 | | 1219 | 15 m/50 ft | 2950 | 3000 | 3100 | 3300 | 3650 | 3950 | 2974 | | 5000 | Ground Roll | 1850 | 1900 | 1950 | 2150 | 2350 | | 1850 | | 1524 | 15 m/50 ft | 3100 | 3200 | 3250 | 3550 | 3900 | | 3116 | | 6000 | Ground Roll | 1950 | 2050 | 2100 | 2350 | 2550 | | 1966 | | 1829 | 15 m/50 ft | 3250 | 3350 | 3450 | 3750 | 4150 | | 3252 | | 7000 | Ground Roll | 2150 | 2250 | 2350 | 2550 | 2850 | | 2146 | | 2134 | 15 m/50 ft | 3450 | 3550 | 3700 | 4050 | 4450 | | 3452 | | 8000 | Ground Roll | 2450 | 2550 | 2700 | 3000 | 3300 | | 2418 | | 2438 | 15 m/50 ft | 3800 | 3900 | 4100 | 4550 | 4950 | | 3752 | | 9000 | Ground Roll | 2900 | 3000 | 3200 | 3500 | 3850 | | 2831 | | 2743 | 15 m/50 ft | 4250 | 4400 | 4650 | 5150 | 5600 | | 4186 | | 10000 | Ground Roll | 3400 | 3500 | 3800 | 4200 | | | 3312 | | 3048 | 15 m/50 ft | 4800 | 4900 | 5350 | 5850 | | | 4697 | | Page 5 - 78 R | Rev. 0 11 | -Jan-2019 | Doc. No. 11.01.05-E | |---------------|-----------|-----------|---------------------| |---------------|-----------|-----------|---------------------| Landing Distance - Flaps LDG - 1999 kg/4407 lb Weight: 1999 kg/4407 lb Flaps: LDG v_{REF}: 84 KIAS Power: IDLE Runway: dry, paved, level # Distances are given in feet [ft] | Press. Alt. | | Outside Air Temperature - [°C]/[°F] | | | | | | | |------------------|-------------|-------------------------------------|---------------|---------------|---------------|----------------|----------------|------| | [ft]/ [m] | | 0 /30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /130 | ISA | | SL | Ground Roll | 1250 | 1250 | 1300 | 1350 | 1450 | 1600 | 1257 | | | 15 m/50 ft | 2250 | 2300 | 2350 | 2450 | 2650 | 2850 | 2317 | | 1000 | Ground Roll | 1250 | 1300 | 1350 | 1400 | 1550 | 1700 | 1292 | | 305 | 15 m/50 ft | 2300 | 2350 | 2450 | 2500 | 2750 | 3000 | 2367 | | 2000 | Ground Roll | 1300 | 1350 | 1400 | 1450 | 1600 | 1750 | 1337 | | 610 | 15 m/50 ft | 2400 | 2450 | 2500 | 2600 | 2850 | 3100 | 2428 | | 3000 | Ground Roll | 1450 | 1500 | 1550 | 1650 | 1850 | 2000 | 1494 | | 914 | 15 m/50 ft | 2550 | 2650 | 2700 | 2850 | 3100 | 3400 | 2602 | | 4000 | Ground Roll | 1600 | 1700 | 1750 | 1850 | 2050 | 2250 | 1638 | | 1219 | 15 m/50 ft | 2750 | 2800 | 2900 | 3100 | 3400 | 3700 | 2763 | | 5000 | Ground Roll | 1750 | 1800 | 1900 | 2050 | 2250 | | 1760 | | 1524 | 15 m/50 ft | 2900 | 2950 | 3050 | 3300 | 3600 | | 2902 | | 6000 | Ground Roll | 1850 | 1950 | 2000 | 2200 | 2450 | | 1868 | | 1829 | 15 m/50 ft | 3000 | 3100 | 3200 | 3500 | 3850 | | 3028 | | 7000 | Ground Roll | 2050 | 2150 | 2200 | 2450 | 2700 | | 2040 | | 2134 | 15 m/50 ft | 3250 | 3300 | 3450 | 3800 | 4150 | | 3217 | | 8000 | Ground Roll | 2350 | 2450 | 2600 | 2850 | 3150 | | 2324 | | 2438 | 15 m/50 ft | 3550 | 3650 | 3850 | 4250 | 4650 | | 3520 | | 9000 | Ground Roll | 2800 | 2900 | 3100 | 3400 | 3700 | | 2736 | | 2743 | 15 m/50 ft | 4000 | 4150 | 4400 | 4850 | 5300 | | 3950 | | 10000 | Ground Roll | 3300 | 3400 | 3700 | 4050 | | | 3239 | | 3048 | 15 m/50 ft | 4550 | 4650 | 5050 | 5550 | | | 4472 | | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 5 - 7 | |---| |---| 10000 3048 15 m/50 ft 4500 4431 Landing Distance - Flaps LDG - 1900 kg/4189 lb Weight: 1900 kg/4189 lb Flaps: LDG 84 KIAS V_{REF}: Power: IDLE | Runway: dry, paved, level | | | | | | | | | | | |----------------------------------|--------------------|------|---------------|---------------|---------------|--------------------|----------------|------|--|--| | Distances are given in feet [ft] | | | | | | | | | | | | Press. Alt. | | | Outside | Air Tem | perature | - [°C] /[°F |] | | | | | [ft]/ [m] | | 0/30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /130 | ISA | | | | SL | Ground Roll | 1150 |
1200 | 1250 | 1300 | 1400 | 1550 | 1198 | | | | 3L | 15 m/50 ft | 2200 | 2300 | 2350 | 2400 | 2600 | 2850 | 2286 | | | | 1000 | Ground Roll | 1200 | 1250 | 1300 | 1350 | 1450 | 1600 | 1233 | | | | 305 | 15 m/50 ft | 2300 | 2350 | 2400 | 2450 | 2700 | 2950 | 2336 | | | | 2000 | Ground Roll | 1250 | 1300 | 1350 | 1400 | 1550 | 1700 | 1276 | | | | 610 | 15 m/50 ft | 2350 | 2400 | 2500 | 2550 | 2800 | 3050 | 2396 | | | | 3000 | Ground Roll | 1400 | 1450 | 1500 | 1600 | 1750 | 1900 | 1425 | | | | 914 | 15 m/50 ft | 2500 | 2600 | 2650 | 2800 | 3050 | 3350 | 2562 | | | | 4000 | Ground Roll | 1550 | 1600 | 1650 | 1750 | 1950 | 2150 | 1562 | | | | 1219 | 15 m/50 ft | 2700 | 2750 | 2850 | 3000 | 3300 | 3600 | 2716 | | | | 5000 | Ground Roll | 1650 | 1700 | 1800 | 1950 | 2150 | | 1679 | | | | 1524 | 15 m/50 ft | 2850 | 2900 | 3000 | 3250 | 3550 | | 2851 | | | | 6000 | Ground Roll | 1750 | 1850 | 1900 | 2100 | 2300 | | 1766 | | | | 1829 | 15 m/50 ft | 2950 | 3050 | 3150 | 3450 | 3750 | | 2963 | | | | 7000 | Ground Roll | 1950 | 2000 | 2100 | 2350 | 2600 | | 1936 | | | | 2134 | 15 m/50 ft | 3150 | 3250 | 3400 | 3750 | 4100 | | 3152 | | | | 8000 | Ground Roll | 2250 | 2350 | 2450 | 2700 | 3000 | | 2225 | | | | 2438 | 15 m/50 ft | 3500 | 3600 | 3800 | 4150 | 4550 | | 3460 | | | | 9000 | Ground Roll | 2700 | 2800 | 3000 | 3300 | 3600 | | 2630 | | | | 2743 | 15 m/50 ft | 3950 | 4050 | 4350 | 4800 | 5200 | | 3892 | | | | 10000 | Ground Roll | 3200 | 3300 | 3600 | 3950 | | | 3149 | | | | Page 5 - 80 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | | |-------------|--------|-------------|---------------------|--| | | | | | | 4650 5000 5500 Landing Distance - Flaps LDG - 1800 kg/3968 lb Weight: 1800 kg/3968 lb Flaps: LDG v_{REF}: 84 KIAS Power: IDLE Runway: dry, paved, level # Distances are given in feet [ft] | Press. Alt. | | Outside Air Temperature - [°C]/[°F] | | | | | | | |------------------|--------------------|-------------------------------------|---------------|---------------|---------------|----------------|----------------|------| | [ft]/ [m] | | 0 /30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /130 | ISA | | SL | Ground Roll | 1100 | 1150 | 1200 | 1200 | 1300 | 1450 | 1139 | | JL | 15 m/50 ft | 2200 | 2250 | 2300 | 2350 | 2550 | 2800 | 2254 | | 1000 | Ground Roll | 1150 | 1200 | 1200 | 1250 | 1400 | 1500 | 1173 | | 305 | 15 m/50 ft | 2250 | 2300 | 2350 | 2400 | 2650 | 2900 | 2304 | | 2000 | Ground Roll | 1200 | 1200 | 1250 | 1300 | 1450 | 1600 | 1202 | | 610 | 15 m/50 ft | 2300 | 2350 | 2450 | 2550 | 2750 | 3050 | 2357 | | 3000 | Ground Roll | 1300 | 1350 | 1400 | 1500 | 1650 | 1800 | 1342 | | 914 | 15 m/50 ft | 2500 | 2550 | 2600 | 2750 | 3000 | 3300 | 2514 | | 4000 | Ground Roll | 1450 | 1500 | 1550 | 1700 | 1850 | 2000 | 1471 | | 1219 | 15 m/50 ft | 2650 | 2700 | 2800 | 2950 | 3250 | 3550 | 2661 | | 5000 | Ground Roll | 1600 | 1650 | 1700 | 1850 | 2000 | | 1581 | | 1524 | 15 m/50 ft | 2750 | 2850 | 2900 | 3150 | 3450 | | 2789 | | 6000 | Ground Roll | 1700 | 1750 | 1800 | 2000 | 2200 | | 1681 | | 1829 | 15 m/50 ft | 2900 | 3000 | 3050 | 3350 | 3700 | | 2907 | | 7000 | Ground Roll | 1850 | 1900 | 2000 | 2200 | 2450 | | 1832 | | 2134 | 15 m/50 ft | 3100 | 3200 | 3300 | 3650 | 4000 | | 3085 | | 8000 | Ground Roll | 2150 | 2200 | 2350 | 2600 | 2850 | | 2108 | | 2438 | 15 m/50 ft | 3400 | 3500 | 3700 | 4100 | 4450 | | 3388 | | 9000 | Ground Roll | 2600 | 2700 | 2900 | 3150 | 3450 | | 2546 | | 2743 | 15 m/50 ft | 3900 | 4000 | 4300 | 4700 | 5150 | | 3847 | | 10000 | Ground Roll | 3150 | 3200 | 3500 | 3850 | | | 3064 | | 3048 | 15 m/50 ft | 4500 | 4600 | 4950 | 5450 | | | 4393 | | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 5 - 81 | |--| |--| Landing Distance - Abnormal Flap Position - 2300 kg/5071 lb Weight: 2300 kg/5071 lb Flaps: T/O or UP v_{REF}: 91 KIAS (Flaps T/O) Power: IDLE 95 KIAS (Flaps UP) | Distances are given in feet [ft] | | | | | | | | | | |----------------------------------|--------------------|--------------|---------------|---------------|---------------|--------------------|----------------|------|--| | Press. Alt. | | | Outside | Air Tem | perature | - [°C] /[°F |] | | | | [ft]/ [m] | | 0 /30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /130 | ISA | | | SL | Ground Roll | 1850 | 1900 | 2000 | 2050 | 2200 | 2450 | 1925 | | | JL . | 15 m/50 ft | 3050 | 3100 | 3200 | 3300 | 3550 | 3900 | 3133 | | | 1000 | Ground Roll | 1900 | 2000 | 2050 | 2100 | 2350 | 2550 | 1978 | | | 305 | 15 m/50 ft | 3100 | 3200 | 3300 | 3350 | 3700 | 4050 | 3205 | | | 2000 | Ground Roll | 2000 | 2050 | 2150 | 2250 | 2450 | 2700 | 2052 | | | 610 | 15 m/50 ft | 3200 | 3300 | 3400 | 3550 | 3900 | 4250 | 3297 | | | 3000 | Ground Roll | 2350 | 2400 | 2500 | 2650 | 2900 | 3200 | 2376 | | | 914 | 15 m/50 ft | 3550 | 3650 | 3800 | 4000 | 4350 | 4800 | 3640 | | | 4000 | Ground Roll | 2650 | 2750 | 2850 | 3050 | 3350 | 3700 | 2683 | | | 1219 | 15 m/50 ft | 3900 | 4000 | 4150 | 4400 | 4850 | 5300 | 3966 | | | 5000 | Ground Roll | 2900 | 3000 | 3100 | 3400 | 3750 | | 2946 | | | 1524 | 15 m/50 ft | 4200 | 4350 | 4450 | 4850 | 5300 | | 4248 | | | 6000 | Ground Roll | 3150 | 3250 | 3400 | 3750 | 4100 | | 3173 | | | 1829 | 15 m/50 ft | 4500 | 4600 | 4750 | 5200 | 5750 | | 4495 | | | 7000 | Ground Roll | 3500 | 3650 | 3800 | 4200 | 4650 | | 3508 | | | 2134 | 15 m/50 ft | 4850 | 5000 | 5200 | 5750 | 6300 | | 4851 | | | 8000 | Ground Roll | 4100 | 4250 | 4450 | 4950 | 5450 | | 4049 | | | 2438 | 15 m/50 ft | 5450 | 5600 | 5900 | 6500 | 7150 | | 5412 | | | 9000 | Ground Roll | 4900 | 5100 | 5450 | 6000 | 6600 | | 4836 | | | 2743 | 15 m/50 ft | 6300 | 6500 | 6950 | 7650 | 8350 | | 6230 | | | 10000 | Ground Roll | 6100 | 6300 | 6800 | 7500 | | | 5970 | | | 3048 | 15 m/50 ft | 7500 | 7750 | 8350 | 9200 | | | 7386 | | | Page 5 - 82 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| | | | | | Landing Distance - Abnormal Flap Position - 2200 kg/4850 lb Weight: 2200 kg/4850 lb Flaps: T/O or UP v_{REF}: 91 KIAS (Flaps T/O) Power: IDLE 95 KIAS (Flaps UP) | Distances are given in feet [ft] | | | | | | | | | | |----------------------------------|--------------------|---------|---------------|---------------|--------------------|----------------|----------------|------|--| | Press. Alt. | | Outside | Air Tem | perature | - [°C] /[°I | F] | | | | | [ft] /[m] | | 0/30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /130 | ISA | | | SL | Ground Roll | 1800 | 1850 | 1900 | 1950 | 2150 | 2350 | 1842 | | | J SL | 15 m/50 ft | 3000 | 3100 | 3150 | 3250 | 3500 | 3850 | 3098 | | | 1000 | Ground Roll | 1850 | 1900 | 1950 | 2050 | 2250 | 2450 | 1895 | | | 305 | 15 m/50 ft | 3100 | 3150 | 3250 | 3350 | 3650 | 4000 | 3169 | | | 2000 | Ground Roll | 1900 | 2000 | 2050 | 2150 | 2350 | 2600 | 1966 | | | 610 | 15 m/50 ft | 3200 | 3250 | 3350 | 3500 | 3850 | 4200 | 3260 | | | 3000 | Ground Roll | 2250 | 2300 | 2400 | 2500 | 2750 | 3050 | 2276 | | | 914 | 15 m/50 ft | 3500 | 3600 | 3700 | 3900 | 4300 | 4700 | 3589 | | | 4000 | Ground Roll | 2550 | 2600 | 2700 | 2900 | 3200 | 3500 | 2569 | | | 1219 | 15 m/50 ft | 3850 | 3950 | 4050 | 4350 | 4750 | 5200 | 3902 | | | 5000 | Ground Roll | 2800 | 2850 | 2950 | 3250 | 3600 | | 2820 | | | 1524 | 15 m/50 ft | 4150 | 4250 | 4350 | 4750 | 5200 | | 4173 | | | 6000 | Ground Roll | 3000 | 3100 | 3250 | 3550 | 3950 | | 3018 | | | 1829 | 15 m/50 ft | 4400 | 4500 | 4650 | 5100 | 5600 | | 4401 | | | 7000 | Ground Roll | 3350 | 3500 | 3650 | 4000 | 4400 | | 3351 | | | 2134 | 15 m/50 ft | 4750 | 4900 | 5100 | 5600 | 6150 | | 4754 | | | 8000 | Ground Roll | 3900 | 4050 | 4300 | 4750 | 5200 | | 3876 | | | 2438 | 15 m/50 ft | 5350 | 5500 | 5850 | 6450 | 7050 | | 5311 | | | 9000 | Ground Roll | 4750 | 4950 | 5300 | 5850 | 6400 | | 4684 | | | 2743 | 15 m/50 ft | 6250 | 6450 | 6900 | 7550 | 8250 | | 6150 | | | 10000 | Ground Roll | 5950 | 6100 | 6650 | 7300 | | | 5850 | | | 3048 | 15 m/50 ft | 7450 | 7650 | 8300 | 9100 | | | 7340 | | | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 5 - 8 | |---| |---| Landing Distance - Abnormal Flap Position - 2100 kg/4630 lb Weight: 2100 kg/4630 lb Flaps: T/O or UP v_{REF}: 91 KIAS (Flaps T/O) Power: IDLE 95 KIAS (Flaps UP) | | Distances are given in feet [ft] | | | | | | | | | | |------------------|----------------------------------|------|---------------|---------------|---------------|--------------------|----------------|------|--|--| | Press. Alt. | | | Outside | Air Tem | perature | - [°C] /[°F |] | | | | | [ft]/ [m] | | 0/30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /130 | ISA | | | | SL | Ground Roll | 1700 | 1750 | 1800 | 1850 | 2050 | 2250 | 1760 | | | | JL . | 15 m/50 ft | 2950 | 3050 | 3150 | 3200 | 3450 | 3800 | 3062 | | | | 1000 | Ground Roll | 1750 | 1800 | 1900 | 1950 | 2150 | 2350 | 1811 | | | | 305 | 15 m/50 ft | 3050 | 3150 | 3200 | 3300 | 3600 | 3950 | 3133 | | | | 2000 | Ground Roll | 1850 | 1900 | 1950 | 2050 | 2250 | 2500 | 1881 | | | | 610 | 15 m/50 ft | 3150 | 3250 | 3300 | 3450 | 3800 | 4150 | 3222 | | | | 3000 | Ground Roll | 2150 | 2200 | 2250 | 2400 | 2650 | 2900 | 2160 | | | | 914 | 15 m/50 ft | 3450 | 3550 | 3650 | 3850 | 4250 | 4650 | 3529 | | | | 4000 | Ground Roll | 2400 | 2500 | 2550 | 2750 | 3050 | 3350 | 2437 | | | | 1219 | 15 m/50 ft | 3750 | 3900 | 4000 | 4250 | 4700 | 5100 | 3828 | | | | 5000 |
Ground Roll | 2650 | 2750 | 2850 | 3100 | 3400 | | 2676 | | | | 1524 | 15 m/50 ft | 4050 | 4150 | 4300 | 4650 | 5100 | | 4087 | | | | 6000 | Ground Roll | 2900 | 2950 | 3050 | 3400 | 3700 | | 2886 | | | | 1829 | 15 m/50 ft | 4300 | 4400 | 4550 | 5000 | 5500 | | 4319 | | | | 7000 | Ground Roll | 3200 | 3300 | 3450 | 3850 | 4200 | | 3195 | | | | 2134 | 15 m/50 ft | 4650 | 4800 | 5000 | 5500 | 6050 | | 4659 | | | | 8000 | Ground Roll | 3750 | 3900 | 4100 | 4550 | 5000 | | 3729 | | | | 2438 | 15 m/50 ft | 5250 | 5400 | 5700 | 6300 | 6900 | | 5225 | | | | 9000 | Ground Roll | 4600 | 4800 | 5150 | 5650 | 6200 | | 4564 | | | | 2743 | 15 m/50 ft | 6150 | 6350 | 6800 | 7450 | 8150 | | 6093 | | | | 10000 | Ground Roll | 5850 | 6000 | 6550 | 7150 | | | 5715 | | | | 3048 | 15 m/50 ft | 7400 | 7650 | 8250 | 9050 | | | 7285 | | | | Page 5 - 84 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | | |-------------|--------|-------------|---------------------|--| | | | | | | Landing Distance - Abnormal Flap Position - 1999 kg/4407 lb Weight: 1999 kg/4407 lb Flaps: T/O or UP v_{REF}: 88 KIAS (Flaps T/O) 91 KIAS (Flaps UP) Runway: dry, paved, level Power: IDLE | Distances are given in feet [ft] | | | | | | | | | | |----------------------------------|--------------------|-------------------------------------|---------------|---------------|---------------|----------------|----------------|------|--| | Press. Alt. | | Outside Air Temperature - [°C]/[°F] | | | | | | | | | [ft] /[m] | | 0 /30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /130 | ISA | | | Q) | Ground Roll | 1600 | 1700 | 1750 | 1750 | 1950 | 2150 | 1680 | | | SL | 15 m/50 ft | 2800 | 2850 | 2950 | 3000 | 3250 | 3550 | 2883 | | | 1000 | Ground Roll | 1700 | 1750 | 1800 | 1850 | 2050 | 2250 | 1728 | | | 305 | 15 m/50 ft | 2850 | 2950 | 3000 | 3100 | 3400 | 3700 | 2949 | | | 2000 | Ground Roll | 1750 | 1800 | 1850 | 1950 | 2150 | 2350 | 1780 | | | 610 | 15 m/50 ft | 2950 | 3050 | 3100 | 3250 | 3550 | 3900 | 3026 | | | 3000 | Ground Roll | 2000 | 2100 | 2150 | 2300 | 2500 | 2750 | 2055 | | | 914 | 15 m/50 ft | 3250 | 3350 | 3450 | 3650 | 4000 | 4350 | 3320 | | | 4000 | Ground Roll | 2300 | 2350 | 2450 | 2650 | 2900 | 3150 | 2315 | | | 1219 | 15 m/50 ft | 3550 | 3650 | 3750 | 4000 | 4400 | 4800 | 3599 | | | 5000 | Ground Roll | 2500 | 2600 | 2700 | 2900 | 3200 | | 2538 | | | 1524 | 15 m/50 ft | 3800 | 3900 | 4050 | 4350 | 4800 | | 3842 | | | 6000 | Ground Roll | 2750 | 2850 | 2900 | 3200 | 3550 | | 2734 | | | 1829 | 15 m/50 ft | 4050 | 4150 | 4300 | 4700 | 5150 | | 4058 | | | 7000 | Ground Roll | 3050 | 3150 | 3300 | 3650 | 4000 | | 3031 | | | 2134 | 15 m/50 ft | 4400 | 4550 | 4700 | 5200 | 5700 | | 4383 | | | 8000 | Ground Roll | 3600 | 3700 | 3950 | 4400 | 4800 | | 3558 | | | 2438 | 15 m/50 ft | 5000 | 5150 | 5400 | 6000 | 6550 | | 4940 | | | 9000 | Ground Roll | 4450 | 4650 | 5000 | 5500 | 6000 | | 4423 | | | 2743 | 15 m/50 ft | 5900 | 6100 | 6500 | 7150 | 7800 | | 5827 | | | 10000 | Ground Roll | 5750 | 5900 | 6400 | 7000 | | | 5627 | | | 3048 | 15 m/50 ft | 7200 | 7350 | 8000 | 8750 | | | 7062 | | | Do | oc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 5 - 85 | | |----|--------------------|--------|-------------|-------------|--| | | | | | | | Landing Distance - Abnormal Flap Position - 1900 kg/4189 lb Weight: 1900 kg/4189 lb Flaps: T/O or UP v_{REF}: 88 KIAS (Flaps T/O) Power: IDLE 91 KIAS (Flaps UP) | Distances are given in feet [ft] | | | | | | | | | | |----------------------------------|-------------|--------------|---------------|---------------|---------------|--------------------|----------------|------|--| | Press. Alt. | | | Outside | Air Tem | perature | - [°C] /[°F |] | | | | [ft]/ [m] | | 0 /30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /130 | ISA | | | SL | Ground Roll | 1550 | 1600 | 1650 | 1700 | 1850 | 2000 | 1588 | | | 5 | 15 m/50 ft | 2750 | 2850 | 2900 | 3000 | 3200 | 3500 | 2842 | | | 1000 | Ground Roll | 1600 | 1650 | 1700 | 1750 | 1900 | 2100 | 1635 | | | 305 | 15 m/50 ft | 2850 | 2900 | 3000 | 3050 | 3350 | 3650 | 2907 | | | 2000 | Ground Roll | 1650 | 1700 | 1750 | 1850 | 2050 | 2250 | 1697 | | | 610 | 15 m/50 ft | 2900 | 3000 | 3100 | 3200 | 3500 | 3850 | 2989 | | | 3000 | Ground Roll | 1900 | 2000 | 2050 | 2150 | 2400 | 2600 | 1958 | | | 914 | 15 m/50 ft | 3200 | 3300 | 3400 | 3550 | 3900 | 4300 | 3269 | | | 4000 | Ground Roll | 2150 | 2250 | 2300 | 2500 | 2750 | 3000 | 2188 | | | 1219 | 15 m/50 ft | 3500 | 3600 | 3700 | 3950 | 4300 | 4700 | 3527 | | | 5000 | Ground Roll | 2400 | 2450 | 2550 | 2750 | 3050 | | 2399 | | | 1524 | 15 m/50 ft | 3700 | 3850 | 3950 | 4250 | 4700 | | 3758 | | | 6000 | Ground Roll | 2600 | 2650 | 2750 | 3050 | 3350 | | 2586 | | | 1829 | 15 m/50 ft | 3950 | 4050 | 4200 | 4600 | 5050 | | 3966 | | | 7000 | Ground Roll | 2900 | 3000 | 3100 | 3450 | 3800 | | 2881 | | | 2134 | 15 m/50 ft | 4300 | 4450 | 4600 | 5050 | 5550 | | 4291 | | | 8000 | Ground Roll | 3450 | 3550 | 3800 | 4150 | 4600 | | 3421 | | | 2438 | 15 m/50 ft | 4900 | 5050 | 5350 | 5850 | 6400 | | 4861 | | | 9000 | Ground Roll | 4350 | 4500 | 4800 | 5300 | 5800 | | 4275 | | | 2743 | 15 m/50 ft | 5850 | 6050 | 6450 | 7050 | 7700 | | 5755 | | | 10000 | Ground Roll | 5650 | 5800 | 6300 | 6850 | | | 5536 | | | 3048 | 15 m/50 ft | 7150 | 7350 | 7950 | 8700 | | | 7048 | | | | | | | ı | |-------------|--------|-------------|---------------------|---| | Page 5 - 86 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | ı | | | | | | 1 | Landing Distance - Abnormal Flap Position - 1800 kg/3968 lb Weight: 1800 kg/3968 lb Flaps: T/O or UP v_{REF}: 88 KIAS (Flaps T/O) Power: IDLE 91 KIAS (Flaps UP) | Distances are given in feet [ft] | | | | | | | | | | |----------------------------------|-------------|-------------------------------------|---------------|---------------|---------------|----------------|----------------|------|--| | Press. Alt. | | Outside Air Temperature - [°C]/[°F] | | | | | | | | | [ft]/ [m] | | 0/30 | 10 /50 | 20 /70 | 30 /90 | 40 /110 | 50 /130 | ISA | | | SL | Ground Roll | 1450 | 1500 | 1550 | 1600 | 1750 | 1900 | 1508 | | | 3L | 15 m/50 ft | 2700 | 2800 | 2850 | 2950 | 3200 | 3450 | 2805 | | | 1000 | Ground Roll | 1500 | 1550 | 1600 | 1650 | 1800 | 2000 | 1554 | | | 305 | 15 m/50 ft | 2800 | 2850 | 2950 | 3000 | 3300 | 3600 | 2870 | | | 2000 | Ground Roll | 1600 | 1600 | 1700 | 1750 | 1950 | 2100 | 1602 | | | 610 | 15 m/50 ft | 2900 | 2950 | 3050 | 3150 | 3450 | 3800 | 2945 | | | 3000 | Ground Roll | 1800 | 1900 | 1950 | 2050 | 2250 | 2450 | 1846 | | | 914 | 15 m/50 ft | 3150 | 3250 | 3350 | 3500 | 3850 | 4200 | 3210 | | | 4000 | Ground Roll | 2050 | 2100 | 2200 | 2350 | 2600 | 2850 | 2062 | | | 1219 | 15 m/50 ft | 3400 | 3500 | 3600 | 3850 | 4250 | 4650 | 3454 | | | 5000 | Ground Roll | 2250 | 2350 | 2400 | 2600 | 2850 | | 2261 | | | 1524 | 15 m/50 ft | 3650 | 3750 | 3850 | 4200 | 4600 | | 3674 | | | 6000 | Ground Roll | 2450 | 2500 | 2600 | 2850 | 3150 | | 2439 | | | 1829 | 15 m/50 ft | 3850 | 3950 | 4100 | 4500 | 4900 | | 3874 | | | 7000 | Ground Roll | 2750 | 2850 | 2950 | 3250 | 3600 | | 2713 | | | 2134 | 15 m/50 ft | 4200 | 4350 | 4500 | 4950 | 5450 | | 4186 | | | 8000 | Ground Roll | 3300 | 3400 | 3600 | 4000 | 4400 | | 3264 | | | 2438 | 15 m/50 ft | 4800 | 4950 | 5250 | 5750 | 6300 | | 4769 | | | 9000 | Ground Roll | 4200 | 4400 | 4650 | 5150 | 5600 | | 4137 | | | 2743 | 15 m/50 ft | 5750 | 5950 | 6350 | 7000 | 7650 | | 5691 | | | 10000 | Ground Roll | 5550 | 5700 | 6200 | 6750 | | | 5473 | | | 3048 | 15 m/50 ft | 7150 | 7350 | 7950 | 8700 | | | 7060 | | | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 5 - 87 | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 5 - 87 | |--|---------------------|--------|-------------|-------------| |--|---------------------|--------|-------------|-------------| # **5.3.13 GO-AROUND CLIMB PERFORMANCE** # Conditions: | - | Power lever | both MAX | |---|--------------|----------| | - | Flaps | LDG | | - | Landing gear | extended | | _ | Airspeed: | V | The climb performance charts show the rate of climb. The gradient and angle of climb can be calculated using the following formula: Gradient [%] = $$\frac{ROC[fpm]}{TAS[KTAS]} \cdot 0.98$$ ### **NOTE** The angles of climb at MSL and ISA condition are: 2.7 ° for Maximum Take-Off Mass (2300 kg/5071 lb) 4.3 ° for 1999 kg/4407 lb | Go-Around Climb Performance | | | | | | | | | | | | |-----------------------------|----------------|----------------|---------|----------|----------|----------|---------|-----------|--------|--------|-----| | Flaps: LDG | | | | | | | | Power | MAX | | | | V _{REF} : | 89 KIAS | | | | | | | | Gear: | extend | ded | | [0 | | | | | F | Rate of | Climb - | - [ft/miɪ | n] | | | | Weight [kg] /[lb] | Press.
Alt. | Press.
Alt. | | Out | tside A | r Temp | erature | e - [°C] | /[°F] | | | | Jht [i | [ft] | [m] | -20 | -10 | 0 | 10 | 20 | 30 | 40 | 50 | ISA | | Weig | | | -4 | 14 | 32 | 50 | 68 | 86 | 104 | 122 | | | | S | L | 460 | 445 | 435 | 420 | 395 | 355 | 310 | 240 | 413 | | | 2000 | 610 | 435 | 420 | 405 | 390 | 365 | 325 | 265 | 200 | 387 | | 071 | 4000 | 1219 | 405 | 390 | 370 | 355 | 325 | 280 | 220 | 150 | 360 | | 2300/507 | 6000 | 1829 | 370 | 355 | 335 | 320 | 285 | 230 | 170 | | 331 | | 23 | 8000 | 2438 | 335 | 315 | 300 | 275 | 225 | 165 | 95 | | 301 | | | 10000 | 3048 | 300 | 280 | 240 | 195 | 145 | 70 | | | 261 | | | S | L | 505 | 490 | 480 | 465 | 440 | 400 | 350 | 275 | 459 | | | 2000 | 610 | 480 | 465 | 450 | 435 | 410 | 365 | 305 | 240 | 432 | | 2200/ 4850 | 4000 | 1219 | 450 | 435 | 415 | 400 | 370 | 320 | 255 | 180 | 405 | | 00/4 | 6000 | 1829 | 415 | 400 | 380 | 365 | 330 | 270 | 205 | | 375 | | 72 |
8000 | 2438 | 380 | 360 | 345 | 320 | 265 | 200 | 130 | | 345 | | | 10000 | 3048 | 345 | 320 | 280 | 240 | 185 | 105 | | | 305 | | | S | L | 555 | 540 | 530 | 515 | 485 | 445 | 395 | 315 | 507 | | _ | 2000 | 610 | 530 | 515 | 500 | 480 | 455 | 410 | 350 | 275 | 480 | | 630 | 4000 | 1219 | 500 | 480 | 465 | 450 | 420 | 365 | 295 | 220 | 453 | | 2100 /4630 | 6000 | 1829 | 465 | 445 | 430 | 410 | 375 | 315 | 240 | | 423 | | 21(| 8000 | 2438 | 430 | 410 | 390 | 365 | 310 | 240 | 165 | | 392 | | | 10000 | 3048 | 390 | 370 | 325 | 280 | 225 | 140 | | | 351 | | | For t | he rate c | f climb | in [m/s] | divide l | oy 196.8 | 3 or mu | Itiply by | 0.0050 |)8. | | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 5 - 89 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| | | Go-Around Climb Performance | | | | | | | | | | | |--------------------|-----------------------------|--------------------------|---------|----------|----------|----------|---------|-----------|--------|--------|-----| | Flaps: | LDG | | | | | | | | Power | MAX | | | V _{REF} : | 84 KIAS | | | | | | | | Gear: | extend | ded | | [0 | | Rate of Climb - [ft/min] | | | | | | | | | | | Weight [kg]/[lb] | Press.
Alt. | Press.
Alt. | | Out | /[°F] | | | | | | | | ght [| [ft] | [m] | -20 | -10 | 0 | 10 | 20 | 30 | 40 | 50 | ISA | | Weig | | | -4 | 14 | 32 | 50 | 68 | 86 | 104 | 122 | | | | S | L | 675 | 660 | 650 | 640 | 615 | 575 | 525 | 440 | 633 | | | 2000 | 610 | 650 | 640 | 625 | 615 | 590 | 550 | 480 | 395 | 612 | | 407 | 4000 | 1219 | 625 | 615 | 600 | 585 | 555 | 500 | 425 | 335 | 589 | | 1999/4407 | 6000 | 1829 | 600 | 585 | 565 | 545 | 510 | 445 | 370 | | 559 | | 9 | 8000 | 2438 | 565 | 545 | 525 | 500 | 450 | 375 | 295 | | 528 | | | 10000 | 3048 | 525 | 505 | 465 | 425 | 370 | 280 | | | 489 | | | S | L | 735 | 720 | 710 | 695 | 670 | 630 | 575 | 485 | 691 | | | 2000 | 610 | 710 | 695 | 685 | 670 | 650 | 605 | 530 | 445 | 670 | | 1900 /4189 | 4000 | 1219 | 685 | 670 | 660 | 640 | 610 | 555 | 475 | 380 | 646 | | 00/4 | 6000 | 1829 | 660 | 640 | 620 | 605 | 570 | 495 | 415 | | 616 | | 19 | 8000 | 2438 | 620 | 600 | 585 | 555 | 505 | 425 | 340 | | 584 | | | 10000 | 3048 | 580 | 560 | 520 | 480 | 420 | 320 | | | 545 | | | S | L | 795 | 785 | 770 | 760 | 735 | 695 | 635 | 535 | 754 | | | 2000 | 610 | 775 | 760 | 745 | 735 | 710 | 665 | 585 | 490 | 733 | | 8968 | 4000 | 1219 | 750 | 735 | 720 | 705 | 670 | 610 | 525 | 425 | 709 | | 1800 /3968 | 6000 | 1829 | 720 | 705 | 685 | 665 | 630 | 550 | 465 | | 678 | | 180 | 8000 | 2438 | 685 | 665 | 645 | 615 | 560 | 475 | 385 | | 645 | | | 10000 | 3048 | 645 | 620 | 580 | 535 | 475 | 370 | | | 604 | | | For t | he rate o | f climb | in [m/s] | divide l | oy 196.8 | 8 or mu | ltiply by | 0.0050 |)8. | | | Page 5 - 90 Rev. 0 11-Jan-2019 | Doc. No. 11.01.05-E | |--------------------------------|---------------------| |--------------------------------|---------------------| #### **Performance** #### **5.3.14 APPROVED NOISE DATA** Max. Flight Mass 1999 kg (4407 lb) ICAO Annex 16 Chapter X, App.6..... 73.9 dB(A) Max. Flight Mass 2300 kg (5071 lb) ICAO Annex 16 Chapter X, App.6..... 77.5 dB(A) . Intentionally left blank. # CHAPTER 6 MASS AND BALANCE | | | Page | |-----|---|------| | 6.1 | INTRODUCTION | 6-2 | | 6.2 | DATUM PLANE | 6-3 | | 6.3 | MASS AND BALANCE REPORT | 6-4 | | 6.4 | FLIGHT MASS AND CENTER OF GRAVITY | 6-6 | | | 6.4.1 MOMENT ARMS | 6-9 | | | 6.4.2 LOADING DIAGRAMS | 6-10 | | | 6.4.3 CALCULATION OF LOADING CONDITION | 6-12 | | | 6.4.4 PERMISSIBLE CENTER OF GRAVITY RANGE | 6-15 | | | 6.4.5 PERMISSIBLE MOMENT RANGE | 6-17 | | 6.5 | EQUIPMENT LIST AND EQUIPMENT INVENTORY | 6-18 | #### 6.1 INTRODUCTION In order to achieve the performance and flight characteristics described in this Airplane Flight Manual and for safe flight operation, the airplane must be operated within the permissible mass and balance envelope. The pilot is responsible for adhering to the permissible values for loading and center of gravity (CG). In this, he should note the movement of the CG due to fuel consumption. The permissible CG range during flight is given in Chapter 2. The procedure for determining the flight mass CG position is described in this chapter. Additionally, a comprehensive list of the equipment approved for this airplane exists (Equipment List). The set of items marked as 'installed' constitutes the *Equipment Inventory*. Before the airplane is delivered, the empty mass and the corresponding CG position are determined and entered in Section 6.3 - MASS AND BALANCE REPORT. #### NOTE Following equipment changes, the new empty mass and the corresponding CG position must be determined by calculation or by weighing. Following repairs or repainting, the new empty mass and the corresponding CG position must be determined by weighing. Empty mass, empty mass CG position, and the empty mass moment must be certified in the Mass and Balance Report by authorized personnel. #### **NOTE** Refer to Section 1.6 - UNITS OF MEASUREMENT for conversion of SI units to US units and vice versa. #### 6.2 DATUM PLANE The Datum Plane (DP) is a plane which is normal to the airplane's longitudinal axis and in front of the airplane as seen from the direction of flight. The airplane's longitudinal axis is parallel with the floor of the nose baggage compartment. When the floor of the nose baggage compartment is aligned horizontally, the Datum Plane is vertical. The Datum Plane is located 2.196 meters (86.46 in) forward of the most forward point of the root rib on the stub wing. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 6 - 3 | |---------------------|--------|-------------|------------| |---------------------|--------|-------------|------------| #### 6.3 MASS AND BALANCE REPORT The empty mass and the corresponding CG position established before delivery are the first entries in the Mass and Balance Report. Every change in permanently installed equipment, and every repair to the airplane which affects the empty mass or the empty mass CG must be recorded in the Mass and Balance Report. For the calculation of flight mass and corresponding CG position (or moment), the *current* empty mass and the corresponding CG position (or moment) in accordance with the Mass and Balance Report must always be used. Condition of the airplane for establishing the empty mass: - Equipment as per Equipment Inventory (see Section 6.5) - Including the following operating fluids: ``` brake fluid ``` hydraulic fluid (for the retractable landing gear) engine oil $(2 \times 7 \text{ liters} = 2 \times 7.4 \text{ qts})$ coolant (2 x 7.5 liters = 2×7.93 qts) gearbox oil (2 x 2.1 liters = 2 x 2.22 qts) unusable fuel in main fuel tanks ($2 \times 1 \text{ US gal} = 2 \times 3.79 \text{ liters}$) unusable fuel in auxiliary fuel tanks (2 x 0.29 US gal = 2 x 1.1 liters) # MASS AND BALANCE REPORT | | pty | | Mo-
ment | | | | | | | | | | |---------------|-----------------|------------------|---|-----|---------------|--|--|--|--|--|--|--| | 0 | Current empty | mass | Mo-
ment
Arm | | | | | | | | | | | Page No.: | Cur | | Mass | | | | | | | | | | | | | (-) uc | Mo-
ment | | | | | | | | | | | ation: | SS | Subtraction (-) | Mo-
ment
Arm | | | | | | | | | | | Registration: | s in ma | Suk | Mass | | | | | | | | | | | | Changes in mass | (+) | Mo-
ment | | | | | | | | | | | lo.: | | Addition (+) | Mo-
ment
Arm | | | | | | | | | | | Serial No.: | | PΥ | Mass | | | | | | | | | | | | | : | Description
of part or
Modification | | Upon delivery | | | | | | | | | 52 | | ; | .:
0
V | OUT | | | | | | | | | | DA 62 | | | Entry No.: | Z | | | | | | | | | | | | | Date | | | | | | | | | | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 6 - 5 | |---------------------|--------|-------------|------------| |---------------------|--------|-------------|------------| #### 6.4 FLIGHT MASS AND CENTER OF GRAVITY The following information enables you to operate your DA 62 within the permissible mass and balance limits. For the calculation of the flight mass and the corresponding CG position, the following tables and diagrams are required: - 6.4.1 MOMENT ARMS - 6.4.2 LOADING DIAGRAM - 6.4.3 CALCULATION OF LOADING CONDITION - 6.4.4 PERMISSIBLE CENTER OF GRAVITY RANGE - 6.4.5 PERMISSIBLE MOMENT RANGE The diagrams should be used as follows: - 1. Take the empty mass and the empty mass moment of your airplane from the Mass and Balance Report, and enter the figures in the appropriate boxes under the column marked 'Your DA 62' in Table 6.4.3 CALCULATION OF LOADING CONDITION. - 2. Read the fuel quantity indicators to determine the fuel quantity in the main fuel tanks. - 3. Determine the fuel quantity in the auxiliary fuel tanks: If MÄM 62-254 is NOT installed: To verify an empty auxiliary fuel tank, set the ELECT. MASTER switch and the AUX PUMP switch to ON and check the PFD for the L/R AUX FUEL E caution message. To verify a full auxiliary fuel tank open the auxiliary fuel tank filler and check fuel level. If the auxiliary fuel tank quantity is in between empty and full, the exact quantity cannot be determined. If possible, transfer all fuel to the main fuel tank by setting the ELECT. MASTER switch and the AUX PUMP switch to ON until the L/R AUX FUEL E caution message appears on the PFD. During this procedure, ground power must be used or at least one engine must be running. The fuel transfer will take a maximum of 10 minutes. | Page 6 - 6 Rev. 0 11-Jan-2019 Doc. No. 11.01.05-E | |---| |---| #### **CAUTION** If the auxiliary tanks are in use, both tanks must be refueled to the maximum level to provide proper information to the pilot about the fuel quantity in the
auxiliary fuel tanks. If the auxiliary tanks are not in use, the pilot must ensure that they are empty. If MÄM 62-254 is installed: Set the ELECT. MASTER switch and the AUX PUMP switch to ON and read the auxiliary fuel tank quantities (LH and RH). #### **CAUTION** If the auxiliary fuel tank quantities are not displayed, the auxiliary fuel tanks must be operated as described under 'If MÄM 62-254 is NOT installed'. - 4. Multiply the individual masses by the moment arms quoted to obtain the moment for every item of loading and enter these moments in the appropriate boxes in Table 6.4.3 CALCULATION OF LOADING CONDITION. - 5. Add up the masses and moments in the respective columns. The CG position is calculated by dividing the total moment by the total mass (using row 11 for the condition with empty fuel tanks, and row 14 for the pre take-off condition). The resulting CG position must be inside the limits. As an illustration, the total mass and the CG position are entered on Diagram 6.4.4 - PERMISSIBLE CENTER OF GRAVITY RANGE. This checks graphically that the current configuration of the airplane is within the permissible range. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 6 - 7 | |---------------------|--------|-------------|------------| |---------------------|--------|-------------|------------| #### 6. Graphical method: Diagram 6.4.2 - LOADING DIAGRAM is used to determine the moments. The masses and moments for the individual items of loading are added. Then Diagram 6.4.5 - PERMISSIBLE MOMENT RANGE is used to check whether the total moment associated with the total mass is in the permissible range. The result found with the graphical method is however inaccurate. In doubtful cases the result must be verified using the exact method given above. # 6.4.1 MOMENT ARMS The most important lever arms aft of the Datum Plane: | | ltem | Leve | r Arm | | | |---------------------------|---|------|-------|--|--| | | item | [m] | [in] | | | | Occupants on f | Occupants on front seats | | | | | | Occupants on r | ear seats, row I | 3.25 | 128.0 | | | | Occupants on r installed) | Occupants on rear seats, row II (if OÄM 62-019 is installed) | | | | | | Fuel | in main tanks | 2.63 | 103.5 | | | | ruei | in auxiliary tanks | 3.20 | 126.0 | | | | De-Icing fluid | tank in LH nose baggage compartment | 0.90 | 35.4 | | | | | LH Nose baggage compartment | 0.47 | 18.5 | | | | | RH Nose baggage compartment | 0.05 | 2.0 | | | | | Rear baggage compartment (Section A, if OÄM 62-019 is NOT installed) | 4.06 | 159.8 | | | | Baggage in compartments | Rear baggage compartment (Sections B, C, D, if OÄM 62-019 is NOT installed) | 4.18 | 164.4 | | | | | Rear baggage compartment (Section E, if OÄM 62-019 is installed) | 4.41 | 173.6 | | | | | Rear baggage compartment (Section F, if OÄM 62-019 is installed) | 4.18 | 164.4 | | | | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 6 - 9 | |---| |---| #### 6.4.2 LOADING DIAGRAMS | Page 6 - 10 Rev. 0 11-Jan-2019 | Doc. No. 11.01.05-E | |--------------------------------|---------------------| |--------------------------------|---------------------| | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 | Page 6 - 11 | |--|-------------| |--|-------------| #### 6.4.3 CALCULATION OF LOADING CONDITION 1. Complete the form on the next page. 2. Divide the total moments from rows 11 and 14 by the related total mass to obtain the CG positions. In our example: empty tanks: 5003.65 kgm/2035 kg = 2.459 m 434,297 in.lb/4486 lb = 96.81 in with fuel in tanks: 5611.55 kgm/2241 kg = 2.504 m 487,061 in.lb/4940 lb = 98,60 in 3. Locate the values in the diagram in Section 6.4.4 - PERMISSIBLE CENTER OF GRAVITY RANGE. If the CG positions and related masses fall into the permitted area, the loading condition is allowable. Our example shows allowable loading conditions. #### **NOTE** If the optional de-icing system OÄM 62-002 is installed, the following must be observed: The consumption of fuel causes a forward movement of the CG. The consumption of de-icing fluid causes a rearward movement of the CG. Depending on the fuel flow and de-icing fluid flow, the overall movement of the CG can be a forward or a rearward movement. In order to cover all possible cases, the following table must be completed twice: with (as shown in the example) and without considering the on-board de-icing fluid. All four CG positions (fuel tank full/empty, de-icing fluid tank full/empty) must fall into the permitted area. | Page 6 - 12 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| | | | | | | | CALCULATION OF | | k 62
Imple) | You | ır DA 62 | |-----|---|----------------------|----------------------------|----------------------|----------------------------| | | LOADING CONDITION | Mass
[kg]
[lb] | Moment
[kgm]
[in.lb] | Mass
[kg]
[lb] | Moment
[kgm]
[in.lb] | | 1. | Empty mass (from Mass and Balance Report) | 1600
3528 | 3885.0
337,203 | | | | 2. | Front seats
Lever arm: 2.30 m (90.6 in) | 160
353 | 368.0
31,941 | | | | 3. | Passenger seats row I
Lever arm: 3.25 m (128.0 in) | 140
308 | 455.0 39,492 | | | | 4. | Passenger seats row II Lever arm: 4.15 m (163.4 in) | 60
132 | 249.0
21,612 | | | | 5. | LH Nose baggage compt.
Lever arm: 0.47 m (18.5 in) | 30
66 | 14.1 <i>1,224</i> | | | | 6. | RH Nose baggage compt.
Lever arm: 0.05 m (2.0 in) | 30
66 | 1.5
130 | | | | 7. | Rear baggage compt.
(Section A)
Lever arm: 4.06 m (159.8 in) | 0 | 0.0 | | | | 8. | Rear baggage compt.
(Sections B, C, D, F)
Lever arm: 4.18 m (164.5 in) | 0 | 0.0 | | | | 9. | Rear baggage compt.
(Section E)
Lever arm: 4.41 m (173.6 in) | 5
11 | 22.05
1,914 | | | | 10. | De-Icing fluid
(1.1 kg/L (9.02 lb/US gal))
Lever arm: 0.90 m (35.4 in) | 10
22 | 9.0
781 | | | | 11. | Total mass & total moment with empty fuel tanks (Total of 110.) | 2035
4486 | 5003.65
434,297 | | | | 12. | Usable fuel, main tanks (0.84 kg/liter) (7.01 lb/US gal) Lever arm: 2.63 m (103.5 in) | 90
198 | 236.7
20,545 | | | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 6 - 13 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| | CALCULATION OF | | | A 62
imple) | Your DA 62 | | | |----------------|---|----------------------|----------------------------|----------------------|----------------------------|--| | | LOADING CONDITION | Mass
[kg]
[lb] | Moment
[kgm]
[in.lb] | Mass
[kg]
[lb] | Moment
[kgm]
[in.lb] | | | 13. | Usable fuel, auxiliary tanks (if installed), (0.84 kg/liter) (7.01 lb/US gal) Lever arm: 3.2 m (126 in) | 116
256 | 371.2
32,219 | | | | | 14. | Total mass & total moment with fuel (Total of 11 13.) | 2241
4940 | 5611.55
487,061 | | | | The CG's shown in the following diagrams are those from the example in Section 6.4.3 - CALCULATION OF LOADING CONDITION, rows 11 and 14. | Page 6 - 14 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| | | | | | #### **6.4.4 PERMISSIBLE CENTER OF GRAVITY RANGE** | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 6 - 15 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| The flight CG position must be within the following limits: #### Most forward flight CG: - 2.340 m (92.13 in) aft of datum plane at 1600 kg (3527 lb) to 1800 kg (3968 lb) - 2.460 m (96.85 in) aft of datum plane at max. take-off mass (see Section 2.7) linear variation in between #### Most rearward flight CG: - 2.460 m (96.85 in) aft of datum plane at 1600 kg (3527 lb) - 2.510 m (98.82 in) aft of datum plane at 1900 kg (4189 lb) to 1999 kg (4407 lb) - 2.530 m (99.61 in) aft of datum plane at MTOM linear variation in between #### **6.4.5 PERMISSIBLE MOMENT RANGE** The flight mass moments shown in the diagram are those from the example in Table 6.4.3 - CALCULATION OF LOADING CONDITION, rows 11 and 14. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 6 - 17 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| # 6.5 EQUIPMENT LIST AND EQUIPMENT INVENTORY All equipment that is approved for installation in the DA 62 is shown in the *Equipment List* below. #### **NOTE** The equipment listed below cannot be installed in any arbitrary combination. The airplane manufacturer must be contacted before removing or installing equipment, with the exception of replacing a unit by an identical unit. The items of equipment installed in your particular airplane are indicated in the appropriate column. The set of items marked as 'installed' constitutes the *Equipment Inventory*. | Airplane Serial No.: | | Registration | istration: Date: Mass Le | | Lever | Arm | | | | |-----------------------------|----------|--------------|--------------------------|-----|-----------|-----|----|----|---| | Description | Туре | Part No. | Manufacturer | S/N | installed | lb | kg | in | m | | AVIONICS COOLING | | | | | | | | | | | Avionics cooling fan # 1 | SAFE 328 | 305 467-00 | Sandia Aerospace | | | | | | | | Avionics cooling fan # 2 | SAFE 328 | 305 467-00 | Sandia Aerospace | | | | | | | | PFD cooling fan | SAFE 128 | 305 468-00 | Sandia Aerospace | | | | | | | | MFD cooling fan | SAFE 128 | 305 468-00 | Sandia Aerospace | | | | | | | | AUTOPILOT SYSTEM | | | | | | | | |
 | Pitch servo | GSA 81 | 011-00878-20 | Garmin | | | | | | | | Pitch servo mount | GSM 86 | 011-01904-03 | Garmin | | | | | | | | Pitch clutch cartridge | | 011-02147-11 | Garmin | | | | | | | | Roll servo | GSA 81 | 011-00878-20 | Garmin | | | | | | | | Roll servo mount | GSM 86 | 011-01904-03 | Garmin | | | | | | | | Roll clutch cartridge | | 011-02147-09 | Garmin | | | | | | | | Pitch trim servo | GSA 81 | 011-00878-20 | Garmin | | | | | | | | Pitch trim servo mount | GSM 86 | 011-01904-03 | Garmin | | | | | | | | Pitch trim clutch cartridge | | 011-02147-09 | Garmin | | | | | | | | Yaw servo | GSA 80 | 011-00877-20 | Garmin | | | | | | | | Yaw servo mount | GSM 86 | 011-01904-03 | Garmin | | | | | | | | Yaw clutch cartridge | | 011-02147-03 | Garmin | Airplane Serial No.: | | Registration: | | Date: | | Ma | ISS | Lever | Arm | |--|------------|------------------|---------------------|-------|-----------|-------|------|-------|------| | Description | Туре | Part No. | Manufacturer | S/N | installed | lb | kg | in | m | | ELECTRICAL POWER | | | | | | | | | | | Main battery | RG24-15 | | Concorde | | | | | | | | Emergency battery | | D60-2560-91-00 | Diamond Aircraft | | | | | | | | ECU backup battery LH (2 pcs.) | LC-R127R2P | | Panasonic | | | | | | | | ECU backup battery RH (2 pcs.) | LC-R127R2P | | Panasonic | | | | | | | | Additional Alternator | | ES-10024B-2 | Kelly Aerospace | | | | | | | | Alternator Pulley | | D64-2416-00-761 | Diamond Aircraft | | | | | | | | Gear Box Fan Assy | | D44-2416-20-00 | Diamond Aircraft | | | | | | | | Prop. Flange Pulley Support | | D44-2416-00-52_1 | Diamond Aircraft | | | | | | | | Additional Alternator V-belt | | ISO 4184 XPZL987 | Diamond Aircraft | | | | | | | | Additional Alternator Regulator | | VR2000_28-1 | Electrosystems Inc. | | | | | | | | OXYGEN SYSTEM | | | | | | | | | | | Oxygen cylinder (empty) incl. pressure regulator | | 4110-122-3-11 | Aerox | | | 13.76 | 6.24 | 31.9 | 0.81 | | Oxygen cylinder 50 cuft (empty) incl. pressure regulator | | 4110-136-02-5 | Aerox | | | 8.60 | 3.90 | 27.8 | 0.70 | | Single outlet manifold, Pax row I | | 4110-401-2-01 | Aerox | | | 0.22 | 0.10 | 111.0 | 2.82 | | Double outlet manifold, Pilot / copilot | | 4110-400-2 | Aerox | | | 0.42 | 0.19 | 103.9 | 2.64 | | Double outlet manifold, Pax Row I | | 4110-400-2 | Aerox | | | 0.42 | 0.19 | 111.0 | 2.82 | | Double outlet manifold, Pax Row II | | 4110-400-2 | Aerox | | | 0.42 | 0.19 | 153.5 | 3.90 | | Filling block | | 4110-405-2 | Aerox | | | 0.46 | 0.21 | 16.5 | 0.42 | | Pressure gauge | | 4110-486 | Aerox | | | 0.11 | 0.05 | 66.9 | 1.70 | | Push / pull control knob | | 4110-495 | Aerox | | | 0.27 | 0.12 | 66.1 | 1.68 | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 6 - 20 | |---------------------|--------|-------------|-------------| | | | | | | Airplane Serial No.: | | Registration |): | Date: | | Mass | | Lever Arm | | |-------------------------------|----------------|----------------|--------------------|-------|-----------|-------|-------|-----------|-------| | Description | Туре | Part No. | Manufacturer | S/N | installed | lb | kg | in | m | | CABIN COOLING SYSTEM | | | | | | | | | | | Cabin cooling central unit | | D44-2153-00-00 | Diamond Aircraft | | | 47.8 | 21.7 | 194.9 | 4.95 | | EQUIPMENT | | | | | | | | | | | · | 5.04.0.0.: | 5.04.0\(0.7(\) | 0.1. " | | | 0.440 | 0.000 | 00.500 | 0.050 | | Safety belt, pilot | 5-01-() Series | 5-01-2Y07() | Schroth | | | 2.110 | 0.960 | 92.520 | 2.350 | | Safety belt, co-pilot | 5-01-() Series | 5-01-2Y57() | Schroth | | | 2.110 | 0.960 | 92.520 | 2.350 | | Safety belt, LH pax row I | 5-02-() Series | 5-02-BJ57() | Schroth | | | 2.250 | 1.020 | 126.800 | 3.220 | | Safety belt, RH pax row I | 5-02-() Series | 5-02-BK57() | Schroth | | | 2.250 | 1.020 | 126.800 | 3.220 | | Safety belt, Center pax row I | 5-02-() Series | 5-02-BL57() | Schroth | | | 2.250 | 1.020 | 126.800 | 3.220 | | Safety belt, LH pax row II | 5-02-() Series | 5-02-BP57() | Schroth | | | 2.250 | 1.020 | 126.800 | 3.220 | | Safety belt, RH pax row II | 5-02-() Series | 5-02-BP07() | Schroth | | | 2.250 | 1.020 | 126.800 | 3.220 | | ELT unit | 406 AF-Compact | S1840501-01 | Kannad | | | 1.874 | 0.874 | 179.700 | 4.565 | | ELT remote switch | RC 200 | S1820513-11 | Kannad | | | | | | | | ELT antenna | ANT300 | 0124220 | Kannad | | | 0.330 | 0.150 | 152.800 | 3.880 | | ELT antenna | AV-300 | 0146151 | Kannad | | | | | | | | SAFETY EQUIPMENT | | | | | | | | | | | Fire extinguisher | | HAL 1 | AIR TOTAL | | | | | | | | Fire extinguisher | | HAL 1,2 | AIR TOTAL | | | | | | | | First aid kit | | | | | | | | | | | Egress Hammer | | D67-2560-80-50 | Diamond | | | | | | | | Belt Cutter | | D67-9025-60-01 | Woodway / Dhelen | | | | | | | | | | | | | | | | | | | FLIGHT CONTROLS | | | | | | | | | | | Lift detector | | C-99701-1 | Safe Flight Instr. | | | | | | | | | | | | | | | | | | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 6 - 21 | Airplane Serial No.: | | Registration: | | Date: | | M | ass | Lever Arm | | |---|----------|--|------------------------------------|-------|-----------|----|-----|-----------|--| | Description | Туре | Part No. | Manufacturer | S/N | installed | lb | kg | in | m | | | | | | | | | | | | | HYDRAULIC | | V44 0004 00 00 00/A | 11 1 12 14 | | | | | | | | Motor pump unit | | X11-0001-00-00.00/A | Hydraulik Mayer | | | | | | | | Hydraulic fluid tank | | X11-0002-00-00.00
X11-0003-00-00.00/A | Hydraulik Mayer | | | | 1 | | | | Hydraulic control unit High pressure filter | | X11-0003-00-00.00/A
X11-0004-00-00.00 | Hydraulik Mayer
Hydraulik Mayer | | | | | | + | | Hydraulic pressure accumulator | | X11-0004-00-00.00 | Hydraulik Mayer | | | | | | † | | MLG hydraulic cylinder, LH | | X11-0006-00-
00.00/1R0 | Hydraulik Mayer | | | | | | | | MLG hydraulic cylinder, RH | | X11-0006-00-
00.00/1R0 | Hydraulik Mayer | | | | | | | | NLG hydraulic cylinder | | X11-0006-00-00.00/3 | Hydraulik Mayer | | | | | | | | Brake master cylinder (4 pcs.) | | 10-54A | Cleveland | | | | | | | | Parking valve | | 60-5D | Cleveland | | | | | | | | Brake assembly | | 30-233 E | Cleveland | | | | | | | | | | | | | | | | | | | INDICATING / REC. SYSTEM | | | | | | | | | | | Primary flight display (PFD) | GDU 1040 | 011-00972-03 | Garmin | | | | | | | | Multi function display (MFD) | GDU 1045 | 011-00819-04 | Garmin | | | | | | | | Primary flight display (PFD) | GDU 1040 | 011-00972-10 | Garmin | | | | | | | | Multi function display (MFD) | GDU 1045 | 011-00819-10 | Garmin | | | | | | | | Primary flight display (PFD) | GDU 1050 | 011-03470-00 | Garmin | | | | | | | | Multi function display (MFD) | GDU 1055 | 011-03470-80 | Garmin | | | | | | | | Control unit | GCU 476 | 011-01237-10 | Garmin | | | | | | | | Control unit | GCU 476 | 011-04476-00 | Garmin | Page 6 - 22 | 11-Jan-2019 | Rev. 0 | Doc. No. 11.01.05-E | |-------------|-------------|--------|---------------------| |-------------|-------------|--------|---------------------| | Airplane Serial No.: | | Registration: | Registration: | | | Ma | ass | Levei | r Arm | |-------------------------------|-----------|--------------------|------------------|-----|-----------|----|-----|-------|-------| | Description | Туре | Part No. | Manufacturer | S/N | installed | lb | kg | in | m | | LANDING GEAR | | | | | | | | | | | Main landing gear LH | | D67-3211-01-00 | Diamond Aircraft | | | | | | | | Main landing gear RH | | D64-3212-01-00 | Diamond Aircraft | | | | | | | | Nose landing gear assy | | D67-3220-01-00_01 | Diamond Aircraft | | | | | | | | Nose landing gear assy | | D67-3220-01-00_02 | Diamond Aircraft | | | | | | | | LIGHTS | | | | | | | | | | | Area Dome light | | CL 13 625-1 | Birk Aerosystems | | | | | | | | Strobe / Pos. light assy LH | | D67-5731-29-01 | Birk Aerosystems | | | | | | | | Strobe / Pos. light assy RH | | D67-5732-29-01 | Birk Aerosystems | | | | | | | | Map / Reading lights (4 pcs.) | | RL6961-1 | Birk Aerosystems | | | | | | | | Cabin Light | | RL6980-1 | Birk Aerosystems | | | | | | | | Taxi light | Xenon D1S | | Aero Vision Int. | | | | | | | | Taxi light power supply | | XV4D-35 | XeVision | | | | | | | | Landing light | Xenon D1S | | Aero Vision Int. | | | | | | | | Landing light power supply | | XV4D-35 | XeVision | | | | | | | | Glareshield lamp assy | | DA4-3311-10-02 | Diamond Aircraft | | | | | | | | Glareshield light inverter | | APVL328-4-1-L-5QF | Quantaflex | | | | | | | | Placards inverter | | APVL328-4-1-L-15QF | Quantaflex | | | | | | | | Flood light LH | | D67-3311-10-01 | Diamond Aircraft | | | | | | | | Flood light RH | | D67-3311-10-02 | Diamond Aircraft | | | | | | | | Map / Reading Light | | RL6980-1 | Birk Aerosystems | - | Airplane Serial No.: | | Registration: | egistration: | | | Ma | ass | Lever | · Arm | |--|-------------|------------------|----------------------|-----|-----------|----|-----|-------|-------| | Description | Туре | Part No. | Manufacturer | S/N | installed | lb | kg | in | m | | COMMUNICATION / NAVIGATION | | | | | | | | | | | COMM #1 antenna | CI 2580-200 | | Comant | | | | | | | | COMM #2 antenna | CI 292-2 | | Comant | | | | | | | | Audio panel / Marker / ICS | GMA 1347 | 011-00809-00 | Garmin | | | | | | | | Handmic | 100 TRA | 62800-001 | Telex | | | | | | | | Pitot / Static probe, heated | AN5814-2 |
PST-305 | Aeroinstruments | | | | | | | | Static port electrically heated LH/RH | | ST-333-1 | Aerosonic | | | | | | | | Alternate static valve | | DA4-3111-51-00 | Diamond Aircraft | | | | | | | | Backup altimeter | | 5934PD-3 | United Instruments | | | | | | | | Backup airspeed indicator | 8030 | 8030-B. | United Instruments | | | | | | | | Backup artificial horizon | 4300 | 4300-206 | Mid Continent Instr. | | | | | | | | Standby Attitude Module | MD302 | 6420302-1 | Mid Continent Instr | | | | | | | | Magnetic compass | | PG2C-28V | SIRS Navigation | | | | | | | | Magnetic compass | | NV2C-28V | SIRS Navigation | | | | | | | | OAT probe | GTP 59 | 011-00978-00 | Garmin | | | | | | | | Digital air data system | GDC74A | 011-00882-00 | Garmin | | | | | | | | Digital air data system | GDC 74A | 011-00882-10 | Garmin | | | | | | | | Digital air data system | GDC 72 | 011-03734-00 | Garmin | | | | | | | | Integrated avionics #1 | GIA 63 W | 011-01105-20 | Garmin | | | | | | | | Integrated avionics #2 | GIA 63 W | 011-01105-20 | Garmin | | | | | | | | Integrated avionics #1 | GIA 63W | 011-01105-01 | Garmin | | | | | | | | Integrated avionics #2 | GIA 63W | 011-01105-01 | Garmin | | | | | | | | Transponder | GTX 33 ES | 011-00779-30 | Garmin | | | | | | | | Transponder | GTX 335 R | 011-03301-00 | Garmin | | | | | | | | Attitude / Heading reference system GRS 77 | GRS 77 | 011-00868-10 | Garmin | | | | | | | | Attitude / Heading reference system | GRS 79 | 011-03732-00 | Garmin | | | | | | | | TAS processor | TAS 600 | 70-2420-x TAS600 | Avidyne | | | | | | | | Airplane Serial No.: | | Registration: | | Date: | | M | ass | Leve | r Arm | |-----------------------------|-------------|------------------|--------------------|-------|-----------|----|-----|------|-------| | Description | Туре | Part No. | Manufacturer | S/N | installed | lb | kg | in | m | | TAS processor | TAS 605 | 70-2420-x TAS605 | Avidyne | | | | | | | | TAS processor | TAS 610 | 70-2420-x TAS610 | Avidyne | | | | | | | | TAS processor | TAS 615 | 70-2420-x TAS615 | Avidyne | | | | | | | | TAS processor | TAS 620 | 70-2420-x TAS620 | Avidyne | | | | | | | | TAS processor | 9900BX | 70-2420-x | Avidyne | | | | | | | | Transponder coupler | | 70-2040 | Avidyne | | | | | | | | TAS antenna, top | | S72-1750-31L | Sensor Systems | | | | | | | | TAS antenna, bottom | | S72-1750-32L | Sensor Systems | | | | | | | | Magnetometer | GMU 44 | 011-00870-00 | Garmin | | | | | | | | Magnetometer | GMU 44 | 011-00870-10 | Garmin | | | | | | | | Dual VOR / dual GS duplexer | CI 1125 | | Comant | | | | | | | | LH: VOR / LOC / GS antenna | CI120-1 | | Comant | | | | | | | | RH: VOR / LOC / GS antenna | CI120-1 | | Comant | | | | | | | | VOR / LOC / GS PWR combiner | CI120-3 | | Comant | | | | | | | | Transponder antenna | KA 61 | 071-00221-0010 | Bendix/King | | | | | | | | Marker antenna | CI 102 | | Comant | | | | | | | | GPS #1 antenna | GA 36 | 013-00244-00 | Garmin | | | | | | | | GPS #2 antenna | CI 2580-200 | | Comant | | | | | | | | DME | KN 63 | 066-1070-01 | Bendix/King | | | | | | | | DME antenna | KA 61 | 071-00221-0010 | Bendix/King | | | | | | | | Weather radar | GWX 70 | 011-01768-00 | Garmin | | | | | | | | Weather radar antenna | | 117-00254-00 | Garmin | | | | | | | | Stormscope | WX-500 | 805-11500-001 | L-3 Communications | | | | | | | | Stormscope antenna | NY-163 | 805-10930-001 | L-3 Communications | | | | | | | | Satellite Transceiver | GSR 56 | 011-02268-00 | Garmin | | | | | | | | Iridium Antenna | CI 490-1 | | Comant | | | | | | | | Iridium Antenna | CI 490-490 | | Comant | | | | | | | | Airplane Serial No.: | | Registration: | | Date: | | Ма | iss | Lever | Arm | |--|--------------|-------------------|------------------|-------|-----------|------|------|-------|------| | Description | Туре | Part No. | Manufacturer | S/N | installed | lb | kg | in | m | | ADF receiver | RA 3502-(01) | 0505.757-912 | Becker | | | | | | | | ADF / RMI converter | AC 3504-(01) | 0856.010-912 | Becker | | | | | | | | ADF antenna | AN 3500 | 0832.601-912 | Becker | | | | | | | | EMI filter LH | | D64-3454-10-00 | Diamond Aircraft | | | | | | | | EMI filter RH | | D64-3454-10-00 | Diamond Aircraft | | | | | | | | ICE PROTECTION SYSTEM | | | | + | | | | | | | Porous Panel, outer wing, LH, outboard | | 15502-01 | CAV Aerospace | | | | | | | | Porous Panel, outer wing, RH, outboard | | 15502-02 | CAV Aerospace | | | | | | | | Porous Panel, outer wing, LH, inboard | | 15502-03 | CAV Aerospace | | | | | | | | Porous Panel, outer wing, RH, inboard | | 15502-04 | CAV Aerospace | | | | | | | | Porous Panel, horizontal tail, LH | | 15502-09 | CAV Aerospace | | | | | | | | Porous Panel, horizontal tail, RH | | 15502-10 | CAV Aerospace | | | | | | | | Porous Panel, vertical tail | | 15502-11 | CAV Aerospace | | | | | | | | Inlet strainer | | D67-9030-03-01_01 | FTEU | | | | | | | | Spray bar | | 12124-10 | CAV Aerospace | | | | | | | | Metering pump 1 | | 9513T-1 | CAV Aerospace | | | 4.16 | 1.89 | 41.5 | 1.05 | | Metering pump 2 | | 9513U-1 | CAV Aerospace | | | 4.16 | 1.89 | 35.7 | 0.91 | | De-icing fluid tank | | D67-3003-13-01 | Diamond Aircraft | | | 7.72 | 3.50 | 37.4 | 0.95 | | Fluid filter | | F932 | Diamond Aircraft | | | 1.83 | 0.83 | 45.3 | 1.15 | | Solenoid valve | | FV158H-28V | CAV Aerospace | | | 0.86 | 0.39 | 30.7 | 0.87 | | High pressure switch | | P041ED 1500 | CAV Aerospace | | | | | | | | Proportioning unit, nacelle, LH | | PU303DW225 | CAV Aerospace | | | | | | | | Proportioning unit, nacelle, RH | | PU303DW226 | CAV Aerospace | | | | | | | | Tail bracket assembly | | 15532-01 | CAV Aerospace | | | 1.37 | 0.62 | 292.8 | 7.44 | | Windshield pump | | WP209A | CAV Aerospace | | | 0.66 | 0.30 | 34.80 | 0.89 | | De-ice control box | | DAI-9030-00-01 | Diamond Aircraft | | | | | | | | | | | | | | | | | | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 6 - 26 | |---------------------|--------|-------------|-------------| | | | | | | Airplane Serial No.: | | Registration: | Registration: | | | M | ass | Leve | r Arm | |------------------------------|------------|---|------------------------|-----|---------------|----|-----|------|-------| | Description | Туре | Part No. | Manufacturer | S/N | installed | lb | kg | in | m | | ENGINE | | | | | | | | | | | LH engine | E4P-C | E4PC-00-000-000 | Austro Engine | | | | | | | | RH engine | E4P-C | E4PC-00-000-000 | Austro Engine | | | | | | | | LH engine control unit | EECU-E4-01 | E4A-92-100-000 | Austro Engine | | | | | | | | RH engine control unit | EECU-E4-01 | E4A-92-100-000 | Austro Engine | | | | | | | | ECU software | | Refer to DAI Service
Bulletin MSB-62-002,
latest revision | Austro Engine | | | | | | | | ENOWE OTARTINO | | | | | | | | | | | ENGINE STARTING | | E44 04 000 000 | Accetos Foreiros | _ | \rightarrow | | | | | | Glow plug control unit LH/RH | | E4A-94-200-000 | Austro Engine | | _ | | | | | | Starter LH / RH | | E4A-93-000-000 | Austro Engine | | | | 1 | | | | ELECTRICAL POWER | | | | | | | | | | | LH alternator | | E4A-91-400-000 | Austro Engine | | | | | | | | RH alternator | | E4A-91-400-000 | Austro Engine | | | | | | | | LH alternator regulator | | E4A-91-200-000 | Austro Engine | | | | | | | | RH alternator regulator | | E4A-91-200-000 | Austro Engine | | | | | | | | ENGINE FUEL PUMPS | | | | | | | | | | | LH fuel pumps (2x) | | 0-580-054-001 | Bosch | | | | | | | | RH fuel pumps (2x) | | 0-580-054-001 | Bosch | | | | | | | | | | | | | | | | | | | ENGINE FIRE WARNING | | | | | | | | | | | LH overheat detector | | X 2003-2 | Control Products, Inc. | | | | | | | | RH overheat detector | | X 2003-2 | Control Products, Inc. | | | | | | | | LH overheat detector | | X 2003-506 | Control Products, Inc. | | | | | | | | RH overheat detector | | X 2003-506 | Control Products, Inc. | | | | | | _ | | ENGINE INDICATING | | | | | | | | | | | Engine / Airframe unit | GEA 71 | 011-00831-00 | Garmin | | | | † | | | | - | | | | | | | | | | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 6 - 27 | |---------------------|--------|-------------|-------------| | | | | Ĭ | | Airplane Serial No.: | | Registration: | | Date: | | M | ass | Leve | r Arm | |----------------------------------|--------------------------|-------------------|------------------|-------|-----------|----|-----|------|--------------| | Description | Туре | Part No. | Manufacturer | S/N | installed | lb | kg | in | m | | ENGINE EXHAUST | | | | | | | | | | | LH Exhaust pipe with muffler | | D67-7806-01-00 | Diamond Aircraft | | | | | | | | RH Exhaust pipe with muffler | | D67-7806-01-00 | Diamond Aircraft | | | | | | <u> </u> | | PROPELLER | | | | | | | | | 1 | | Propeller LH | MTV-6-R-C-
F/CF194-80 | | mt-propeller | | | | | | | | Propeller RH | MTV-6-R-C-
F/CF194-80 | | mt-propeller | | | | | | | | Unfeathering accumulator LH | | X11-0007-00-00 | Hydraulik Mayer | | | | | | | | Unfeathering accumulator RH | | X11-0007-00-00 | Hydraulik Mayer | | | | | | | | Unfeathering accumulator LH | | P-893-3 | mt-propeller | | | | | | | | Unfeathering accumulator RH | | P-893-3 | mt-propeller | | | | | | | | Governor LH | | P-877-16 | mt-propeller | | | | | | | | Governor RH | | P-877-16 | mt-propeller | | | | | | | | FUEL TANK SYSTEM | | | 1 | | | | | | - | | Fuel probe assy., LH inboard | | D60-2817-13-00_1 | Diamond Aircraft | | | | | | | | Fuel probe assy., RH inboard | | D60-2817-13-00_1 | Diamond Aircraft | | | | | | | | Fuel probe assy., LH outboard | | D60-2817-14-00_1 | Diamond Aircraft | | | | | | | | Fuel probe assy., RH outboard | | D60-2817-14-00_1 | Diamond Aircraft | | | | | | | | Alternate means for fuel qty. | | D60-2817-90-00 | Diamond Aircraft | | | | | | | | Alternate means for fuel qty. II | | D60-2817-90-00_01 | Diamond Aircraft | | | | | | | | AUX FUEL SYSTEM | | | | | | | | | 1 | | LH auxiliary fuel
pump | | PX375-TC-28V-G2 | Adair | | | | | | 1 | | RH auxiliary fuel pump | | PX375-TC-28V-G2 | Adair | | | | | | | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 6 - 28 | |---------------------|--------|-------------|-------------| | | | | | #### **Mass and Balance** | Airplane Serial No.: | | Registration: | Registration: | | Date: | | Mass | | Lever Arm | | |------------------------|------|---------------------|------------------|-----|-----------|----|------|----|-----------|--| | Description | Туре | Part No. | Manufacturer | S/N | installed | lb | kg | in | m | | | LH fuel inline filter | | FX375-MK | Adair | | | | | | | | | RH fuel inline filter | | FX375-MK | Adair | | | | | | | | | LH solenoid valve | | VE 131,4 GV | Parker | | | | | | | | | RH solenoid valve | | VE 131,4 GV | Parker | | | | | | | | | Aux tank fuel probe | | D67-2814-70-00 | Diamond Aircraft | AIRPLANE FLIGHT MANUAL | | Doc. No. 11.01.05-E | Diamond Aircraft | | | | | | | | | Place: | Date: | Signature: | |--------|-------|------------| # CHAPTER 7 DESCRIPTION OF THE AIRPLANE AND ITS SYSTEMS | | | | | Page | |------|------------|--------------|--------------------------|------------| | 7.1 | INTRODU | CTION | | 7-3 | | 7.2 | AIRFRAM | E | | 7-3 | | 7.3 | FLIGHT C | ONTROLS | | 7-4 | | 7.4 | INSTRUM | ENT PANEL . | | 7-11 | | 7.5 | LANDING | GEAR | | 7-13 | | 7.6 | SEATS AN | ND SAFETY H | ARNESSES | 7-19 | | 7.7 | BAGGAGF | E COMPARTM | 1ENTS | 7-21 | | | 7.7.1 NOS | E BAGGAGE | COMPARTMENTS | 7-21 | | | 7.7.2 REA | R BAGGAGE | COMPARTMENT | 7-21 | | 7.8 | FRONT DO | OORS, REAR | DOOR AND CABIN INTERIOR | 7-27 | | 7.9 | POWER P | 'LANT | | 7-31 | | | 7.9.1 ENC | ∃INES, GENEF | RAL | 7-31 | | | 7.9.2 PRC |)PELLER | | 7-32 | | | 7.9.3 OPE | ERATING CON | NTROLS | 7-35 | | | 7.9.4 ENC | SINE INSTRUM | MENTS | 7-39 | | | 7.9.5 FUE | EL SYSTEM | | 7-42 | | | 7.9.6 COC | OLING SYSTE | M | 7-58 | | | 7.9.7 OIL | SYSTEMS | | 7-59 | | | 7.9.8 TUF | ₹BO-CHARGE | R SYSTEM | 7-60 | | | 7.9.9 FIRE | E DETECTION | NSYSTEM | 7-61 | | 7.10 | ELECTRIC | CAL SYSTEM. | | 7-62 | | | 7.10.1 GE | NERAL | | 7-63 | | | 7.10.2 EL | ECTRONIC EI | NGINE CONTROL UNIT/ECU . | 7-69 | | | | | | | | | | | 1 | | | No 1 | 1 01 05-F | Rev 0 | 11-Jan-2019 | Page 7 - 1 | # **Airplane Description** # DA 62 AFM | | 7.10.3 WARNING, CAUTION AND ADVISORY MESSAGES | 7-71 | | | | |------|---|------|--|--|--| | 7.11 | PITOT-STATIC SYSTEM | 7-77 | | | | | 7.12 | STALL WARNING SYSTEM | 7-77 | | | | | 7.13 | GARMIN G1000 INTEGRATED AVIONICS SYSTEM | 7-78 | | | | | | 7.13.1 GENERAL | 7-78 | | | | | | 7.13.2 PRIMARY FLIGHT DISPLAY (PFD) | 7-80 | | | | | | 7.13.3 MULTI-FUNCTION DISPLAY (MFD) | 7-82 | | | | | | 7.13.4 AUDIO PANEL | 7-83 | | | | | | 7.13.5 ATTITUDE AND HEADING REFERENCE | | | | | | | SYSTEM (AHRS) | 7-83 | | | | | | 7.13.6 AIR DATA COMPUTER (ADC) | 7-83 | | | | | | 7.13.7 GWX 70 WEATHER RADAR | 7-83 | | | | | | 7.13.8 PFD/MFD CONTROL UNIT (KEYPAD) | 7-84 | | | | | 7.14 | AVIONICS | | | | | | | 7.14.1 AUTOPILOT SYSTEM | 7-85 | | | | | | 7.14.2 AUTOMATIC FLIGHT CONTROL SYSTEM | | | | | | | ANNUNCIATIONS AND ALERTS | 7-91 | | | | | 7.15 | MID CONTINENT MD302 STANDBY ATTITUDE MODULE | 7-93 | | | | ### 7.1 INTRODUCTION Chapter 7 contains a description of the airplane and its systems, together with operating instructions. For details about optional equipment, see Chapter 9. #### 7.2 AIRFRAME ## <u>Fuselage</u> The CFRP fuselage is of semi monocoque molded construction. The center wing is attached to the fuselage with bolts. The two main spars and both nacelles are part of the center wing. The two main spars are CFRP items. The engine compartment in each nacelle is separated from the other structure with a firewall. The fire protection on the firewall is of a special fire-resistant matting, which is covered on the engine side by stainless steel cladding. #### Wings The wings have a front and rear spar; each wing has a top shell and a bottom shell; the whole wing is 'fail-safe' design. The wings, as well as the ailerons and flaps, are made of GFRP/CFRP, and are principally of sandwich construction. An aluminum fuel tank is installed in each of the wings. #### **Empennage** The airplane has a 'T' tail of GFRP/CFRP semi monocoque construction. Both the stabilizers have twin spars. Rudder and elevator are of sandwich construction. | Doc. No. 11.01.05-E | Rev. 0 11-J | Jan-2019 | Page 7 - 3 | |---------------------|-------------|----------|------------| |---------------------|-------------|----------|------------| #### 7.3 FLIGHT CONTROLS The ailerons, elevator and wing flaps are operated through control rods, while the rudder is controlled by cables. The flaps are electrically operated. Elevator forces can be balanced by a trim tab on the elevator, which is operated by a Bowden cable. Rudder forces can be balanced by a trim tab on the rudder, which is also operated by a Bowden cable. #### Ailerons Construction: GFRP/CFRP composite sandwich. Hinges: There are 4 hinges, which are hinge pins mounted in an aluminum bracket. They are secured in position by a roll pin. The absence of this roll pin can lead to the loss of the hinge pin and a consequent loss of flight safety. Operation: Each aileron is connected with a aileron control horn to the push rods of the aileron control system. A rod end bearing is screwed into a steel push rod and locked by means of a jam nut which has locking varnish applied to it. Damage to this varnish can indicate a twisting and thus a change to the adjustment. The connection between the rod end bearing and the control horn is a bolt, the nut of which is likewise sealed with locking varnish. The aileron control horn is fully covered by a fairing mounted to the aileron control horn with three screws. The aluminum control horn is attached to the aileron with 3 screws. ## <u>Flaps</u> The flaps are a two piece construction. The inner part of the flap is mounted to the center wing and the outer part to the wing. Both parts are connected to each other with a form fit connection. Construction: GFRP/CFRP composite sandwich. Hinges: There are 6 hinges at the outer part and 4 hinges at the inner part of the flap. These hinges are hinge pins mounted in an aluminum bracket. They are secured in position by a roll pin. The absence of this roll pin can lead to the loss of the hinge pin and a consequent loss of flight safety. Operation: Each part is connected with a flap control horn to the push rods of the flap control system. A rod end bearing is screwed into a steel push rod and locked by means of a jam nut which has locking varnish applied to it. Damage to this varnish can indicate a twisting and thus a change to the adjustment. The connection between the rod end bearing and the control horn is a bolt, the nut of which is likewise sealed with locking varnish. The flap control horn is fully covered by a fairing mounted to the flap control horn with three screws in the outer wings and four screws in the center wing. Each flap control horn is attached to the flap part with 3 screws. The flaps are driven by an electric motor and have 3 settings: - Cruise (UP), totally retracted - Take-Off (T/O), and - Landing (LDG). | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 7 - 5 | |---------------------|--------|-------------|------------| |---------------------|--------|-------------|------------| The flaps are operated by means of a 3-position flap selector switch on the instrument panel. The positions of the switch correspond to the positions of the flaps, the Cruise position of the switch being at the top. If the switch is moved to another position, the flaps continue to travel automatically until they have reached the position selected on the switch. The UP and LDG positions are additionally protected by a limit switch to guard against over-running the end positions. The electrical flap drive has an automatic circuit breaker which can also be operated manually. ## Flap Position Indicator: The current flap position is indicated by means of three lights beside the flap selector switch. When the upper light (green) is illuminated, the flaps are in the Cruise position (UP); when the center light (white) is illuminated, the flaps are in Take-Off position (T/O); when the lower light (white) is illuminated, the flaps are in Landing position (LDG). When two lights are illuminated simultaneously, the flaps are between the two indicated positions. This is the case only when the flaps are in transition. **DA 62 AFM** # **Airplane Description** Elevator Construction: GFRP sandwich. Hinges: 5 hinges. Operation: Steel pushrods; Two of the bellcrank bearings are accessible for visual inspection next to the lower hinge of the rudder. The elevator horn and its bearing, as well as the connection to the pushrod, can be visually inspected at the upper end of the rudder. # **Airplane Description** **DA 62 AFM** ## Rudder Construction: GFRP sandwich. Hinges: Upper hinge: One bolt. Lower hinge: Bearing bracket including rudder stops, held by 4 screws to the rear web of the vertical stabilizer. The mating part on the rudder is a bracket which is attached to the rudder by 2 bolts. The bolts and nuts are accessible to visual inspection. Operation: Steel cables, the eyes of which are connected to the bolts on the bracket. ## **Elevator Trim** The trim control is a black wheel in the center console to the rear of the power lever. To guard against overrotating, the trim wheel incorporates a friction device. A mark on the wheel shows the take-off (T/O) position. Turn wheel to the front = nose down Turn wheel to the rear = nose up ## Rudder Trim The trim control is a black wheel in the center console below the instrument panel. A mark on the wheel shows the center position and the direction of movement. Turn wheel to the right = right turn Turn wheel to the left = left turn ## Electrical Pedal Adjustment #### NOTE
The pedals may only be adjusted on the ground! The pedals are adjusted using a rocker switch, located on the outboard sides of the instrument panel. The related circuit breaker is located on the right side of the instrument panel. ## Forward Adjustment: To move the pedals forward, depress upper side of switch. When pedals are in correct position, release switch. ### Rearward Adjustment: To move the pedals in the rearward direction, depress lower side of switch. When pedals are in correct position, release switch. #### Locking: Upon release, the switch moves automatically to the 'power off' position, so locking the pedals in the present position. # 7.4 INSTRUMENT PANEL ### **CAUTION** Do not inadvertently operate the VOTER switch when adjusting the LH instrument panel ventilation nozzle. In case of inadvertent switch operation, bring the switch back to the desired position, typically AUTO. ### **Cockpit Ventilation** Ventilation in the front is provided by spherical ventilation nozzles (16) in the instrument panel. Furthermore there are spherical nozzles on the central console above the pilot's and passengers' heads. The spherical nozzles are opened and closed by twisting. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 7 - 11 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| | | Major Instruments and Controls | | | | | | |----|--|----|---|--|--|--| | 1 | Electric master switch | 17 | Circuit breakers* | | | | | 2 | Avionic master switch | 18 | Standby attitude module | | | | | 3 | Engine master switches | 19 | Rudder pedal switches | | | | | 4 | Start button | 20 | USB charging ports | | | | | 5 | Pitot-/Static-/Stall warning heat switch | 21 | Emergency compass | | | | | 6 | Alternator switches | 22 | ELT control unit | | | | | 7 | ECU test buttons | 23 | Primary flight display (PFD) | | | | | 8 | VOTER switches | 24 | Audio amplifier/intercom/marker beacon receiver | | | | | 9 | Rotary buttons for instrument lighting and flood light | 25 | Multi function display (MFD) | | | | | 10 | Light switches | 26 | De-Ice control panel | | | | | 11 | - | 27 | Autopilot control unit (part of MFD) | | | | | 12 | Flap selector switch | 28 | Alt air lever | | | | | 13 | Landing gear switch | 29 | Landing gear emergency extension lever | | | | | 14 | Alternate static valve | 30 | Oxygen pressure indicator | | | | | 15 | Microphone socket | 31 | - | | | | | 16 | Ventilation nozzles | 32 | Fuel pump switches | | | | ^{*)} Designations and abbreviations used to identify the circuit breakers are explained in Section 1.5 - DEFINITIONS AND ABBREVIATIONS. ## **NOTE** The figure above shows the typical DA 62 installation position for the equipment. The actual installation may vary due to the approved equipment version. | Page 7 - 12 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| # 7.5 LANDING GEAR The landing gear is a fully retractable, hydraulically operated, tricycle landing gear. Struts for the landing gear are air oil assemblies. The hydraulic pressure for the landing gear operation is provided by an electrically powered hydraulic pump, which is activated by a pressure switch, when the required pressure is too low. Electrically actuated hydraulic valves, which are operated with the gear selector switch, provide the required hydraulic pressure for the movement of the landing gear. The gear selector switch is located on the instrument panel. The switch must be pulled out before it is moved to UP or DOWN position. Gear extension normally takes 6-10 seconds. When the landing gear is retracted, the main wheels retract inboard into the center wing and the nose wheel retracts forward into the nose section. Hydraulic pressure on the actuators keeps the landing gear in the retracted position. A pressurized gas container acts as an accumulator which keeps the system pressure constant by replacing the volume lost due to the normal actuator leakages. This prevents a permanent starting of the hydraulic pump in flight. Springs assist the hydraulic system in gear extension and locking the gear in the down position. After the gears are down and the downlock hooks engage, springs maintain force on each hook to keep it locked until it is released by hydraulic pressure. The three green lights directly next to the landing gear operating switch illuminate to indicate that each gear is in the correct position and locked. If the gear is in neither the full up nor the full down position, a red warning light on the instrument panel illuminates. Should one power lever be placed in a position below 25% while the landing gear is retracted, a warning horn sounds to alert the pilot that the gear is retracted. Additionally, a CHECK GEAR caution is indicated on the PFD. The same warning appears if the flaps move into LDG position (fully extended) while the gear is retracted. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 7 - 13 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| To test the gear warning system (refer to 4A.6.1 - PRE-FLIGHT INSPECTION) push the test button near the gear selector switch. The aural gear alert should appear. #### **CAUTION** If the aural alert does not appear, unscheduled maintenance is necessary. To prevent inadvertent gear retraction on ground, an electric squat switch prevents the hydraulic valve from switching if the master switch is on and the gear extension switch is placed in the UP position. After take-off, the gear should be retracted before an airspeed of 162 KIAS is exceeded. The landing gear may be extended at any speed up to 205 KIAS. The landing gear is designed to be manually operated in the event of failure. Since the gear is held in the retracted position by hydraulic pressure, gravity will allow the gear to extend if the system fails for any reason. To extend and lock the gears in the event of failure, it is only necessary to relieve the hydraulic pressure by means of the emergency gear extension lever, which is located under the instrument panel to the left of the center console. Pulling this lever releases the hydraulic pressure and allows the gear to fall free. Before pulling the emergency gear extension lever, place the gear selector switch in the DOWN position. #### NOTE If the emergency gear extension has been pulled due to an emergency, the system has to be checked before pushing the lever in again. The nose gear is steerable by the use of full rudder pedal travel. A gear damping element, incorporated in the nose gear steering system, prevents shimmy tendencies. When the gear is retracted, the nose wheel centers as it enters the wheel well, and the steering linkage disengages to reduce pedal loads in flight. | Page 7 - 14 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| ## Hydraulic Gear Extension System Schematic The main landing gear of the DA 62 is extended with three hydraulic cylinders. The following schematic figures show the system conditions for each operating mode. The first figure below shows the extension of the landing gear is shown. To reduce the amount of pumped hydraulic fluid during this operation, the return flow is partly led into the feeding flow of the system. The figure below shows the system status when the landing gear is extended. All hydraulic cylinders are under high pressure. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 7 - 15 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| The operating mode for the retraction of the landing gear is shown in the next figure. While energizing the right hydraulic valve, the fluid flow in the hydraulic system is started due to different piston areas of the landing gear cylinders, although the pressure on both sides of the system is equal. While the landing gear is retracted, both valves are energized and excess hydraulic fluid on one side is drained into the tank. This configuration of the system is shown in the following figure. | Page 7 - 16 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| | | | | | For an emergency extension of the landing gear, the hydraulic fluid can pass through an emergency extension valve so that the gear is extended by gravity. The condition of the system is shown in the figure below. ## Wheel Brakes Hydraulically operated disk brakes act on the wheels of the main landing gear. The wheel brakes are individually operated by means of toe pedals. ## Parking Brake The lever is located on the small center console under the instrument panel and is in the upper position when the brakes are released. To operate the parking brake, pull the lever downwards until it catches. Brake pressure is built up by multiple operation of the toe brake pedals, and is maintained until the parking brake is released. To release, the lever is pushed upwards. # 7.6 SEATS AND SAFETY HARNESSES To increase passive safety, the seats are constructed using a carbon fiber/Kevlar hybrid material and GFRP. The seats are removable to allow maintenance and inspection of the underlying controls. Covers on the control sticks prevent loose objects from falling into the area of the controls. The seats have removable furnishings and are equipped with energy-absorbing foam elements. The seats are fitted with three-part safety harnesses. The harnesses are fastened by inserting the end of the belts in the belt lock, and are opened by pressing the red release on the belt lock. The backrest of the passenger seats row I can be laid forward
after pulling upwards the release lever. If OAM 62-019 is installed, the two passenger seats of row II may be installed. The backrest of the passenger seats row II can be laid forward after pulling the release lever upwards. In case of an emergency, the LH seat backrest can be released by pulling the red handle on the back side of the seat pan of the LH passenger seat of row I. The front seats have adjustable backrests installed. The angle of the backrests and the lumbar can be adjusted for best comfort. The backrest release button is situated on the upper side of the seat's side frame. However, during take-off, landing and emergency landing the backrests must be fixed in the upright position designated by a placard. The lumbar support can be adjusted by operating the lumbar support lever mounted on the outboard side of the seat pan. #### **CAUTION** Before adjusting the angle, lean against the backrest to counteract the spring load; otherwise the backrest may slap forward. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 7 - 19 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| ### **CAUTION** Don not apply a load of more than 90 daN (202 lbf) to the top of the backrest. Otherwise damage of the adjustment mechanism may result. For adjustment, press the button and bend the backrest forward or backward to the desired backrest angle. For fixing the position, release the button. In case of a malfunction of the release button, the backrest can be moved into the upright position by pulling the backrest (480 N) in flight (FWD) direction. # 7.7 BAGGAGE COMPARTMENTS #### 7.7.1 NOSE BAGGAGE COMPARTMENTS There are two nose baggage compartments, one LH and one RH. They are located in the nose section of the airplane and are accessible through the LH and RH baggage doors respectively. ### 7.7.2 REAR BAGGAGE COMPARTMENT There is a rear baggage compartment aft of the passenger seats row 1. The rear baggage compartment is accessible via the passenger door on the LH side of the airplane. The compartment is divided into 4 zones, A, B, C and D, as described on limitation placard. Zones A and B are boxes below floor level. The hatches of the boxes must be closed during flight. Zone C is the volume from the floor level up to the upper edge of the forward compartment bulkhead. Forward shifting of items is prevented by the bulkhead. Place heavy items in Zone C. Zone D is the volume above Zone C up to the ceiling. Baggage must be secured at all times by means of the approved baggage net. Only baggage net attachment configuration in accordance with Figures 1 through 3 may be used. Always use the most suitable baggage net configuration to secure the baggage against shifting. In case additional straps are used to secure the baggage from shifting, the maximum pre-tension on a single D-Ring is 8 kg (17.6 lbs). If OÂM 62-019 is carried out, the rear baggage compartment consists of Zones E and F. Zone F is the volume from the folded backrest of passenger row II up to the ceiling. Zone E is the baggage tray below floor level. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 7 - 21 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| Figure 1: Rear Baggage Compartment I | Page 7 - 22 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| Figure 2: Rear Baggage Compartment II | Doc. No. 11.01.05-E | Rev. 0 11-Jan-2019 | Page 7 - 23 | |---------------------|--------------------|-------------| |---------------------|--------------------|-------------| Figure 3: Rear Baggage Compartment III | Page 7 - 24 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| Figure 4: Rear Baggage Compartment IV (if OÄM 62-019 is carried out) | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 | Page 7 - 25 | |--|-------------| |--|-------------| Figure 5: Rear Baggage Compartment V (if OÄM 62-019 is carried out) | Page 7 - 26 Re | |----------------| |----------------| # 7.8 FRONT DOORS, REAR DOOR AND CABIN INTERIOR ### LH & RH PILOT DOORS The LH & RH pilot doors are closed by pulling down on a handle, which are located between the window and the frame. The doors are locked separately by means of a lever on each frame. On locking, steel bolts lock into mating holes in polyethylene blocks. A gas pressure damper prevents each pilot door from dropping; in strong winds the assemblies must be securely held. The pilot doors can be blocked by a locking device on the each side near the opening levers by turning the key clockwise. The closed and blocked doors can be opened from inside by pulling the levers inside the opening handle. A window on the each pilot door can be opened for additional ventilation, or as an emergency window. ## Passenger Door The passenger door is closed in the same way, by pulling down on the handle and locking it with the lever. A gas pressure damper prevents the door from dropping; in strong winds the assembly must be securely held. The passenger door is protected against unintentional opening by an additional lever. The door can be blocked by a locking device on the left side near the external door opening lever by turning the key clockwise. The closed and blocked door can be opened from inside by pulling the lever inside the opening handle. #### WARNING Do not block the door with the locking key before flight in order to assure emergency access from outside. **Airplane Description** ## **Heating and Ventilation** Heating and ventilation are operated using two levers located on the small center console under the instrument panel. Right lever: up = HEATING ON (seats, floor) down = HEATING OFF Center lever: up = DEFROST ON (airflow to windscreen) down = DEFROST OFF The heat of the RH engine is used for the front seats and floor, the heat of the LH engine is used to defrost the windscreen. The air inlet for the ventilation system is placed on the underside of the RH wing, inboard of the engine nacelle. The air is distributed within the cabin via 4 nozzles (2 on the instrument panel LH/RH side, 2 on the overhead panel. The jet direction of each cone can be changed easily and the jet intensity can be regulated by rotation of the nozzle. #### CAUTION Do not inadvertently operate the VOTER switch when adjusting the LH instrument panel ventilation nozzle. In case of inadvertent switch operation, bring the switch back to the desired position, typically AUTO. ## Egress Hammer An Egress Hammer is installed on the floor panel behind the co-pilot's seat. If the doors can not be opened in case of an emergency use the Egress Hammer to break through the door windows. ### **WARNING** Make sure not to harm other persons by using the Egress Hammer. ## **WARNING** Beware of sharp edges and fragments of the broken window. # 7.9 POWER PLANT ### 7.9.1 ENGINES, GENERAL There are two Austro Engine E4P-C engines installed, which have the following specifications: - Liquid-cooled four-cylinder four-stroke engine with wet sump lubrication - Inline construction - Common rail direct injection - Propeller speed reducing gear 1:1.69 - Digital engine control with integrated propeller governor (separate oil system) - Turbo charger with intercooler ### Displacement: Max. power: 132.0 kW (177.0 DIN-HP) at 2300 RPM at sea level and ISA Max. continuous power:126 kW (169.0 DIN-HP) at sea level and ISA The indications for monitoring important engine parameters during operation are integrated within the Garmin G1000 display. Each engine can only be operated with the ENGINE MASTER switch ON. Each engine has an own ECU (Electrical Engine Control Unit) which receives its electrical power from the generator when at least one engine is running. When both engines are at standstill, the ECU receives its electrical power from the battery. #### 7.9.2 PROPELLER Two mt-Propeller MTV-6-R-C-F/CF 194-80 hydraulically regulated 3-bladed constant speed feathering propellers are installed. Each propeller has wood composite blades with fiber-reinforced plastic coating and stainless steel edge cladding; in the region of the propeller hub, the leading edge is coated with adhesive PU foil. These blades combine the lowest weight whilst minimizing vibration. ### Propeller Control The propeller pitch control system consists of the P-877-16 mt-Propeller governor valve. The pitch is set by the ECU via an electro-mechanical actuator on the governor. To change the blade pitch angle, gearbox oil is pumped into the propeller hub. Increasing the oil pressure leads to a decrease of pitch and a higher RPM. Decreasing the pressure leads to higher pitch and a lower RPM. Depending on the power lever setting, the propeller pitch is adjusted such that the required RPM will be obtained as shown in the following diagram. | Page 7 - 32 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| #### Pressure Accumulator: The pressure accumulator is a nitrogen oil type. It is connected to the gearbox oil circuit via an electric valve at the accumulator, which is operated with the ENGINE MASTER switch. When the ENGINE MASTER switch is set to ON the valve is opened. During engine operation the accumulator makes sure that enough oil pressure is available even if the oil feed by the gearbox oil pump is decreasing due to negative acceleration. The hydraulic pressure keeps the propeller pitch angle below the start lock position, or moves the propeller blades beyond the start lock position. ## Feathering: To feather the propeller the engine must be shut down with the appropriate ENGINE
MASTER switch. This will open the electric governor valve. All oil will flow back from the propeller hub, allowing the blades to move into the feathered pitch position. At the same time, the electric valve at the pressure accumulator closes, and the oil pressure is restored in the accumulator. Feathering is only possible at propeller speeds above 1300 RPM. #### **CAUTION** If the engine is shut down below 1300 RPM, the propeller pitch remains below the start lock position. In this case, the speed must be increased to increase the propeller RPM. ## Unfeathering: To unfeather the propeller, the associated ENGINE MASTER switch must be set to ON. This will open the electric valve at the pressure accumulator. The pressure stored in the accumulator will move the propeller blades into a low pitch position. As soon as the propeller starts turning and the gearbox oil operates, the accumulator will be refilled. ## **Ground Operation:** ### **CAUTION** Operation on the ground at high RPM should be avoided as far as possible, as the blades could suffer stone damage. For this reason a suitable site for engine runs should be selected, where there are no loose stones or similar items. #### WARNING Never move the propeller by hand. ## 7.9.3 OPERATING CONTROLS #### **Power Lever** Engine performance is controlled by a power lever for each engine. Both power levers are situated on the large center console. 'Front' and 'rear' are defined in relation to the direction of flight. Each power lever is used to set the desired engine power LOAD (%) Lever forward (MAX) = Full power Lever to rear (IDLE) = Idle A separate ECU for each engine controls manifold pressure, injected fuel quantity and propeller speed according to the desired engine power preselected with the power lever. If the power lever is in a low power position - as for a landing approach - while the landing gear is retracted, an aural warning alerts the pilot to the retracted landing gear. Additionally, a CHECK GEAR caution is indicated on the PFD. A propeller governor, which is controlled by the ECU, is flanged onto the front of each engine. The propeller governor oil circuit is supplied with oil by the gearbox oil pump (also see Section 7.9.2 - PROPELLER). A loss of oil pressure leads to a feathering of the propeller blades, thus allowing continuation of the flight according to 3.13.3 - DEFECTIVE PROPELLER RPM REGULATING SYSTEM. #### **CAUTION** Following governor failure, the RPM should be adjusted using the power lever. Every effort should be made not to exceed 2300 RPM. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 7 - 35 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| #### **CAUTION** The power lever should be moved slowly, in order to avoid over-speeding, and excessively rapid RPM changes. The light wooden propeller blades produce more rapid RPM changes than metal blades. #### **WARNING** It is possible that the propeller blades remain in the position of highest pitch in case of a malfunction of the engine control unit. In this case, the reduced engine performance should be taken into consideration. ### ELECT. MASTER The ELECT. MASTER switch has two positions: OFF disconnecting battery power ON connecting battery power to the power distribution system ### **ENGINE MASTER** Each engine can only be cranked with its ENGINE MASTER switched to ON. When activated, the ENGINE MASTER provides the power supply for the preheat system, the unfeathering accumulator valve and the engine itself. To shut down the engine, the appropriate ENGINE MASTER is switched to OFF. ### **START** Pressing the START LEFT push button starts the LH engine. Pressing the START RIGHT push button starts the RH engine. Both engines can not be started simultaneously. | Page 7 - 36 F | Rev. 0 11-Jan-2019 | Doc. No. 11.01.05-E | |---------------|--------------------|---------------------| |---------------|--------------------|---------------------| #### **ECU VOTER** There are two VOTER switches, one for each engine. For normal operation, both switches are set to AUTO. Each engine is controlled by either ECU A or ECU B. In case of a failure of the active electrical engine control unit (ECU) there should be an automatic switch-over to the other ECU. If the automatic switch over fails, switch over can be done manually by switching to ECU A or ECU B. This procedure should only be applied in an emergency. ### **ECU TEST** There are two ECU TEST buttons, one for each engine. Power Lever at IDLE and RPM Below Approximately 900: By pushing and holding the button until the end of the procedure, the self-test of each engine control unit is started. The procedure is possible on the ground only. Otherwise the test will not start. During the procedure, the ECU performs a switch from ECU A to ECU B or ECU B to ECU A, whichever is active at the moment, with the propeller cycling. The propeller RPM is monitored automatically by the ECU. When switching from one ECU to the other, a slight shake of the engine may occur. Finally, the ECU switches back. After that, both caution lights must extinguish and the engine must run without a change. ## Alternate Air In the event of power loss because of icing or blocking of the air filter, there is the possibility of drawing air from the engine compartment. The ALTERNATE AIR operating lever which serves both engines simultaneously is located under the instrument panel to the right of the center console. To open the alternate air source the lever is pulled to the rear. Normally, the alternate air source is closed with the lever in the forward position. Placard on the lever, forward position: **ALTERNATE AIR** Placard on the lever, visible when lever is in the rearward position: ALTERNATE AIR ON ## 7.9.4 ENGINE INSTRUMENTS The engine instruments are displayed on the Garmin G1000 MFD. Also refer to Section 7.13.3 - MULTI FUNCTION DISPLAY (MFD). Indications for the LH engine are on the left side, indications for the RH engine are on the right side. Default page Engine 50 40 2100 1800 1288 БИИ FUEL FLOW **GPH** OIL PRES COOLANT TEMP FUEL GTY GA 2330 2330 RPM 6.0 79 LOAD X Display when pushing the SYSTEM button If MÄM 62-254 is Display when pushing the FUEL button If MÄM 62-254 is NOT installed Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 7 - 39 Display when pushing the ENGINE button (if MÄM 62-254 is installed): # **NOTE** The figure on the previous page is a general demonstration of a typical G1000 MFD to show the different display modes. The pictured engine instrument markings may not stringently agree with the current engine limitations of the DA 62. #### **NOTE** The fuel calculations on the FUEL CALC portion do NOT use the airplane's fuel quantity indicators. The values shown are numbers which are calculated from the last fuel quantity update done by the pilot and actual fuel flow data. Therefore, the endurance and range data is for information only, and must not be used for flight planning. | Designation | Indication | Unit | |--------------|------------------------|-----------| | LOAD % | Available power | % | | RPM | Propeller RPM | 1/min | | VOLTS | Volts | V | | AMPS | Ampères | A | | COOLANT TEMP | Coolant temperature | °C | | GEARBOX | Gearbox temperature | °C | | OIL TEMP | Engine oil temperature | °C | | OIL PRES | Oil pressure | bar | | FUEL QTY GAL | Fuel quantity | US gal | | FUEL FLOW | Fuel flow | US gal/hr | | FUEL TEMP | Fuel temperature | °C | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 7 - 41 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| # 7.9.5 FUEL SYSTEM # General |--| Fuel is stored in the tanks which are located in the wings. Normally fuel for the right engine is taken from the right wing main tank, and for the left engine from the left wing main tank. On each engine, fuel is injected with high pressure directly into the cylinders. The injection nozzles (one per cylinder) are supplied with fuel by the common rail. Pressure inside the rail is generated by a high pressure pump which receives fuel from two independent low pressure fuel pumps. Both pumps are powered electrically. Depending on the power setting, the rail pressure is controlled by the ECU through an electric metering valve. Fuel that is not injected is fed back into the appropriate wing tank. Both sides of the fuel system are interconnected by crossfeed lines. In each engine nacelle, an auxiliary fuel tank may be installed. # Fuel Pumps Each engine is feed by two parallel installed, independent electrically driven low pressure fuel pumps. During normal operation, one of the two fuel pumps is working. In case of a low fuel pressure failure, the ECU switches automatically to the second fuel pump. During landing and take-off, or in case of a fuel pressure failure both fuel pumps can be activated by the FUEL PUMP switch. If both fuel pumps are activated, the fuel pressure increases. Each fuel pump is electrically connected to the LH/RH ECU BUS and protected by a 7.5 A circuit breaker. #### NOTE By switching between ECU A and B the two independent electrically driven fuel pumps are switched over as well. In case of an emergency, both pumps can be activated simultaneously by using the fuel pump switch. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 7 - 43 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| ### **Fuel Selector Valves** For each engine, one fuel selector valve is provided. The control levers for the fuel selector valves are situated on the center console behind the power levers. The positions are ON, CROSSFEED and OFF. During normal operation, each engine takes the fuel from the tank on the same side as the engine. When CROSSFEED is selected, the engine will draw fuel from the tank on the opposite side in order to extend range and keep fuel weight
balanced during single engine operation. With the fuel selector valve both the feeding and the return line are switched. The desired position is reached by pulling the lever back. To reach the OFF position, a safety guard must be twisted. This is to ensure that this selection is not made unintentionally. #### NOTE If one engine is inoperative, the fuel selector valve for this engine must be in the OFF position. ### **CAUTION** Do not operate with both fuel selector valves in the crossfeed position. Do not take-off with a fuel selector valve in crossfeed position. #### **CAUTION** Do not shut down an engine with the fuel selector valve. The high pressure fuel pump can be damaged. Scheme of the Fuel Selector Valve Positions: Possible operating modes of the three fuel selector valve positions are outlined systematically in the following scheme. The figures below, show fuel flows for the RH engine (fuel flows LH are alike): With the LH fuel selector valve in the crossfeed position, the fuel from the RH tank is transferred to the LH engine. Depending on the position of the RH fuel selector valve, the RH tank then feeds both engines (as shown in Figure 4 below) or only the LH engine, when the fuel selector valve of the RH engine is in shut-off position (as shown in Figure 5 below). Figure 1: Normal Operation. Figure 2: Crossfeed Operation. Figure 3: Shut-off. Figure 4: Fuel selector valve RH normal operation position, fuel selector valve LH crossfeed position. Figure 5: Fuel selector RH valve shut-off position, fuel selector valve LH crossfeed position. Page 7 - 46 Rev. 0 11-Jan-2019 Doc. No. 11.01.05-E ### Main Fuel Tanks Each tank consists of three aluminum chambers which are connected by a flexible hose. The tank is filled through a filler in the outboard fuel chamber. Only four liters (1 US gal) of fuel in each wing are unusable, so that a total quantity of 96 liters (25.4 US gal) in each wing is usable. There are two tank vents. One includes a check valve with a capillary, and one includes a pressure relief valve (bleed type), which operates at 150 mbar (2 PSI) and allows fuel and air to flow to the outside with higher internal pressure. The pressure relief valve protects the tank against high pressure, if the tank was overfilled, in case of an auxiliary fuel transfer failure. The check valve with capillary allows air to enter the tank but prevents flow of fuel to the outside. The capillary equalizes the air pressure during climb. The hose terminals are located on the underside of the wing, approximately 2 meters (7 ft) from the wing tip. In each tank a coarse filter (finger filter) is fitted before the outlet. To allow draining of the tank, a drain valve is located at the lowest point of the fuel tank. At the lowest point on each side of the fuel system, a fuel filter with a drain valve is installed. This drain valve can be used to remove water and sediment which has collected in the fuel system. The drain valves are fitted in each nacelle behind the firewall, approximately 15 cm (0.56 ft) backward of the wing leading edge. #### Fuel Quantity Indication Two capacity probes measure the fuel quantity in each main tank. The indication is provided by the G1000 flight display. Information about fuel consumption can be found in Chapter 5 - PERFORMANCE. # Auxiliary Fuel Tanks (if installed) The auxiliary tanks are optional equipment (OÄM 62-001). # Description The auxiliary fuel tanks are installed in the rear section of the engine nacelles, above the wing main spars. Each auxiliary fuel tank has a filler cap located on the top surface of the nacelle. The additional fuel capacity is 18.5 US gallons (70 liters) per side. The total fuel capacity (main fuel tanks and auxiliary fuel tanks) is 44.5 US gallons (168.4 liters) per side. The fuel supply connection attaches to a finger filter mounted at the rear of the auxiliary fuel tank. Each auxiliary fuel tank has a auxiliary pump which transfers fuel into the related main fuel tank. The vent line for the auxiliary fuel tank has a check valve with capillary. It allows air to enter the tank, but prevents flow of fuel to the outside. The capillary equalizes the air pressure during climb. A fuel drain valve is located at the rear of each auxiliary tank. #### Operation Two AUX PUMP switches in the cockpit are used to activate the auxiliary pumps. The switches are located behind the elevator trim wheel on the center console. Both switches are intended to be used simultaneously to prevent the airplane from additional lateral imbalance. The auxiliary pump transfers the fuel from the auxiliary fuel tank into the related main fuel tank. The fuel level switch shuts off this pump automatically when the auxiliary fuel tank is empty or when the main fuel tank is full. During operation of the pumps an advisory alert on the Garmin G1000 indicates that the fuel transfer is in progress. If the auxiliary fuel tank is empty, a caution alert appears on the Garmin G1000. In this case, the auxiliary pumps must be switched OFF. | Page 7 - 48 Rev. 0 11-Jan-2019 Doc. No. 11.01.05-E | Page 7 - 48 | |--|-------------| |--|-------------| If MÄM 62-254 is installed: One fuel probe measures the fuel quantity in each auxiliary tank. The indication is provided by the G1000 flight display. Information about fuel consumption can be found in Chapter 5 -PERFORMANCE. When one auxiliary pump is defective, the fuel stored in the related auxiliary fuel tank is not available. For use of the remaining fuel pump refer to to Section 4B.12 - L/R FUEL TRANSFER FAIL. The flight plan must be amended accordingly. The auxiliary pumps are electrically connected to the LH MAIN BUS and protected by a 7.5 A circuit breaker. # Alternate Means for Fuel Quantity Indication for the Fuel Tank: The alternate means for fuel quantity indication allows the fuel quantity in the tank to be determined during the preflight inspection. It functions according to the principle of communicating containers. The fuel quantity measuring device has a recess which fits the airfoil of the wing in front of the fuel tank drain, which lies approximately 10 cm (4 in) outboard of the engine nacelle. The metal connector is pressed against the drain of the tank. The amount of fuel in the tank can now be read off from the vertical ascending pipe. For an exact indication, the airplane must stand on level ground and the measuring device must be held vertically. The designated location for the fuel quantity measuring device is the aft baggage tray. # Alternate Means II for Fuel Quantity Indication for the Fuel Tank: For an exact indication, the airplane must stand on horizontal ground with the wings level. The fuel indicator II includes a protractor for an additional pitch angle measurement. The fuel indicator II is placed on the LH nose baggage compartment floor. The lower edge of the fuel indicator II must be supported by the nose baggage compartment for the entire length. Read and record the pitch angle. #### Standard Tanks: Unfold the fuel indicator II and center it at the nose of wing. Read the fuel level on the scale and refer to the tables provided in order to determine the exact fuel quantity. # Auxiliary Tanks (if installed): Unfold the fuel indicator II and place it on the trailing edge of the center wing. Read the fuel level on the scale and refer to the tables provided in order to determine the exact fuel quantity. Fuel Quantity Indicator II, Pitch Angle Measurement in Baggage Compartment | Page 7 - 52 Rev. 0 11-Jan-2019 Doc. No. 11.01 | |---| |---| **Fuel Quantity Indicator II, Main Tank** | Doc. No. 11.01.05-E Rev. 0 11-Jan-2019 Page 7 - 53 | |--| |--| **Fuel Quantity Indicator II, Aux Tank** | Page 7 - 54 Rev. 0 11-Jan-2019 Doc. No. 11.01.05-E | |--| |--| # Standard Tank Configuration | Fuel Qu | Fuel Quantity Indicator II: Pitch Angle Reading | | | Usable Fu | el Quantity | | |---------|---|-----|-----|-----------|-------------|-------| | 2° | 3° | 4° | 5° | 5° | US gal | Liter | | 105 | 90 | 85 | 75 | 65 | 1 | 3.8 | | 120 | 110 | 105 | 100 | 95 | 2 | 7.6 | | 130 | 125 | 116 | 108 | 102 | 3 | 11.4 | | 145 | 140 | 132 | 125 | 115 | 4 | 15.1 | | 160 | 150 | 143 | 135 | 128 | 5 | 18.9 | | 170 | 165 | 155 | 148 | 137 | 6 | 22.7 | | 180 | 168 | 160 | 152 | 145 | 7 | 26.5 | | 186 | 178 | 170 | 161 | 152 | 8 | 30.3 | | 198 | 190 | 180 | 174 | 165 | 9 | 34.1 | | 212 | 205 | 198 | 185 | 175 | 10 | 37.9 | | 220 | 215 | 210 | 200 | 195 | 11 | 41.6 | | 240 | 230 | 221 | 212 | 205 | 12 | 45.4 | | 250 | 245 | 239 | 232 | 225 | 13 | 49.2 | | 270 | 261 | 252 | 245 | 235 | 14 | 53.0 | | 280 | 275 | 265 | 260 | 252 | 15 | 56.8 | | 300 | 292 | 285 | 275 | 265 | 16 | 60.6 | | 315 | 305 | 298 | 290 | 282 | 17 | 64.4 | | 330 | 320 | 312 | 305 | 290 | 18 | 68.1 | | 340 | 335 | 325 | 320 | 312 | 19 | 71.9 | | 357 | 348 | 340 | 330 | 320 | 20 | 75.7 | | 370 | 362 | 352 | 345 | 338 | 21 | 79.5 | | 390 | 378 | 367 | 358 | 350 | 22 | 83.3 | | 402 | 395 | 385 | 377 | 366 | 23 | 87.1 | | 425 | 415 | 407 | 400 | 380 | 24 | 90.8 | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 7 - 55 | | |---------------------|--------|-------------|-------------|--| |---------------------|--------|-------------|-------------|--| # Auxiliary Tank (if installed) Configuration | Fuel Quantity Indicator II: Pitch Angle Reading | | | | | Usable Fue | el Quantity | |---|-------|---------|---------|---------|------------|-------------| | 2° | 3° | 4° | 5° | 5° | US gal |
Liter | | 87 | 92/85 | 92/86 | 92/86 | 92/85 | 1 | 3.8 | | 110 | 110 | 112/105 | 110/100 | 110/100 | 2 | 7.6 | | 120 | 123 | 125 | 127 | 130 | 3 | 11.4 | | 135 | 135 | 140 | 142 | 145 | 4 | 15.1 | | 150 | 150 | 155 | 158 | 163 | 5 | 18.9 | | 160 | 167 | 170 | 175 | 185 | 6 | 22.7 | | 170 | 175 | 180 | 185 | 190 | 7 | 26.5 | | 185 | 190 | 195 | 205 | 210 | 8 | 30.3 | | 200 | 210 | 215 | 220 | 230 | 9 | 34.1 | | 217 | 220 | 225 | 235 | 245 | 10 | 37.9 | | 230 | 235 | 245 | 250 | 260 | 11 | 41.6 | | 235 | 245 | 255 | 265 | 275 | 12 | 45.4 | | 250 | 260 | 270 | 280 | 290 | 13 | 49.2 | | 260 | 270 | 285 | 300 | 310 | 14 | 53.0 | | 270 | 285 | 300 | 315 | 325 | 15 | 56.8 | **DA 62 AFM** **Airplane Description** # Fuel Temperature Max. fuel temperature: 60 °C (140 °F) # Fuel Grade Approved fuel grades are listed in Section 2.14 - FUEL. # **NOTE** In order to provide information about the fuel grade, it is recommended to enter the fuel grade in the airplane log each time fuel is refilled. ### 7.9.6 COOLING SYSTEM The engine is liquid cooled. The liquid cooling system consists of two circuits. The first (small) cooling circuit is always active and includes an integral gearbox oil/coolant heat exchanger and a cabin air heat exchanger. The second cooling circuit (large) includes an integral engine oil heat exchanger and a large main coolant cooler. The second cooling circuit activates through a thermostat, when the coolant reaches approximately 75°C (167°F). The flow through the heat exchanger is independent of the coolant temperature. An expansion tank helps to adjust the pressure in the system. The system is protected against overpressure by means of a pressure relief valve. ### 7.9.7 OIL SYSTEMS Each engine has two separate oil systems. # Lubrication System (Engine and Turbo-Charger) The engine lubrication is a wet sump lubrication system. The oil is cooled by a water/oil-cooler on the upperside of the engine. A dip-stick is provided to check the oil quantity through an inspection door in the left cowling. If required, oil can be replenished through this door (for approved oil grades refer to Section 2.4 - POWER-PLANT LIMITATIONS). # Gearbox and Propeller Governor System The second oil circuit lubricates the gearbox and serves the governor system and the regulation of the propeller. The gearbox oil is also cooled via an integral oil/coolant heat exchanger. The gearbox oil quantity can be checked with the help of an inspection glass which can be reached through an inspection door on the left side of the cowling. #### CAUTION If the gearbox oil quantity is too low, unscheduled maintenance is necessary (for approved oil grades refer to Section 2.4 - POWER-PLANT LIMITATIONS). # 7.9.8 TURBO-CHARGER SYSTEM The exhaust system contains a manifold which collects exhaust gases from the outlets of the cylinders and feeds them to the turbine of the turbo charger. Behind the turbine, the exhaust gases are guided through the lower cowling to the exterior of the airplane. Excess exhaust gases bypass the turbine. The bypass is controlled by the ECU through the waste gate valve. A manifold pressure sensor behind the compressor allows the ECU to calculate the correct position of the waste gate valve. This prevents excessive manifold pressures at low density altitudes. The intake air is compressed in the compressor which is driven by the turbine, and is subsequently cooled down in the intercooler to increase power. Cooling the air increases efficiency through the higher density of the cooler air. ### 7.9.9 FIRE DETECTION SYSTEM The fire detection system in the DA 62 consists of an overheat detector in the hot area of each engine. In case of an increase of the engine compartment temperature above 250 °C (480 °F) the overheat detector closes the electric circuit and a warning message appears in the annunciation window of the G1000 PFD. To test the fire detectors (refer to Section 4A.6.1 - PREFLIGHT INSPECTION) push the test button located next to the gear selector switch. An aural alert and the fire warning message for the LH and RH engine should appear in the annunciation window of the G1000 PFD. #### **CAUTION** If the warning does not appear, unscheduled maintenance is necessary. # 7.10 ELECTRICAL SYSTEM | Page 7 - 62 Rev. 0 11-Jan-2019 Doc. No. 11.01.05-E | |--| |--| #### **7.10.1 GENERAL** The DA 62 has 28 Volt DC system, which can be sub-divided into: - Power generation - Storage - Distribution - Consumers # **Power Generation** Power generation is provided by two 70 Ampère alternators (generators) which are mounted on the bottom left side of each engine. The alternators are driven by a flat belt. The power output line of the left hand alternator is connected to the LH MAIN BUS via the LH alternator relay and a 60 Ampère circuit breaker. The power output line of the RH alternator is connected to the RH MAIN BUS via the RH alternator relay and a 60 Ampère circuit breaker. Both main busses are connected to the BATTERY BUS via a 90 Ampère circuit breaker. Both generator power output lines also run through a current sensor for each alternator, which provides an indication of the power being supplied to the electrical system by an alternator including the current for battery charging on the G1000. In the event of a main battery failure, the field of each alternator is energized by two 12 V, 7.2 Ah sealed lead acid batteries (ECU backup battery) connected in series, which are installed under the passengers' seats. The ECU backup batteries provide also electrical power for the ECU for a time of 30 minutes (condition). The ENGINE MASTER LH (RH) switches connect the ECU backup battery to the alternator field via a 10 Ampère fuse. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 7 - 63 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| #### Alternator Control: Each alternator has an alternator control unit. It measures the alternator output voltage and controls the current through the alternator field coils via a pulse-width modulated signal. To keep the output voltage stable in all load and speed situations, the alternator field signal is modulated accordingly. The left alternator regulator also measures the power output of both (LH and RH) alternators via separate current sensors. Based on the current measurements, the LH alternator regulator controls the output of its associated alternator, providing paralleling between the alternators. The alternator control unit includes a comprehensive set of diagnostic functions that will warn the operator using a caution message (L/R ALTN FAIL) on the G1000 PFD in case of over- or undervoltage as well as a couple of other internal warning levels. # Storage Main battery power is stored in a 24 V, 13.6 Ah lead-acid battery mounted on the right-aft side of the front electric/avionic compartment. The main battery is connected to the HOT BATTERY BUS; and to the BATTERY BUS via the 'battery'-relay which is installed in the relay junction box on the forward side of the front electric/avionic compartment. The battery relay is controlled with the ELECT. MASTER switch which is located on the left-hand side of the instrument panel. #### Distribution Electrical power is distributed via the HOT BATTERY BUS, the BATTERY BUS, the LH (RH) ECU BUS, the LH (RH) MAIN BUS, and the AVIONIC BUS. #### **HOT BATTERY BUS:** The HOT BATTERY BUS is directly connected to the main battery and cannot be disconnected from the main battery. The HOT BATTERY BUS provides power to the pilot map/reading light which is protected by its own fuse. #### **BATTERY BUS:** The BATTERY BUS is connected to the main battery via the battery relay which can be controlled by the ELECT. MASTER switch. The BATTERY BUS provides power to the LH (RH) MAIN BUS and heavy duty power to both starters. #### ECU BUS: The LH (RH) ECU BUS is connected to the LH (RH) MAIN BUS via a diode and connected to the power output line of the alternator via diode and a 30 Ampère circuit breaker and provides power directly to ECU A and its fuel pump. ECU B and its fuel pump derive their electrical power from their associated ECU BUS via an additional diode and fuse. Additionally, each ECU B and its fuel pump is supplied with electrical power from the opposite engine side ECU BUS via a diode and fuse. The LH (RH) ENGINE MASTER switch must be set to ON to activate the engine ECU. To support the alternator electrical power supply to the ECUs in case of a malfunction of the main battery, additional sealed-lead-acid batteries (ECU backup battery) are connected to the RH and LH ECU bus. These batteries are able to provide 30 minutes of engine operation in case of a complete airplane electrical failure. Both engines may stop if the 30 minutes have elapsed. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 7 - 65 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| #### MAIN BUS: The LH (RH) MAIN BUS is connected to the BATTERY BUS via a 90 Ampère circuit breaker. The LH MAIN BUS provides power to the consumers directly connected to the LH MAIN BUS. The RH MAIN BUS provides power to the consumers directly connected to the RH MAIN BUS and the AVIONIC BUS via the avionics master relay. The AVIONIC MASTER switch must be set to ON to connect the RH MAIN BUS to the AVIONIC BUS. # Consumers The individual consumers (e.g. radio, position lights, etc.) are connected to the appropriate bus via automatic circuit breakers. Designations and abbreviations used to identify the circuit breakers are explained in Section 1.5 - DEFINITIONS AND ABBREVIATIONS. ### Voltmeter The voltmeter displays the voltage of the electrical system. Under normal operating conditions the alternator voltage is shown, otherwise it displays the main battery voltage. #
Ammeter The ammeter displays the intensity of current which is supplied to the electrical system by the LH (RH) alternator. # Landing and Taxi Lights Landing and taxi lights are built into the wing center section, and are each operated by means of a switch (LANDING, TAXI) located on the row of switches on the instrument panel. | Page 7 - 66 Rev. 0 11-Jan-2019 Doc. No. 11.01.05-E | |--| |--| # Position and Strobe Lights Combined position and strobe lights (anti collision lights) are installed on both wing tips. Each system is operated by a switch (POSITION, STROBE) located on the row of switches on the instrument panel. # Flood Light A two-dimensional light emitter is mounted above the instrument panel on the left and right side. They illuminate the instrument panel as well as all levers, switches, etc. The flood lights are switched on and their brightness is adjusted by means of a rotary button (FLOOD) in the center section of the instrument panel. # **Instrument Lighting** With a rotary button (INSTRUMENT) in the center section of the instrument panel, the internal lighting of the instruments and placards is switched on and its brightness is adjusted. # Pitot Heating The Pitot probe, which provides measurement for the Pitot-static system, is electrically heated. The heating is activated with a switch (PITOT HEAT) located on the row of switches on the instrument panel. The temperature is automatically kept constant by means of a thermal switch on the Pitot probe, and as an additional safety measure a thermal fuse is built in. If this thermal fuse is activated, the Pitot heating can no longer be switched on, and the PITOT FAIL will be displayed. In this case, the system should be serviced. The PITOT HT OFF is displayed if the Pitot heating is switched off. # Static Port Heating (if OÄM 62-037 is installed) The static pressure ports, which provide measurement for the Pitot-static system, are electrically heated and located on the RH and LH fuselage side walls. The heating is activated in combination with the Pitot heating system (PITOT HEAT switch). The switch is located on the instrument panel. On ground, the maximum temperature is limited by means of an on-ground switch, to prevent overheating. The function of the system must be checked on ground before take-off during walk-around. # **External Power Socket** The DA 62 has an external 28 Volt DC power socket located on the lower surface of the fuselage nose section. When external power is connected, the control relay is energized and the external power comes online. The socket itself has three pins: - a large negative pin - a large positive pin - a small positive pin A diode protects the system from reverse polarity. # 28V Power Outlet Option (if OÄM 62-1002 is installed) The DA 62 has a 28V power outlet at the lower right of the instrument panel. Only equipment, that has been certified specifically for this outlet may be used. In case of any malfunction of the equipment or any of the alternators, the equipment must be disconnected or switched off. For more information refer to the Airplane Maintenance Manual. | Page 7 - 68 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| # 7.10.2 ELECTRONIC ENGINE CONTROL UNIT/ECU # **Engine Control and Regulation** The electronic ECU is used to control the engine actuators (e.g. fuel injectors) according to the engine sensor information. The ECU monitors, controls and regulates all important parameters for engine operation. #### The installed sensors are: - Oil temperature (lubrication system engine)/OIL TEMP - Oil pressure (lubrication system engine)/OIL PRES - Coolant temperature/COOLANT TEMP - Gearbox temperature/GEARBOX - Camshaft RPM (twice) - Crankshaft RPM (twice) - Fuel pressure in the common rail - Manifold pressure - Manifold air temperature - Ambient air pressure - Propeller governor/oil pressure - Power lever position (twice) - Voltage - Starter switch signal - Fuel pressure - VOTER switch signal - ECU TEST switch signal In accordance with the received signals and a comparison with the programmed characteristic diagrams, the necessary inputs are calculated and transmitted by the following signal lines to the engine: - Signal for propeller governor pressure valve - Signal for the rail-pressure regulation valve - Signal for each of the 4 injection nozzles - Activation of the glow plugs - Signal for the waste gate valve The following alerts are displayed on PFD of the G1000: - Glow sparks active - Status ECU A - Status ECU B - Low fuel pressure The electronic ECU consists of two ECUs per engine. A VOTER switch is integrated in the electronic ECU and proposes (if set to AUTO) an ECU to control the engine regarding the ECU operating hours or - in case of a failure - the ECU with better engine control capability. If the VOTER switch is set to A or B, the related EECU is forced to control the corresponding engine with ECU A respectively ECU B. A fault detected by the ECUs is indicated by a caution message on the PFD (L/R ECU A/B FAIL). Two types of faults are known: - Faults which lead to a latched caution indication - Faults which lead to a non-latched indication In case of a latched caution, unscheduled maintenance is necessary and Austro Engine GmbH has to be informed. | Page 7 - 70 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| # 7.10.3 WARNING, CAUTION AND ADVISORY MESSAGES # Crew Alerting System (CAS) The G1000 crew alerting system (CAS) is designed to provide visual and aural alerts to the flight crew. Alerts are divided into three levels as follows: # WARNING CAUTION ADVISORY Crew alerts will appear in the alerts window on the PFD. In this window, warnings will appear at the top, followed by cautions and advisories, respectively. Within the criticality levels, messages will appear from newest (top) to oldest (bottom). At the low right corner of the display, there is a MSG (message) soft key. The MSG key provides two functions in the CAS: - Pressing the MSG key acknowledges a new master warning/caution/advisory indication. - 2. An additional MSG key press with no master alert indication active will open a pop-up auxiliary flight display (AFD) page that contains information for all active alerts. This structure allows the crew to scroll through all system alerts if the alerts window overflows. This approach displays the most critical alerts close to the pilot's primary field of view at all times, with the option of allowing lower criticality alerts to overflow and be accessible from the pop-up AFD page/window. # Alert Levels | Level | Text Color | Importance | Audible Tone | |--------------------------------|------------|---|---| | Warning | Red | May require immediate corrective action | Warning chime tone which repeats without delay until acknowledged by the crew | | Caution | Amber | May require future corrective action | Single warning chime tone | | Annunciation
Advisory | White | | None | | Message Advisory | White | | None | | Safe Operation
Annunciation | Green | Lowest | None | # Warning Alerts on the G1000 | Warning Alerts | Meaning/Cause | |-------------------|---| | L/R ENG TEMP | The annunciation is active when the engine coolant temperature is greater than 100 °C (212 °F). | | L/R OIL TEMP | The annunciation is active when the engine oil temperature is greater than 139 °C (282 °F). | | L/R OIL PRES | The annunciation is active when the engine oil pressure is less than 0.9 bar (13.05 psi). | | L/R FUEL TEMP | The annunciation is active when the fuel temperature is greater than 60 °C (140 °F). | | L/R GBOX
TEMP | The annunciation is active when the gearbox oil temperature is greater than 120 °C (248 °F). | | L/R FUEL PRES | The annunciation is active when the engine fuel pressure is low. | | L/R ALTN AMPS | The annunciation is active when the alternator load is greater than 70 Amps. | | L/R ENG FIRE | The annunciation is active when an engine fire is detected. | | L/R STARTER | This annunciation is used to indicate to the pilot that the starter is engaged when it should not be. | | L/R DOOR
OPEN | Left/Right pilot door is not closed and locked. | | REAR DOOR
OPEN | Passenger door is not closed and locked. | | FWD DOOR
OPEN | Left or right baggage door is/are not closed and locked. | | POSN ERROR | The annunciation is active when the G1000 will no longer provide GPS based navigational guidance. | | ATTITUDE FAIL | The annunciation is active when the display system is not receiving attitude reference information from the AHRS. | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 7 - 73 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| | Warning Alerts | Meaning/Cause | |--------------------|--| | AIRSPEED FAIL | The annunciation is active when the display system is not receiving airspeed input from the air data computer. | | ALTITUDE FAIL | The annunciation is active when the display system is not receiving altitude input from the air data computer. | | VERT SPEED
FAIL | The annunciation is active when the display system is not receiving vertical speed input from the air data computer. | | HDG | The annunciation is active when the display system is not receiving valid heading input from the AHRS. | | WARN | This annunciation constitutes
a RAIM position warning. The nav deviation bar is removed. | # **Audible Warning Alerts** | Warning Alerts | Meaning/Cause | |------------------------|---| | Landing gear retracted | A warning chime tone which repeats without delay is active when the landing gear is retracted while the flaps move into the LDG position or when the POWER lever is placed in a position below approximately 25%. | # Caution Alerts on the G1000 | Caution Alerts | Meaning/Cause | |--|---| | L/R ECU A FAIL
or
L/R ECU B FAIL | The annunciation is active when a fault was detected by ECU A or ECU B. | | L/R FUEL LOW | The annunciation is active when the fuel quantity is below 4 ± 1 US gal usable fuel. | | L/R VOLTS LOW | The annunciation is active when bus voltage is less than 25 Volts. | | L/R ALTN FAIL | The annunciation is active when the alternator has failed. | | L/R COOL LVL | The annunciation is active when engine coolant level is low. | | PITOT FAIL | The annunciation is active when the Pitot heater is failed. | | PITOT HT OFF | The annunciation is active when the Pitot heat is off. | | STAL HT FAIL | The annunciation is active when the stall heater is failed. | | STAL HT OFF | The annunciation is active when the stall heater is off. | | L/R AUX FUEL E | This annunciation can only occur when the auxiliary fuel tank system (optional equipment) is installed. | | L/R AUX FUEL E | The annunciation is active when the L/R auxiliary fuel tank is empty and AUX PUMP is ON. | | INTEG RAIM not available | The annunciation is active when RAIM (Receiver Autonomous Integrity Monitor) is not available. | | AHRS ALIGN:
Keep Wings Level | The annunciation is active when the AHRS (Attitude and Heading Reference System) is aligning. | | CHECK GEAR | Landing gear is not down and locked. | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 7 - 75 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| # Annunciation Advisory Alerts on the G1000 | Advisory Alerts | Meaning/Cause | |-------------------|--| | L/R GLOW ON | The annunciation is active when the glow plugs are powered. | | L/R AUXPUMP
ON | The annunciation is active when fuel transfer from auxiliary to main tank is in progress (if installed). | # Message Advisory Alerts on the G1000 | Advisory Alerts | Meaning/Cause | |-----------------|---| | PFD FAN FAIL | The annunciation is active when the PFD fan is inoperative. | | MFD FAN FAIL | The annunciation is active when the MFD fan is inoperative. | | GIA FAN FAIL | The annunciation is active when the GIA fan is inoperative. | #### 7.11 PITOT-STATIC SYSTEM Total pressure is measured at the leading edge of the left wing using a Pitot probe. The static pressure is measured through the static ports in the rear fuselage. To protect against dirt and condensation there are filters in the system. The Pitot probe and the static port (if OÄM 62-037 is installed) are electrically heated. Static port heat (if OÄM 62-037 is installed) is engaged together with the Pitot heating. With the alternate static valve, the static pressure in the cabin can be used as static pressure source in the event of a failure of the Pitot-static system. #### 7.12 STALL WARNING SYSTEM The lift detector of the DA 62 is located on the front edge of the left wing below the wing chord line. It is supplied electrically and provides a stall warning, before the angle of attack becomes critical. The stall status is announced to the pilot by a continuous sound in the cockpit. The lift detector vane, the mounting plate and the complete housing are heated to prevent icing. Heating is engaged together with the Pitot heating. #### 7.13 GARMIN G1000 INTEGRATED AVIONICS SYSTEM #### **7.13.1 GENERAL** The Gamin G1000 is a fully integrated flight, engine, communication, navigation and surveillance instrumentation system. This integrated avionics system consists of a primary flight display (PFD), a multi-function display (MFD), an audio panel, an attitude and heading reference system (AHRS), an air data computer (ADC) and the sensors and computers to process flight and engine information for display to the pilot. The system contains dual GPS receivers, dual VOR/ILS receivers, dual VHF communications transceivers, a transponder, and an integrated annunciation system to alert the pilot of certain abnormal conditions. A remote avionic box is located in the front electric/avionic compartment. A push-to-talk (PTT) button for the COM portion of the G1000 is mounted on the end of each control stick. There are connection facilities for up to 5 (or optionally 7) headsets. The connections for the pilot, copilot and 1st passenger row are located between the pilot's and copilot's seat. The connections for the 2nd passenger row are located on the left and right outboard side of each seat. As the audio panel is limited to a maximum of 6 microphones, a switch is optionally installed, swapping the 6th microphone input between the 1st row middle seat and the 2nd row right seat. The headset phones are not affected by the switch. Refer to the Garmin G1000 Cockpit Reference Guide, P/N 190-01896-(), and Garmin G1000 Pilot's Guide for the Diamond DA 62, P/N 190-01895-(), for complete descriptions of the G1000 system and operating procedures. If MÄM 62-254 is installed, refer to the Garmin G1000 NXi Cockpit Reference Guide, P/N 190-01905-() and Garmin G1000 NXi Pilot's Guide for the Diamond DA 62, P/N 190-01904-() for complete descriptions of the G1000 NXi system and operating procedures. | Page 7 - 78 Rev. 0 11-Jan-2019 Doc. No. 11.01.05-E | |--| |--| #### **NOTE** Near the DME ground station, it can happen under certain adverse conditions that the Bendix/King KN 63 DME loses the direct signal from the ground station and locks onto an "echo". This will result in an inaccurate indication of the distance. #### **NOTE** During retraction and extension of the landing gear, the ADF-indication may be inaccurate. #### **NOTE** The airplane electrical system slightly interferes with the WX500 stormscope, causing strikes to be displayed beyond the 100 NM range ring. Thus, it is recommended to use range settings below 100 NM or carefully verify if the indicated strikes are real. It is also recommended not to display Strike data on the Map page if a higher range than 50 NM is used. #### 7.13.2 PRIMARY FLIGHT DISPLAY (PFD) The primary flight display (PFD; see figure below) typically displays airspeed, attitude, altitude, and heading information in a traditional format. Slip information is shown as a trapezoid under the bank pointer. One width of the trapezoid is equal to a one ball width slip. Rate of turn information is shown on the scale above the compass rose; full scale deflection is equal to a standard rate turn. The following controls are available on the PFD (clockwise from top right): - * Communications frequency volume and squelch knob - Communications frequency set knobs - * Communications frequency transfer button - * Altimeter setting knob (baro set) - * Course knob - * Map range knob and cursor control - * FMS control buttons and knob - * PFD softkey buttons, including master warning/caution acknowledgment - * Altitude reference set knob - * Heading bug control - Navigation frequency transfer button - Navigation frequency set knobs - Navigation frequency volume and identifier knob The PFD displays the crew alerting (annunciator) system. When a warning or caution message is received, a warning or caution annunciator will flash on the PFD, accompanied by an aural tone. A warning is accompanied by a repeating tone, and a caution is accompanied by a single tone. Acknowledging the alert will cancel the flashing and provide a text description of the message. Refer to Chapter 3 - EMERGENCY PROCEDURES, Chapter 4B - ABNORMAL OPERATING PROCEDURES, and Section 7.10.3 - WARNING, CAUTION AND ADVISORY MESSAGES. Advisory messages related to G1000 system status are shown in white and are accompanied by a white flashing ADVISORY alert. Refer to the G1000 Pilot's Guide and Cockpit Reference Guide for descriptions of the messages and recommended actions (if applicable). Trend vectors are shown on the airspeed and altimeter displays as a magenta line predicting 6 seconds at the current rate. The turn rate indicator also functions as a trend indicator on the compass scale. The PFD can be displayed in a composite format for emergency use by pressing the DISPLAY BACKUP button on the audio panel. In the composite mode, the full crew alerting function remains, but no map functions are available. #### 7.13.3 MULTI-FUNCTION DISPLAY (MFD) The multi-function display (MFD) typically displays engine data, maps, terrain, traffic and topography displays, and flight planning and progress information. The display unit is, nearly identical to the PFD and contains the same controls as previously listed. Additionally the MFD incorporates the controls for the autopilot system. Engine instruments are displayed on the MFD. Discrete engine sensor information is processed by the Garmin engine airframe (GEA) sub-system. When an engine sensor indicates a value outside the normal operating range, the legend will turn yellow for caution range, and turn red and flash for warning range. Also refer to Section 7.9.4 - ENGINE INSTRUMENTS. | Page 7 - 82 Rev. 0 11-Jan-2019 Doc. No.
11.01.05- | |---| |---| #### 7.13.4 AUDIO PANEL The audio panel contains traditional transmitter and receiver selectors, as well as an integral intercom and marker beacon system. The marker beacon lights appear on the PFD. In addition, a clearance recorder records the last 2 ½ minutes of received audio. Lights above the selections indicate what selections are active. Pressing the red DISPLAY BACKUP button on the audio panel causes both the PFD and MFD to display a composite mode. #### 7.13.5 ATTITUDE AND HEADING REFERENCE SYSTEM (AHRS) The attitude and heading reference system (AHRS) uses GPS, rate sensors, air data, and magnetic variation to determine pitch and roll attitude, sideslip and heading. Operation is possible in a degraded mode if the system loses any of these inputs. Status messages alert the crew of the loss of any of these inputs. The AHRS will align while the airplane is in motion, but will align quicker if the wings are kept level during the alignment process. #### 7.13.6 AIR DATA COMPUTER (ADC) The air data computer (ADC) provides airspeed, altitude, vertical speed, and air temperature to the display system. In addition to the primary displays, this information is used by the FMS and TIS systems. #### 7.13.7 GWX 70 WEATHER RADAR The Garmin GWX 70 Weather Radar System provides information about precipitation conditions ahead of the airplane. The system consists of a combined microwave transmitter and receiver system in the nose cone, mounted to the front baggage compartment bulkhead. The system is connected to the electrical system of the airplane via a circuit breaker on the instrument panel. The processed data of the GWX 70 system is displayed on the Garmin G1000 MFD. Refer to the Garmin G1000 Pilot's Guide, P/N | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 7 - 83 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| 190-01895-() or Garmin G1000 NXi Pilot's Guide, P/N 190-01904-() in the latest effective issue for more information. #### 7.13.8 PFD/MFD CONTROL UNIT (KEYPAD) The optional PFD/MFD control unit is a user interface allowing for ease of data entry, PFD/MFD operation and NAV/COM tuning. The PFD/MFD control unit is installed in the center armrest. Access to the control unit is accomplished by a folding mechanism. The control unit must be stowed during take-off and landing, all emergencies and abnormal operating procedures. For more information, refer to the Garmin G1000 Pilot's Guide, P/N 190-01895-() or the latest effective issue. #### 7.14 AVIONICS #### 7.14.1 AUTOPILOT SYSTEM #### General The GFC 700 automatic flight control system (AFCS) is a 3 axis autopilot and flight director system which provides the pilot with the following features: altitude preselect and altitude hold (ALT); yaw damper; flight level change with airspeed hold (FLC); vertical speed hold (VS); navigation tracking for VOR (NAV) and GPS (GPS); heading hold (HDG); approach mode and go around (GA) pitch/roll guidance. The system consists of autopilot controls on the multi-function display (MFD), servos with autopilot processing logic, flight director processing logic in the GIAs, a control stick-mounted elevator trim switch, a control stick mounted trim interrupt and autopilot disconnect switch, a control stick mounted CWS (control wheel steering) switch, a power lever mounted GA (go-around) switch, and PFD/MFD-mounted altitude preselect, heading, and course knobs. The GFC 700 autopilot contains an electric pitch trim system which is used by the autopilot for automatic pitch trim during autopilot operation and by the pilot for manual electric pitch trim when the autopilot is not engaged. The manual electric pitch trim is operated by a split switch on the pilot's control stick. The GFC 700 autopilot and manual electric trim (MET) will not operate until the system has satisfactorily completed a preflight test. The preflight test begins automatically with initial power application to the autopilot (AVIONIC MASTER switch is set to the ON position). The following conditions will cause the autopilot to automatically disconnect: - Electrical power failure - Internal autopilot system failure - AHRS malfunction - Loss of air data computer information | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 7 - 85 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| The GFC 700 may be manually disconnected by any of the following means: - Depressing the red AP DISC button on the pilot's or co-pilot's control stick - Moving the left (outboard) side of the manual electric trim switch on the pilot's control stick - Pushing the AP button on the autopilot mode controller when the autopilot is engaged - Depressing the GA button on the left side of the power lever (if ESP is not installed) - Pulling the AFCS/ESP/USP circuit breaker - Turning off the AVIONICS MASTER switch - Turning off the ELECT. MASTER switch In addition, the CWS (control wheel steering) switch on the pilot's control stick will disconnect the autopilot servos from the airplane flight controls as long as the CWS switch is depressed. Power to the GFC 700 autopilot and electric trim system is supplied through the AVIONIC MASTER switch and the AFCS/ESP/USP circuit breaker. The AVIONIC MASTER switch can be used as an additional means to disable the autopilot and electric trim system. The red AP DISC switch on the pilot's control stick will interrupt power to the manual electric trim for as long as the switch is depressed. Loss of instruments or components of the G1000 system will affect the GFC 700 AFCS as follows: - Loss of the AHRS will cause the autopilot to disconnect. The autopilot and flight director will be inoperative. Manual electric trim will be available. - Loss of the heading function of the AHRS will result in loss of the HDG mode. If in HDG mode at the time heading is lost, the autopilot will revert to basic roll mode (ROL). | Page 7 - 86 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| - Loss of the MFD will not cause the autopilot to disconnect, and will remain engaged with limited functionality, but the autopilot cannot be re-engaged after disconnect by the pilot. - Loss of the PFD will cause the autopilot to disconnect. The autopilot and flight director will be inoperative. Manual electric trim will be available. - Loss of air data computer information will cause the autopilot to disconnect. The autopilot will be inoperative. The flight director will be available except for air data modes (ALT, VS, FLC). Manual electric trim is available. - Loss of GIA #1 will cause the autopilot to disconnect. The autopilot, flight director and manual electric trim will be inoperative. Loss of GIA #2 will also prevent autopilot and manual electric trim operation, but flight director will be available. - Loss of the standby attitude module or compass will have no effect on the autopilot. - Loss of both GPS systems will cause the autopilot and flight director to operate in NAV modes (LOC, BC, VOR, VAPP) with reduced accuracy. Course intercept and station crossing performance may be improved by executing intercepts and station crossings in HDG mode, then reselecting NAV mode. The GFC 700 automatic flight control system (AFCS) installed in the Diamond DA 62 consists of the following components: - One GDU which contains the following mode control buttons: - AP (Autopilot engage/disengage) - FD (Flight director on/off) - HDG (Heading mode on/off) - NAV (Nav mode on/off) - APR (Approach mode on/off) - ALT (Altitude hold mode on/off) - VS (Vertical speed mode on/off) | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 7 - 87 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| - FLC (Flight level change mode on/off) - NOSE UP and NOSE DN (Vertical mode reference change) - YD (Yaw damper on/off) - This GDU is installed as the MFD. - Servos with autopilot processing logic in the pitch, roll, yaw and pitch trim control systems - Servo mounts and brackets - Flight director processing logic in the GIAs - Control stick-mounted manual electric trim (MET) switch (split switch) for pitch trim - Control stick-mounted trim interrupt and autopilot disconnect switch - Control stick-mounted CWS (control wheel steering) switch - Remote-mounted go-around switch (on the left side of the power lever knob) - PFD/MFD mounted altitude preselect knob (ALT) - PFD/MFD mounted heading select knob (HDG) Flight director commands and autopilot modes are displayed on the PFD. Full AFCS functionality is only available with both displays operating, and will disconnect under certain reversionary conditions. Upon initial system power-up, the system undergoes a preflight test. At the end of the test, the autopilot disconnect tone sounds and the PFT and AFCS annunciations are removed. Successful completion of the preflight test is required for the autopilot and manual electric trim to engage. Annunciation of the flight director and autopilot modes is shown in the lower status field of the PFD. In general, green indicates active modes and white indicates armed modes. When a mode is directly selected by the pilot, no flashing of the mode will occur. When automatic mode changes occur, they will be annunciated with a flashing annunciation of the new mode for ten seconds in green. If a mode becomes unavailable for whatever reason, the mode will flash for ten seconds in yellow and be replaced by the new mode in green. Normal autopilot disconnects are annunciated with a yellow flashing AP on the PFD accompanied by a two second autopilot disconnect tone. Normal disconnects are those initiated
by the pilot with the AP DISC switch, the MET switch, the AP button on the MFD mode controller, or the GA button (if ESP/USP is NOT installed). Abnormal disconnects will be accompanied by a red flashing AP on the PFD accompanied by a continuous autopilot disconnect tone. The disconnect tone and flashing alert may be cancelled by pressing the AP DISC switch or the left side of the MET switch. Refer to the Garmin G1000 Cockpit Reference Guide, P/N 190-01896-(), and Garmin G1000 Pilot's Guide for the Diamond DA 62, P/N 190-01895-(), for complete descriptions of the G1000 system and operating procedures. If MÄM 62-254 is installed, refer to the Garmin G1000 NXi Cockpit Reference Guide, P/N 190-01905-() and Garmin G1000 NXi Pilot's Guide for the Diamond DA 62, P/N 190-01904-() for complete descriptions of the G1000 NXi system and operating procedures. ### Power Supply The AVIONIC MASTER switch supplies power to the avionics bus bar of the radio circuit breakers and the AFCS/ESP/USP circuit breaker. The following circuit breaker is used to protect the following element of the GFC 700 autopilot: | Circuit Breaker | Function | |-----------------|---| | AFCS/ESP/USP | Supplies power to the autopilot pitch, roll, yaw and pitch trim servos. | # 7.14.2 AUTOMATIC FLIGHT CONTROL SYSTEM ANNUNCIATIONS AND ALERTS #### Automatic Flight Control System (AFCS) Status Alerts The following annunciations can appear on the PFD above the airspeed and attitude indicators. Only one annunciation occurs at a time, and messages are priorized by criticality. #### Warning Alerts on the Automatic Flight Control System (AFCS) | Warning Alerts | Meaning/Cause | |----------------|---| | PFT | PREFLIGHT TEST - Preflight system test failed; aural alert sounds at failure. | | AFCS | SYSTEM FAILURE - AP and MET are unavailable; FD may still be available. | | PTCH | PITCH FAILURE - Pitch axis control failure; AP inoperative. | | ROL | ROLL FAILURE - Roll axis control failure; AP inoperative. | | YAW | YAW DAMPER FAILURE - Yaw damper control failure; AP inoperative. | | PTRM | PITCH TRIM FAILURE (or stuck AP TRIM switch) - if AP engaged, take control of the airplane and disengage AP. If AP disengaged, move AP TRIM switches separately to release. | # Caution Alerts on the Automatic Flight Control System (AFCS) | Caution Alerts | Meaning/Cause | |----------------|---| | ↑ELE | ELEVATOR MISTRIM UP - Pitch servo providing sustained force in the indicated direction. | | ↓ELE | ELEVATOR MISTRIM DOWN - Pitch servo providing sustained force in the indicated direction. | | ←AIL | AILERON MISTRIM LEFT - Roll servo providing sustained force in indicated direction. | | AIL→ | AILERON MISTRIM RIGHT - Roll servo providing sustained force in indicated direction. | | ←RUD | RUDDER MISTRIM LEFT - Yaw servo providing sustained force in the indicated direction. | | RUD→ | RUDDER MISTRIM RIGHT - Yaw servo providing sustained force in the indicated direction. | ## Advisory Alerts on the Automatic Flight Control System (AFCS) | Advisory | Meaning/Cause | |----------|--| | PFT | PREFLIGHT TEST - Performing preflight system test; aural alert sounds at completion. Do not press the AP DISC switch during servo power-up and preflight system tests as this may cause the preflight system test to fail or never to start (if servos fail their power-up tests). Power must be cycled to the servos to remedy the situation. | | Page 7 - 92 | |-------------| |-------------| #### 7.15 MID CONTINENT MD302 STANDBY ATTITUDE MODULE The Mid Continent MD302 Standby Attitude Module is a self-contained situational awareness instrument that provides airplane attitude, altitude, airspeed and slip indication. The Standby Attitude Module consists of two separate LCD displays. The upper display serves as artificial horizon and the lower display as airspeed indicator and altimeter. The user interface of the Standby Attitude Module allows for simple, intuitive operation using a single push-and-turn control knob. Refer to the Mid Continent MD302 Standby Attitude Module Pilot's Guide, P/N 9017846 in the latest effective issue for more information. The MD302 Standby Attitude Module is not connected to an external ARINC 429 source (Garmin G1000), thus heading information and automatic BARO synchronization is not available in the DA 62. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 7 - 93 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| DA 62 AFM Intentionally left blank. # CHAPTER 8 AIRPLANE HANDLING, CARE AND MAINTENANCE | | Pag | е | |-----|---------------------------------------|---| | 8.1 | INTRODUCTION | 2 | | 8.2 | AIRPLANE INSPECTION INTERVALS 8 | 2 | | 8.3 | AIRPLANE ALTERATIONS OR REPAIRS 8- | 3 | | 8.4 | SERVICING 8- | 3 | | | 8.4.1 REFUELING 8- | 3 | | | 8.4.2 ENGINE OIL LEVEL CHECK8- | 4 | | | 8.4.3 GEARBOX OIL LEVEL CHECK8- | 4 | | | 8.4.4 TIRE INFLATION PRESSURE CHECK8- | 5 | | 8.5 | GROUND HANDLING/ROAD TRANSPORT8- | 6 | | | 8.5.1 GROUND HANDLING | 6 | | | 8.5.2 PARKING8- | 8 | | | 8.5.3 MOORING | 1 | | | 8.5.4 JACKING | 1 | | 8.6 | CLEANING AND CARE8-1 | 2 | | | 8.6.1 PAINTED SURFACES8-1 | 2 | | | 8.6.2 FRONT AND REAR DOOR | 3 | | | 8.6.3 PROPELLER | 3 | | | 8.6.4 ENGINE8-1 | 3 | | | 8.6.5 INTERIOR SURFACES8-1 | 3 | | 8.7 | GROUND DE-ICING | 5 | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 8 - 1 | |---------------------|--------|-------------|------------| | | | | | **DA 62 AFM** #### 8.1 INTRODUCTION Chapter 8 contains the manufacturer's recommended procedures for proper ground handling and servicing of the airplane. The Airplane Maintenance Manual (Doc. No. 7.02.25) lists certain inspection and maintenance requirements which must be followed if the airplane is to retain a new plane performance and reliability. #### 8.2 AIRPLANE INSPECTION INTERVALS Inspections are scheduled every 50, 100, 200, 1000 and 2000 hours. Independent of the flight hours, an annual inspection must be performed every year. A non-recurring engine inspection must be performed on new engines after 3 to 6 hours. The respective inspection checklists are prescribed in the Airplane Maintenance Manual, Chapter 05. For maintenance work on engine and propeller, the currently effective Operator's Manuals, Service Instructions, Service Letters, and Service Bulletins of Austro Engine and mt-Propeller must be followed. For airframe inspections, the currently effective checklists/manuals, Service Bulletins, and Service Instructions of the manufacturer must be followed. #### **CAUTION** Unscheduled maintenance checks are required after: - hard landings - propeller strike - engine fire - lightning strike - occurrence of other malfunctions and damage Unscheduled maintenance checks are described in the Airplane Maintenance Manual (Doc. No. 7.02.25; Section 05-50). | Page 8 - 2 Rev. 0 11-Jan-2019 Doc. No. 11.01.05 | |---| |---| #### 8.3 AIRPLANE ALTERATIONS OR REPAIRS Alterations or repairs to the airplane may be carried out only according to the Airplane Maintenance Manual, Doc. No. 7.02.25, and only by authorized personnel. #### 8.4 **SERVICING** #### 8.4.1 REFUELING #### **WARNING** Do not allow fire, sparks or heat near fuel. Fuel burns violently and can cause injury to persons and damage to the airplane. #### **WARNING** Do not get fuel on your skin. Fuel can cause skin disease. #### **WARNING** Connect the airplane and the fuel supply vehicle to electrical ground before refueling. If you do not ground the airplane, static electricity can cause fire during refueling. #### **WARNING** Make sure that a suitable fire extinguisher is available at all times during refueling. #### **WARNING** Turn off all ground equipment in the refueling area. #### **WARNING** Do not operate electrical switches in the airplane during refueling. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 8 - 3 | |---------------------|--------|-------------|------------| |---------------------|--------|-------------|------------| **DA 62 AFM** #### **CAUTION** Use only approved fuel types given in Chapter 2. - 1. Ground the airplane and the fuel supply vehicle electrically. - Remove the fuel filler cap (located on top of the outer wing). Check cap retaining cable for damage. - 3. Refuel the airplane. - 4. Install the fuel filler cap. - 5. Repeat steps 2 to 4 for the other wing. - 6. Remove the ground cable from the airplane and the fuel supply vehicle. #### 8.4.2 ENGINE OIL LEVEL CHECK - 1. Open the inspection door on the bottom of the upper left cowling. - 2. Remove the filler cap. - 3. Clean the oil dip-stick. - 4. Install the filler cap. - 5. Remove the filler cap again. - 6. Read the oil level from the dip-stick. - 7. If necessary, add engine oil and repeat steps 3 to 6. - 8. Install the filler cap. - 9. Close the inspection door. - 10. Repeat steps 1 to 9 for the other engine. #### 8.4.3 GEARBOX OIL LEVEL CHECK - 1. Open the inspection door on the bottom of the upper left cowling. - 2. Check gearbox oil level in inspection window by using a flashlight. - 3. Close the inspection door. - 4. Repeat steps 1 to 3 for the other engine. | Page 8 - 4 Rev. 0 11-Jan-2019 Doc. No. 1 | 1.01.05-E | |--
-----------| |--|-----------| Handling, Care, Maintenance #### 8.4.4 TIRE INFLATION PRESSURE CHECK - 1. Remove dust cap from valve stem by turning counterclockwise. - 2. Connect tire gauge to valve stem, read pressure. - 3. Correct pressure if necessary (nose wheel 3.2 bar/46 psi, main wheels 3.8 bar/55 psi). - 4. Install dust cap on valve stem by turning clockwise. **DA 62 AFM** #### 8.5 GROUND HANDLING/ROAD TRANSPORT #### **8.5.1 GROUND HANDLING** For pushing or pulling the airplane on the ground, it is recommended to use the tow bar which is available from the manufacturer. The tow bar is engaged in the appropriate hole in the nose wheel as shown on the picture. **Tow Bar Variants** #### **WARNING** | Page 8 - 6 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |------------|--------|-------------|---------------------| | | | | | #### WARNING If the airplane is towed by a towing vehicle, do not turn the nose wheel more than 40 degrees either side of the center position or damage to the gear will result. When towing the airplane with a towing vehicle, a qualified person must sit in the cockpit ready for immediate braking action, in the event the towing becomes uncoupled. The movement of the towing vehicle should always be started and stopped slowly to avoid unnecessary shock loads on the nose landing gear. The maximum steering angle of 40 degrees to either side must not be exceeded. #### **WARNING** The tow bar must be removed before starting the engine. In the event that the airplane must be pulled out of soft ground or deep snow, towing lines must be used. The towing lines should be attached to the main landing gear struts as high as possible without interfering with the brake lines. The ropes should be long enough to sufficiently clear the nose or tail. A qualified person must sit in the cockpit to maintain control of the airplane using the nose wheel steering and brakes. #### **WARNING** All towing lines must be removed before starting the engine. **DA 62 AFM** #### 8.5.2 PARKING For short term parking, the airplane must be positioned into the wind, the parking brake must be engaged, and the wing flaps must be in the retracted position. For extended and unattended parking, as well as in unpredictable wind conditions, the airplane must be anchored to the ground or placed in a hangar. Parking in a hangar is recommended. #### **NOTE** If the engine is not used for more than 4 weeks an engine ground run must be performed. Refer to AE Operation Manual, Doc. No. E4.01.01, latest revision. The manufacturer offers a control surfaces gust lock which can be used to block the primary controls. It is recommended that the control surfaces gust lock is used when parking outdoors, because otherwise the control surfaces can hit the stops in strong tail wind. This can lead to excessive wear or damage. #### **WARNING** The control surfaces gust lock must be removed before flight. Handling, Care, Maintenance The control surfaces gust lock is installed as follows: - 1. Move the rudder pedals to the middle position. - 2. Engage the control surfaces gustlock with the pedals. - 3. Engage the stick, wrap straps around stick once. - 4. Attach the locks. - 5. Wrap the strap under the lower rail of the rudder pedal assy and attach the lock on the gust lock. #### **CAUTION** Do not wrap the strap around the spindle. 6. Tighten all straps. For removal reverse the sequence. Handling, Care, Maintenance #### 8.5.3 MOORING Near the lower end of the tail fin of the airplane there is a hole which can be used to tie down the airplane to the ground. Also on each wing near the wing tip, an eyelet with a metric M8 thread can be installed and used as tie-down points. #### 8.5.4 JACKING The airplane can be jacked at the two jackpoints located on the lower side of the center wing's LH and RH root ribs as well as at the tail fin. **DA 62 AFM** ### **8.6 CLEANING AND CARE** #### **CAUTION** The airplane must be kept clean. The bright surface prevents the structure from overheating. #### **CAUTION** Excessive dirt deteriorates the flight performance. #### 8.6.1 PAINTED SURFACES The entire surface of the airplane is painted with a white weatherproof two component paint. Nevertheless, it is recommended to protect the airplane against moisture and dampness. It is also recommended not to store the airplane outside for long periods of time. Dirt, insects, etc. can be removed with water alone, and if necessary, with a mild detergent. An automotive paint cleaner can be used for stubborn spots. For best results, clean the airplane after the day's flying is ended, so that the dirt will not become ingrained. Oil stains, exhaust stains, etc. on the lower fuselage skin can be removed with a cold detergent. Before starting, ensure that the detergent does not affect the surface finish. Use commercial automotive preservatives without silicone additives to conserve the paint finish. | Page 8 - 12 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |-------------|--------|-------------|---------------------| |-------------|--------|-------------|---------------------| #### 8.6.2 FRONT AND REAR DOOR The windscreen and all windows should be cleaned with 'Plexiklar' or any other acrylic glass detergent if available; otherwise, use lukewarm water. Final cleaning should be carried out with a clean piece of chamois leather or soft cloth. Never rub or polish dry acrylic glass. #### 8.6.3 PROPELLER Damage and malfunctions during operation must be inspected by authorized personnel. #### Surface The manufacturer uses PU paint or acrylic paint which is resistant to almost any solvent. The blades may be treated with commercial automotive cleaning agents or preservatives. The penetration of moisture into the wooden core must be avoided by all means. Should doubts arise, an appropriately rated inspector must be consulted. #### **8.6.4 ENGINE** Engine cleaning is part of the scheduled inspections. #### 8.6.5 INTERIOR SURFACES The interior should be cleaned using a vacuum cleaner. All loose items (pens, bags etc.) should be removed or properly stored and secured. All instruments can be cleaned using a soft dry cloth. Plastic surfaces should be wiped clean using a damp cloth without any cleaning agents. | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 8 - 13 | |---------------------|--------|-------------|-------------| |---------------------|--------|-------------|-------------| # Handling, Care, Maintenance **DA 62 AFM** The leather interior should be treated with leather sealer within 3 months since new, and then at intervals of 3 to 6 months. Clean the leather interior with an appropriate mild leather cleaning agent and a soft cleaning brush for leather. Note that the acrylic glass windows transmit the ultraviolet radiation from the sun. # 8.7 GROUND DE-ICING Approved deicing fluids are: | Manufacturer | Name | |--------------|-----------------| | Kilfrost | TKS 80 | | Aeroshell | Compound 07 | | | AL-5 (DTD 406B) | - 1. Remove any snow from the airplane using a soft brush. - 2. Spray deicing fluid onto ice-covered surfaces using a suitable spray bottle. - 3. Use a soft piece of cloth to wipe the airplane dry. Handling, Care, Maintenance DA 62 AFM Intentionally left blank. # CHAPTER 9 SUPPLEMENTS | | | Page | |-----|---------------------|------| | 0.1 | INTRODUCTION | 0-2 | | | LIST OF SUPPLEMENTS | | ## 9.1 INTRODUCTION Chapter 9 contains information concerning additional (optional) equipment of the DA 62. Unless otherwise stated, the procedures given in the supplements must be applied in addition to the procedures given in the main part of the Airplane Flight Manual. All approved supplements are listed in the List of Supplements in this Chapter. The Airplane Flight Manual contains exactly those supplements which correspond to the installed equipment according to the Equipment Inventory of Section 6.5. # 9.2 LIST OF SUPPLEMENTS | Airplane S/N: Registration: | | | Date: | | | | |-----------------------------|--|------|-------------|------------|----|--| | Sup. | Title | Rev. | Date | applicable | | | | NO. | | NO. | | YES | NO | | | A33 | Integrated Avionics System
Garmin G1000 and G1000 NXi,
SBAS and P-RNAV Operation | 1 | 31-Jan-2017 | | | | | A34 | Electronic Stability and Protection
System (ESP) | | 01-Apr-2015 | | | | | M15 | On Top Exhaust System | 0 | 18-Aug-2017 | | | | | O04 | Operation without Unfeathering Accumulator | 0 | 14-Nov-2015 | | | | | O08 | Pilot's Removable Stick | 0 | 30-Jan-2016 | | | | | S02 | Ice Protection System | 1 | 15-Nov-2015 | | | | | S03 | Ice Protection System for Flight into Known Icing | 2 | 05-May-2017 | | | | | S04 | Continuous Flow Oxygen System | 1 | 14-Nov-2015 | | | | | S06 | G1000 Synthetic Vision
Technology | 1 | 20-Sep-2016 | | | | | S07 | Recirculating Cabin - Air Cooling | 1 | 08-Sep-2016 | | | | | Doc. No. 11.01.05-E | Rev. 0 | 11-Jan-2019 | Page 9 - 3 | |---------------------|--------|-------------|------------| |---------------------|--------|-------------|------------| | Airplane S/N: Registration: | | Date: | | | | |-----------------------------|-------|-------|------|------------|----| | Sup.
No. | Title | Rev. | Date | applicable | | | NO. | | No. | | YES | NO | Page 9 - 4 | Rev. 0 | 11-Jan-2019 | Doc. No. 11.01.05-E | |------------|--------|-------------|---------------------| | | | | |